blob: f611535b90de36adca7bc86aaffda863fc356572 [file] [log] [blame]
Jenkinsb3a371b2018-05-23 11:36:53 +01001/*
2 * Copyright (c) 2018 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/graph.h"
25#include "support/ToolchainSupport.h"
Jenkins52ba29e2018-08-29 15:32:11 +000026#include "utils/CommonGraphOptions.h"
Jenkinsb3a371b2018-05-23 11:36:53 +010027#include "utils/GraphUtils.h"
28#include "utils/Utils.h"
29
Jenkinsb3a371b2018-05-23 11:36:53 +010030using namespace arm_compute::utils;
31using namespace arm_compute::graph::frontend;
32using namespace arm_compute::graph_utils;
33
Jenkinsb9abeae2018-11-22 11:58:08 +000034/** Example demonstrating how to implement ResNeXt50 network using the Compute Library's graph API */
Jenkinsb3a371b2018-05-23 11:36:53 +010035class GraphResNeXt50Example : public Example
36{
37public:
Jenkins52ba29e2018-08-29 15:32:11 +000038 GraphResNeXt50Example()
39 : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "ResNeXt50")
Jenkinsb3a371b2018-05-23 11:36:53 +010040 {
Jenkins52ba29e2018-08-29 15:32:11 +000041 }
42 bool do_setup(int argc, char **argv) override
43 {
Jenkinsb3a371b2018-05-23 11:36:53 +010044 // Parse arguments
Jenkins52ba29e2018-08-29 15:32:11 +000045 cmd_parser.parse(argc, argv);
46
47 // Consume common parameters
48 common_params = consume_common_graph_parameters(common_opts);
49
50 // Return when help menu is requested
51 if(common_params.help)
Jenkinsb3a371b2018-05-23 11:36:53 +010052 {
Jenkins52ba29e2018-08-29 15:32:11 +000053 cmd_parser.print_help(argv[0]);
54 return false;
Jenkinsb3a371b2018-05-23 11:36:53 +010055 }
56
Jenkins52ba29e2018-08-29 15:32:11 +000057 // Checks
58 ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
59 ARM_COMPUTE_EXIT_ON_MSG(common_params.data_type == DataType::F16 && common_params.target == Target::NEON, "F16 NEON not supported for this graph");
60
61 // Print parameter values
62 std::cout << common_params << std::endl;
63
64 // Get trainable parameters data path
65 std::string data_path = common_params.data_path;
66
67 // Create input descriptor
68 const TensorShape tensor_shape = permute_shape(TensorShape(224U, 224U, 3U, 1U), DataLayout::NCHW, common_params.data_layout);
69 TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
70
71 // Set weights trained layout
72 const DataLayout weights_layout = DataLayout::NCHW;
73
74 graph << common_params.target
75 << common_params.fast_math_hint
76 << InputLayer(input_descriptor, get_input_accessor(common_params))
Jenkinsb3a371b2018-05-23 11:36:53 +010077 << ScaleLayer(get_weights_accessor(data_path, "/cnn_data/resnext50_model/bn_data_mul.npy"),
78 get_weights_accessor(data_path, "/cnn_data/resnext50_model/bn_data_add.npy"))
79 .set_name("bn_data/Scale")
80 << ConvolutionLayer(
81 7U, 7U, 64U,
Jenkins52ba29e2018-08-29 15:32:11 +000082 get_weights_accessor(data_path, "/cnn_data/resnext50_model/conv0_weights.npy", weights_layout),
Jenkinsb3a371b2018-05-23 11:36:53 +010083 get_weights_accessor(data_path, "/cnn_data/resnext50_model/conv0_biases.npy"),
84 PadStrideInfo(2, 2, 2, 3, 2, 3, DimensionRoundingType::FLOOR))
85 .set_name("conv0/Convolution")
86 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv0/Relu")
87 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR))).set_name("pool0");
88
Jenkins52ba29e2018-08-29 15:32:11 +000089 add_residual_block(data_path, weights_layout, /*ofm*/ 256, /*stage*/ 1, /*num_unit*/ 3, /*stride_conv_unit1*/ 1);
90 add_residual_block(data_path, weights_layout, 512, 2, 4, 2);
91 add_residual_block(data_path, weights_layout, 1024, 3, 6, 2);
92 add_residual_block(data_path, weights_layout, 2048, 4, 3, 2);
Jenkinsb3a371b2018-05-23 11:36:53 +010093
94 graph << PoolingLayer(PoolingLayerInfo(PoolingType::AVG)).set_name("pool1")
95 << FlattenLayer().set_name("predictions/Reshape")
Jenkins52ba29e2018-08-29 15:32:11 +000096 << OutputLayer(get_npy_output_accessor(common_params.labels, TensorShape(2048U), DataType::F32));
Jenkinsb3a371b2018-05-23 11:36:53 +010097
98 // Finalize graph
99 GraphConfig config;
Jenkins52ba29e2018-08-29 15:32:11 +0000100 config.num_threads = common_params.threads;
101 config.use_tuner = common_params.enable_tuner;
102 config.tuner_file = common_params.tuner_file;
103
104 graph.finalize(common_params.target, config);
105
106 return true;
Jenkinsb3a371b2018-05-23 11:36:53 +0100107 }
108
109 void do_run() override
110 {
111 // Run graph
112 graph.run();
113 }
114
115private:
Jenkins52ba29e2018-08-29 15:32:11 +0000116 CommandLineParser cmd_parser;
117 CommonGraphOptions common_opts;
118 CommonGraphParams common_params;
119 Stream graph;
Jenkinsb3a371b2018-05-23 11:36:53 +0100120
Jenkins52ba29e2018-08-29 15:32:11 +0000121 void add_residual_block(const std::string &data_path, DataLayout weights_layout,
122 unsigned int base_depth, unsigned int stage, unsigned int num_units, unsigned int stride_conv_unit1)
Jenkinsb3a371b2018-05-23 11:36:53 +0100123 {
124 for(unsigned int i = 0; i < num_units; ++i)
125 {
126 std::stringstream unit_path_ss;
127 unit_path_ss << "/cnn_data/resnext50_model/stage" << stage << "_unit" << (i + 1) << "_";
128 std::string unit_path = unit_path_ss.str();
129
130 std::stringstream unit_name_ss;
131 unit_name_ss << "stage" << stage << "/unit" << (i + 1) << "/";
132 std::string unit_name = unit_name_ss.str();
133
134 PadStrideInfo pad_grouped_conv(1, 1, 1, 1);
135 if(i == 0)
136 {
137 pad_grouped_conv = (stage == 1) ? PadStrideInfo(stride_conv_unit1, stride_conv_unit1, 1, 1) : PadStrideInfo(stride_conv_unit1, stride_conv_unit1, 0, 1, 0, 1, DimensionRoundingType::FLOOR);
138 }
139
140 SubStream right(graph);
141 right << ConvolutionLayer(
142 1U, 1U, base_depth / 2,
Jenkins52ba29e2018-08-29 15:32:11 +0000143 get_weights_accessor(data_path, unit_path + "conv1_weights.npy", weights_layout),
Jenkinsb3a371b2018-05-23 11:36:53 +0100144 get_weights_accessor(data_path, unit_path + "conv1_biases.npy"),
145 PadStrideInfo(1, 1, 0, 0))
146 .set_name(unit_name + "conv1/convolution")
147 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv1/Relu")
148
149 << ConvolutionLayer(
150 3U, 3U, base_depth / 2,
Jenkins52ba29e2018-08-29 15:32:11 +0000151 get_weights_accessor(data_path, unit_path + "conv2_weights.npy", weights_layout),
Jenkinsb3a371b2018-05-23 11:36:53 +0100152 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
153 pad_grouped_conv, 32)
154 .set_name(unit_name + "conv2/convolution")
155 << ScaleLayer(get_weights_accessor(data_path, unit_path + "bn2_mul.npy"),
156 get_weights_accessor(data_path, unit_path + "bn2_add.npy"))
157 .set_name(unit_name + "conv1/Scale")
158 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv2/Relu")
159
160 << ConvolutionLayer(
161 1U, 1U, base_depth,
Jenkins52ba29e2018-08-29 15:32:11 +0000162 get_weights_accessor(data_path, unit_path + "conv3_weights.npy", weights_layout),
Jenkinsb3a371b2018-05-23 11:36:53 +0100163 get_weights_accessor(data_path, unit_path + "conv3_biases.npy"),
164 PadStrideInfo(1, 1, 0, 0))
165 .set_name(unit_name + "conv3/convolution");
166
167 SubStream left(graph);
168 if(i == 0)
169 {
170 left << ConvolutionLayer(
171 1U, 1U, base_depth,
Jenkins52ba29e2018-08-29 15:32:11 +0000172 get_weights_accessor(data_path, unit_path + "sc_weights.npy", weights_layout),
Jenkinsb3a371b2018-05-23 11:36:53 +0100173 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
174 PadStrideInfo(stride_conv_unit1, stride_conv_unit1, 0, 0))
175 .set_name(unit_name + "sc/convolution")
176 << ScaleLayer(get_weights_accessor(data_path, unit_path + "sc_bn_mul.npy"),
177 get_weights_accessor(data_path, unit_path + "sc_bn_add.npy"))
178 .set_name(unit_name + "sc/scale");
179 }
180
Jenkinsb9abeae2018-11-22 11:58:08 +0000181 graph << EltwiseLayer(std::move(left), std::move(right), EltwiseOperation::Add).set_name(unit_name + "add");
Jenkinsb3a371b2018-05-23 11:36:53 +0100182 graph << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Relu");
183 }
184 }
185};
186
187/** Main program for ResNeXt50
188 *
Jenkinsb9abeae2018-11-22 11:58:08 +0000189 * Model is based on:
190 * https://arxiv.org/abs/1611.05431
191 * "Aggregated Residual Transformations for Deep Neural Networks"
192 * Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, Kaiming He
193 *
Jenkins52ba29e2018-08-29 15:32:11 +0000194 * @note To list all the possible arguments execute the binary appended with the --help option
195 *
Jenkinsb3a371b2018-05-23 11:36:53 +0100196 * @param[in] argc Number of arguments
Jenkins52ba29e2018-08-29 15:32:11 +0000197 * @param[in] argv Arguments
Jenkinsb3a371b2018-05-23 11:36:53 +0100198 */
199int main(int argc, char **argv)
200{
201 return arm_compute::utils::run_example<GraphResNeXt50Example>(argc, argv);
202}