blob: 3b1773519af1ce50dbebf47afe894d29ccee336f [file] [log] [blame]
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001/*
Anthony Barbier06ea0482018-02-22 15:45:35 +00002 * Copyright (c) 2017-2018 ARM Limited.
Anthony Barbier8140e1e2017-12-14 23:48:46 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Jenkinsb3a371b2018-05-23 11:36:53 +010024#include "arm_compute/graph.h"
Anthony Barbier8140e1e2017-12-14 23:48:46 +000025#include "support/ToolchainSupport.h"
Jenkins52ba29e2018-08-29 15:32:11 +000026#include "utils/CommonGraphOptions.h"
Anthony Barbier8140e1e2017-12-14 23:48:46 +000027#include "utils/GraphUtils.h"
28#include "utils/Utils.h"
29
Anthony Barbierf45d5a92018-01-24 16:23:15 +000030using namespace arm_compute::utils;
Jenkinsb3a371b2018-05-23 11:36:53 +010031using namespace arm_compute::graph::frontend;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000032using namespace arm_compute::graph_utils;
Jenkinsb9abeae2018-11-22 11:58:08 +000033/** Example demonstrating how to implement VGG19's network using the Compute Library's graph API */
Anthony Barbierf45d5a92018-01-24 16:23:15 +000034class GraphVGG19Example : public Example
Anthony Barbier8140e1e2017-12-14 23:48:46 +000035{
Anthony Barbierf45d5a92018-01-24 16:23:15 +000036public:
Jenkins52ba29e2018-08-29 15:32:11 +000037 GraphVGG19Example()
38 : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "VGG19")
Anthony Barbierf45d5a92018-01-24 16:23:15 +000039 {
Jenkins52ba29e2018-08-29 15:32:11 +000040 }
41 bool do_setup(int argc, char **argv) override
42 {
Jenkinsb9abeae2018-11-22 11:58:08 +000043 // Check if the system has enough RAM to run the example, systems with less than 2GB have
44 // to hint the API to minimize memory consumption otherwise it'll run out of memory and
45 // fail throwing the bad_alloc exception
46 arm_compute::MEMInfo meminfo;
47 const size_t mem_total = meminfo.get_total_in_kb();
48 if(mem_total <= arm_compute::MEMInfo::TWO_GB_IN_KB)
49 {
50 arm_compute::MEMInfo::set_policy(arm_compute::MemoryPolicy::MINIMIZE);
51 }
52
Jenkins52ba29e2018-08-29 15:32:11 +000053 // Parse arguments
54 cmd_parser.parse(argc, argv);
55
56 // Consume common parameters
57 common_params = consume_common_graph_parameters(common_opts);
58
59 // Return when help menu is requested
60 if(common_params.help)
61 {
62 cmd_parser.print_help(argv[0]);
63 return false;
64 }
65
66 // Checks
67 ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
68
69 // Print parameter values
70 std::cout << common_params << std::endl;
71
72 // Get trainable parameters data path
73 std::string data_path = common_params.data_path;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000074
Anthony Barbier06ea0482018-02-22 15:45:35 +000075 // Create a preprocessor object
76 const std::array<float, 3> mean_rgb{ { 123.68f, 116.779f, 103.939f } };
77 std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<CaffePreproccessor>(mean_rgb);
Anthony Barbier8140e1e2017-12-14 23:48:46 +000078
Jenkins52ba29e2018-08-29 15:32:11 +000079 // Create input descriptor
80 const TensorShape tensor_shape = permute_shape(TensorShape(224U, 224U, 3U, 1U), DataLayout::NCHW, common_params.data_layout);
81 TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
Jenkinsb3a371b2018-05-23 11:36:53 +010082
Jenkins52ba29e2018-08-29 15:32:11 +000083 // Set weights trained layout
84 const DataLayout weights_layout = DataLayout::NCHW;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000085
Jenkins52ba29e2018-08-29 15:32:11 +000086 graph << common_params.target
87 << common_params.fast_math_hint
88 << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
Anthony Barbierf45d5a92018-01-24 16:23:15 +000089 // Layer 1
90 << ConvolutionLayer(
91 3U, 3U, 64U,
Jenkins52ba29e2018-08-29 15:32:11 +000092 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv1_1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000093 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv1_1_b.npy"),
94 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +010095 .set_name("conv1_1")
96 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1_1/Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +000097 << ConvolutionLayer(
98 3U, 3U, 64U,
Jenkins52ba29e2018-08-29 15:32:11 +000099 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv1_2_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000100 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv1_2_b.npy"),
101 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100102 .set_name("conv1_2")
103 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1_2/Relu")
104 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0))).set_name("pool1")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000105 // Layer 2
106 << ConvolutionLayer(
107 3U, 3U, 128U,
Jenkins52ba29e2018-08-29 15:32:11 +0000108 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv2_1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000109 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv2_1_b.npy"),
110 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100111 .set_name("conv2_1")
112 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2_1/Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000113 << ConvolutionLayer(
114 3U, 3U, 128U,
Jenkins52ba29e2018-08-29 15:32:11 +0000115 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv2_2_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000116 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv2_2_b.npy"),
117 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100118 .set_name("conv2_2")
119 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2_2/Relu")
120 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0))).set_name("pool2")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000121 // Layer 3
122 << ConvolutionLayer(
123 3U, 3U, 256U,
Jenkins52ba29e2018-08-29 15:32:11 +0000124 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000125 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_1_b.npy"),
126 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100127 .set_name("conv3_1")
128 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_1/Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000129 << ConvolutionLayer(
130 3U, 3U, 256U,
Jenkins52ba29e2018-08-29 15:32:11 +0000131 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_2_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000132 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_2_b.npy"),
133 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100134 .set_name("conv3_2")
135 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_2/Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000136 << ConvolutionLayer(
137 3U, 3U, 256U,
Jenkins52ba29e2018-08-29 15:32:11 +0000138 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_3_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000139 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_3_b.npy"),
140 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100141 .set_name("conv3_3")
142 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_3/Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000143 << ConvolutionLayer(
144 3U, 3U, 256U,
Jenkins52ba29e2018-08-29 15:32:11 +0000145 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_4_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000146 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_4_b.npy"),
147 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100148 .set_name("conv3_4")
149 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_4/Relu")
150 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0))).set_name("pool3")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000151 // Layer 4
152 << ConvolutionLayer(
153 3U, 3U, 512U,
Jenkins52ba29e2018-08-29 15:32:11 +0000154 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000155 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_1_b.npy"),
156 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100157 .set_name("conv4_1")
158 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_1/Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000159 << ConvolutionLayer(
160 3U, 3U, 512U,
Jenkins52ba29e2018-08-29 15:32:11 +0000161 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_2_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000162 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_2_b.npy"),
163 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100164 .set_name("conv4_2")
165 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_2/Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000166 << ConvolutionLayer(
167 3U, 3U, 512U,
Jenkins52ba29e2018-08-29 15:32:11 +0000168 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_3_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000169 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_3_b.npy"),
170 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100171 .set_name("conv4_3")
172 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_3/Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000173 << ConvolutionLayer(
174 3U, 3U, 512U,
Jenkins52ba29e2018-08-29 15:32:11 +0000175 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_4_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000176 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_4_b.npy"),
177 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100178 .set_name("conv4_4")
179 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_4/Relu")
180 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0))).set_name("pool4")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000181 // Layer 5
182 << ConvolutionLayer(
183 3U, 3U, 512U,
Jenkins52ba29e2018-08-29 15:32:11 +0000184 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000185 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_1_b.npy"),
186 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100187 .set_name("conv5_1")
188 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_1/Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000189 << ConvolutionLayer(
190 3U, 3U, 512U,
Jenkins52ba29e2018-08-29 15:32:11 +0000191 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_2_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000192 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_2_b.npy"),
193 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100194 .set_name("conv5_2")
195 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_2/Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000196 << ConvolutionLayer(
197 3U, 3U, 512U,
Jenkins52ba29e2018-08-29 15:32:11 +0000198 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_3_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000199 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_3_b.npy"),
200 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100201 .set_name("conv5_3")
202 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_3/Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000203 << ConvolutionLayer(
204 3U, 3U, 512U,
Jenkins52ba29e2018-08-29 15:32:11 +0000205 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_4_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000206 get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_4_b.npy"),
207 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100208 .set_name("conv5_4")
209 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_4/Relu")
210 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0))).set_name("pool5")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000211 // Layer 6
212 << FullyConnectedLayer(
213 4096U,
Jenkins52ba29e2018-08-29 15:32:11 +0000214 get_weights_accessor(data_path, "/cnn_data/vgg19_model/fc6_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000215 get_weights_accessor(data_path, "/cnn_data/vgg19_model/fc6_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100216 .set_name("fc6")
217 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000218 // Layer 7
219 << FullyConnectedLayer(
220 4096U,
Jenkins52ba29e2018-08-29 15:32:11 +0000221 get_weights_accessor(data_path, "/cnn_data/vgg19_model/fc7_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000222 get_weights_accessor(data_path, "/cnn_data/vgg19_model/fc7_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100223 .set_name("fc7")
224 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Relu_1")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000225 // Layer 8
226 << FullyConnectedLayer(
227 1000U,
Jenkins52ba29e2018-08-29 15:32:11 +0000228 get_weights_accessor(data_path, "/cnn_data/vgg19_model/fc8_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000229 get_weights_accessor(data_path, "/cnn_data/vgg19_model/fc8_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100230 .set_name("fc8")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000231 // Softmax
Jenkinsb3a371b2018-05-23 11:36:53 +0100232 << SoftmaxLayer().set_name("prob")
Jenkins52ba29e2018-08-29 15:32:11 +0000233 << OutputLayer(get_output_accessor(common_params, 5));
Anthony Barbier06ea0482018-02-22 15:45:35 +0000234
Jenkinsb3a371b2018-05-23 11:36:53 +0100235 // Finalize graph
236 GraphConfig config;
Jenkins52ba29e2018-08-29 15:32:11 +0000237 config.num_threads = common_params.threads;
238 config.use_tuner = common_params.enable_tuner;
239 config.tuner_file = common_params.tuner_file;
240
241 graph.finalize(common_params.target, config);
242
243 return true;
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000244 }
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000245 void do_run() override
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000246 {
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000247 // Run graph
248 graph.run();
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000249 }
250
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000251private:
Jenkins52ba29e2018-08-29 15:32:11 +0000252 CommandLineParser cmd_parser;
253 CommonGraphOptions common_opts;
254 CommonGraphParams common_params;
255 Stream graph;
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000256};
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000257
258/** Main program for VGG19
259 *
Jenkinsb9abeae2018-11-22 11:58:08 +0000260 * Model is based on:
261 * https://arxiv.org/abs/1409.1556
262 * "Very Deep Convolutional Networks for Large-Scale Image Recognition"
263 * Karen Simonyan, Andrew Zisserman
264 *
Jenkins52ba29e2018-08-29 15:32:11 +0000265 * @note To list all the possible arguments execute the binary appended with the --help option
266 *
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000267 * @param[in] argc Number of arguments
Jenkins52ba29e2018-08-29 15:32:11 +0000268 * @param[in] argv Arguments
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000269 */
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000270int main(int argc, char **argv)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000271{
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000272 return arm_compute::utils::run_example<GraphVGG19Example>(argc, argv);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000273}