Anthony Barbier | 8140e1e | 2017-12-14 23:48:46 +0000 | [diff] [blame] | 1 | /* |
Anthony Barbier | f45d5a9 | 2018-01-24 16:23:15 +0000 | [diff] [blame^] | 2 | * Copyright (c) 2017-2018 ARM Limited. |
Anthony Barbier | 8140e1e | 2017-12-14 23:48:46 +0000 | [diff] [blame] | 3 | * |
| 4 | * SPDX-License-Identifier: MIT |
| 5 | * |
| 6 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 7 | * of this software and associated documentation files (the "Software"), to |
| 8 | * deal in the Software without restriction, including without limitation the |
| 9 | * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or |
| 10 | * sell copies of the Software, and to permit persons to whom the Software is |
| 11 | * furnished to do so, subject to the following conditions: |
| 12 | * |
| 13 | * The above copyright notice and this permission notice shall be included in all |
| 14 | * copies or substantial portions of the Software. |
| 15 | * |
| 16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 19 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 22 | * SOFTWARE. |
| 23 | */ |
| 24 | #include "arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h" |
| 25 | |
| 26 | #include "arm_compute/core/Helpers.h" |
| 27 | #include "arm_compute/core/ITensor.h" |
| 28 | #include "arm_compute/core/PixelValue.h" |
Anthony Barbier | f45d5a9 | 2018-01-24 16:23:15 +0000 | [diff] [blame^] | 29 | #include "arm_compute/core/utils/quantization/AsymmHelpers.h" |
Anthony Barbier | 8140e1e | 2017-12-14 23:48:46 +0000 | [diff] [blame] | 30 | #include "arm_compute/runtime/NEON/NEScheduler.h" |
| 31 | #include "support/ToolchainSupport.h" |
| 32 | |
| 33 | using namespace arm_compute; |
| 34 | |
| 35 | NEDepthwiseConvolutionLayer3x3::NEDepthwiseConvolutionLayer3x3() |
Anthony Barbier | f45d5a9 | 2018-01-24 16:23:15 +0000 | [diff] [blame^] | 36 | : _kernel(), _output_stage_kernel(), _border_handler(), _accumulator(), _has_bias(false), _is_quantized(false) |
Anthony Barbier | 8140e1e | 2017-12-14 23:48:46 +0000 | [diff] [blame] | 37 | { |
| 38 | } |
| 39 | |
| 40 | void NEDepthwiseConvolutionLayer3x3::configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info) |
| 41 | { |
Anthony Barbier | f45d5a9 | 2018-01-24 16:23:15 +0000 | [diff] [blame^] | 42 | ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F32); |
| 43 | ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); |
Anthony Barbier | 8140e1e | 2017-12-14 23:48:46 +0000 | [diff] [blame] | 44 | |
Anthony Barbier | f45d5a9 | 2018-01-24 16:23:15 +0000 | [diff] [blame^] | 45 | PixelValue zero_value(0.f); |
| 46 | |
| 47 | _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type()); |
| 48 | _has_bias = biases != nullptr; |
| 49 | |
| 50 | // Allocate the intermediate accumulator tensor in case of fixed point input |
| 51 | if(_is_quantized) |
Anthony Barbier | 8140e1e | 2017-12-14 23:48:46 +0000 | [diff] [blame] | 52 | { |
Anthony Barbier | f45d5a9 | 2018-01-24 16:23:15 +0000 | [diff] [blame^] | 53 | _accumulator.allocator()->init(TensorInfo(output->info()->tensor_shape(), 1, DataType::S32)); |
| 54 | _accumulator.info()->set_quantization_info(input->info()->quantization_info()); |
| 55 | zero_value = PixelValue(static_cast<uint32_t>(input->info()->quantization_info().offset)); |
| 56 | } |
| 57 | |
| 58 | // Configure depthwise convolution kernel |
| 59 | _kernel.configure(input, weights, (_is_quantized) ? &_accumulator : output, conv_info); |
| 60 | |
| 61 | // Configure border handler |
| 62 | _border_handler.configure(input, _kernel.border_size(), BorderMode::CONSTANT, zero_value); |
| 63 | |
| 64 | // Configure biases accumulation |
| 65 | if(_has_bias || _is_quantized) |
| 66 | { |
| 67 | if(_is_quantized) |
| 68 | { |
| 69 | float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output->info()->quantization_info().scale; |
| 70 | int output_multiplier, output_shift; |
| 71 | quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift); |
| 72 | _output_stage_kernel.configure(&_accumulator, biases, output, output_multiplier, output_shift, output->info()->quantization_info().offset); |
| 73 | _accumulator.allocator()->allocate(); |
| 74 | } |
| 75 | else |
| 76 | { |
| 77 | _output_stage_kernel.configure(output, biases); |
| 78 | } |
Anthony Barbier | 8140e1e | 2017-12-14 23:48:46 +0000 | [diff] [blame] | 79 | } |
| 80 | } |
| 81 | |
| 82 | void NEDepthwiseConvolutionLayer3x3::run() |
| 83 | { |
| 84 | NEScheduler::get().schedule(&_border_handler, Window::DimX); |
| 85 | NEScheduler::get().schedule(&_kernel, Window::DimX); |
Anthony Barbier | f45d5a9 | 2018-01-24 16:23:15 +0000 | [diff] [blame^] | 86 | if(_has_bias || _is_quantized) |
Anthony Barbier | 8140e1e | 2017-12-14 23:48:46 +0000 | [diff] [blame] | 87 | { |
Anthony Barbier | f45d5a9 | 2018-01-24 16:23:15 +0000 | [diff] [blame^] | 88 | NEScheduler::get().schedule(&_output_stage_kernel, Window::DimX); |
Anthony Barbier | 8140e1e | 2017-12-14 23:48:46 +0000 | [diff] [blame] | 89 | } |
| 90 | } |
| 91 | |
| 92 | NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayer() |
| 93 | : _im2col_kernel(), _weights_reshape_kernel(), _v2mm_kernel(), _vector_to_tensor_kernel(), _input_reshaped(), _weights_reshaped(), _v2mm_output() |
| 94 | { |
| 95 | } |
| 96 | |
| 97 | void NEDepthwiseConvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info) |
| 98 | { |
| 99 | ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32); |
| 100 | ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights); |
| 101 | ARM_COMPUTE_ERROR_ON(input->info()->dimension(2) != weights->info()->dimension(2)); |
| 102 | |
| 103 | const size_t weights_w = weights->info()->dimension(0); |
| 104 | const size_t weights_h = weights->info()->dimension(1); |
| 105 | const size_t weights_z = weights->info()->dimension(2); |
| 106 | |
| 107 | bool has_bias = (biases != nullptr); |
| 108 | |
| 109 | unsigned int conv_w = 0; |
| 110 | unsigned int conv_h = 0; |
| 111 | std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), weights_w, weights_h, conv_info); |
| 112 | |
| 113 | // Set up intermediate tensors |
| 114 | const size_t patch_size = weights_w * weights_h + ((has_bias) ? 1 : 0); |
| 115 | const size_t conv_size = conv_w * conv_h; |
| 116 | |
| 117 | // Im2Col configuration |
| 118 | TensorShape shape_im2col = input->info()->tensor_shape(); |
| 119 | shape_im2col.set(0, patch_size); |
| 120 | shape_im2col.set(1, conv_size); |
| 121 | shape_im2col.set(2, weights_z); |
| 122 | const TensorInfo info_im2col(shape_im2col, 1, input->info()->data_type(), input->info()->fixed_point_position()); |
| 123 | _input_reshaped.allocator()->init(info_im2col); |
| 124 | _im2col_kernel.configure(input, &_input_reshaped, Size2D(weights_w, weights_h), conv_info, has_bias); |
| 125 | |
| 126 | // Weights reshape configuration |
| 127 | const TensorShape shape_weights_reshape(patch_size, weights_z); |
| 128 | const TensorInfo info_weights_reshape(shape_weights_reshape, 1, weights->info()->data_type(), weights->info()->fixed_point_position()); |
| 129 | _weights_reshaped.allocator()->init(info_weights_reshape); |
| 130 | _weights_reshape_kernel.configure(weights, &_weights_reshaped, biases); |
| 131 | |
| 132 | // GEMV configuration |
| 133 | TensorShape shape_v2mm_out = input->info()->tensor_shape(); |
| 134 | shape_v2mm_out.set(0, conv_size * weights_z); |
| 135 | shape_v2mm_out.set(1, 1); |
| 136 | shape_v2mm_out.set(2, 1); |
| 137 | const TensorInfo info_v2mm_out(shape_v2mm_out, 1, input->info()->data_type(), input->info()->fixed_point_position()); |
| 138 | _v2mm_output.allocator()->init(info_v2mm_out); |
| 139 | _v2mm_kernel.configure(&_input_reshaped, &_weights_reshaped, &_v2mm_output); |
| 140 | _vector_to_tensor_kernel.configure(&_v2mm_output, output, conv_w, conv_h); |
| 141 | |
| 142 | // Allocate intermediate tensors |
| 143 | _input_reshaped.allocator()->allocate(); |
| 144 | _weights_reshaped.allocator()->allocate(); |
| 145 | _v2mm_output.allocator()->allocate(); |
| 146 | } |
| 147 | |
| 148 | void NEDepthwiseConvolutionLayer::run() |
| 149 | { |
| 150 | NEScheduler::get().schedule(&_im2col_kernel, Window::DimX); |
| 151 | NEScheduler::get().schedule(&_weights_reshape_kernel, Window::DimX); |
| 152 | NEScheduler::get().schedule(&_v2mm_kernel, Window::DimX); |
| 153 | NEScheduler::get().schedule(&_vector_to_tensor_kernel, Window::DimX); |
| 154 | } |