blob: a0c7f582b7a453ce0ed826a1ed8287c696416ac2 [file] [log] [blame]
#include <benchmark/benchmark.h>
#include <fp16.h>
#ifndef EMSCRIPTEN
#include <fp16/psimd.h>
#endif
#include <vector>
#include <random>
#include <chrono>
#include <functional>
#include <algorithm>
#if (defined(__i386__) || defined(__x86_64__)) && defined(__F16C__)
#include <immintrin.h>
#endif
#if defined(__ARM_NEON__) || defined(__aarch64__)
#include <arm_neon.h>
#endif
#ifdef FP16_COMPARATIVE_BENCHMARKS
#include <third-party/THHalf.h>
#include <third-party/npy-halffloat.h>
#include <third-party/eigen-half.h>
#include <third-party/float16-compressor.h>
#include <third-party/half.hpp>
#endif
static void fp16_ieee_from_fp32_value(benchmark::State& state) {
const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed));
std::vector<float> fp32(state.range(0));
std::vector<uint16_t> fp16(state.range(0));
std::generate(fp32.begin(), fp32.end(), std::ref(rng));
while (state.KeepRunning()) {
float* input = fp32.data();
benchmark::DoNotOptimize(input);
uint16_t* output = fp16.data();
const size_t n = state.range(0);
for (size_t i = 0; i < n; i++) {
output[i] = fp16_ieee_from_fp32_value(input[i]);
}
benchmark::DoNotOptimize(output);
}
state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0)));
}
BENCHMARK(fp16_ieee_from_fp32_value)->RangeMultiplier(2)->Range(1<<10, 64<<20);
#if (defined(__i386__) || defined(__x86_64__)) && defined(__F16C__)
static void hardware_mm_cvtps_ph(benchmark::State& state) {
const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed));
std::vector<float> fp32(state.range(0));
std::vector<uint16_t> fp16(state.range(0));
std::generate(fp32.begin(), fp32.end(), std::ref(rng));
while (state.KeepRunning()) {
float* input = fp32.data();
benchmark::DoNotOptimize(input);
uint16_t* output = fp16.data();
const size_t n = state.range(0);
for (size_t i = 0; i < n; i += 4) {
_mm_storel_epi64(
static_cast<__m128i*>(static_cast<void*>(&output[i])),
_mm_cvtps_ph(_mm_loadu_ps(&input[i]), _MM_FROUND_CUR_DIRECTION));
}
benchmark::DoNotOptimize(output);
}
state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0)));
}
BENCHMARK(hardware_mm_cvtps_ph)->RangeMultiplier(2)->Range(1<<10, 64<<20);
static void hardware_mm256_cvtps_ph(benchmark::State& state) {
const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed));
std::vector<float> fp32(state.range(0));
std::vector<uint16_t> fp16(state.range(0));
std::generate(fp32.begin(), fp32.end(), std::ref(rng));
while (state.KeepRunning()) {
float* input = fp32.data();
benchmark::DoNotOptimize(input);
uint16_t* output = fp16.data();
const size_t n = state.range(0);
for (size_t i = 0; i < n; i += 8) {
_mm_storeu_si128(
static_cast<__m128i*>(static_cast<void*>(&output[i])),
_mm256_cvtps_ph(_mm256_loadu_ps(&input[i]), _MM_FROUND_CUR_DIRECTION));
}
benchmark::DoNotOptimize(output);
}
state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0)));
}
BENCHMARK(hardware_mm256_cvtps_ph)->RangeMultiplier(2)->Range(1<<10, 64<<20);
#endif
#if defined(__ARM_NEON_FP) && (__ARM_NEON_FP & 0x2) || defined(__aarch64__)
static void hardware_vcvt_f16_f32(benchmark::State& state) {
const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed));
std::vector<float> fp32(state.range(0));
std::vector<uint16_t> fp16(state.range(0));
std::generate(fp32.begin(), fp32.end(), std::ref(rng));
while (state.KeepRunning()) {
float* input = fp32.data();
benchmark::DoNotOptimize(input);
uint16_t* output = fp16.data();
const size_t n = state.range(0);
#if defined(__aarch64__)
const unsigned int fpcr = __builtin_aarch64_get_fpcr();
/* Disable flush-to-zero (bit 24) and Alternative FP16 format (bit 26) */
__builtin_aarch64_set_fpcr(fpcr & 0xF6FFFFFFu);
#else
unsigned int fpscr;
__asm__ __volatile__ ("VMRS %[fpscr], fpscr" : [fpscr] "=r" (fpscr));
/* Disable flush-to-zero (bit 24) and Alternative FP16 format (bit 26) */
__asm__ __volatile__ ("VMSR fpscr, %[fpscr]" :
: [fpscr] "r" (fpscr & 0xF6FFFFFFu));
#endif
for (size_t i = 0; i < n; i += 4) {
vst1_u16(&output[i],
(uint16x4_t) vcvt_f16_f32(
vld1q_f32(&input[i])));
}
#if defined(__aarch64__)
__builtin_aarch64_set_fpcr(fpcr);
#else
__asm__ __volatile__ ("VMSR fpscr, %[fpscr]" :: [fpscr] "r" (fpscr));
#endif
benchmark::DoNotOptimize(output);
}
state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0)));
}
BENCHMARK(hardware_vcvt_f16_f32)->RangeMultiplier(2)->Range(1<<10, 64<<20);
#endif
#ifdef FP16_COMPARATIVE_BENCHMARKS
static void TH_float2halfbits(benchmark::State& state) {
const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed));
std::vector<float> fp32(state.range(0));
std::vector<uint16_t> fp16(state.range(0));
std::generate(fp32.begin(), fp32.end(), std::ref(rng));
while (state.KeepRunning()) {
float* input = fp32.data();
benchmark::DoNotOptimize(input);
uint16_t* output = fp16.data();
const size_t n = state.range(0);
for (size_t i = 0; i < n; i++) {
TH_float2halfbits(&input[i], &output[i]);
}
benchmark::DoNotOptimize(output);
}
state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0)));
}
BENCHMARK(TH_float2halfbits)->RangeMultiplier(2)->Range(1<<10, 64<<20);
static void npy_floatbits_to_halfbits(benchmark::State& state) {
const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed));
std::vector<float> fp32(state.range(0));
std::vector<uint16_t> fp16(state.range(0));
std::generate(fp32.begin(), fp32.end(), std::ref(rng));
while (state.KeepRunning()) {
float* input = fp32.data();
benchmark::DoNotOptimize(input);
uint16_t* output = fp16.data();
const size_t n = state.range(0);
for (size_t i = 0; i < n; i++) {
output[i] = npy_floatbits_to_halfbits(fp32_to_bits(input[i]));
}
benchmark::DoNotOptimize(output);
}
state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0)));
}
BENCHMARK(npy_floatbits_to_halfbits)->RangeMultiplier(2)->Range(1<<10, 64<<20);
static void Eigen_float_to_half_rtne(benchmark::State& state) {
const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed));
std::vector<float> fp32(state.range(0));
std::vector<uint16_t> fp16(state.range(0));
std::generate(fp32.begin(), fp32.end(), std::ref(rng));
while (state.KeepRunning()) {
float* input = fp32.data();
benchmark::DoNotOptimize(input);
uint16_t* output = fp16.data();
const size_t n = state.range(0);
for (size_t i = 0; i < n; i++) {
output[i] = Eigen::half_impl::float_to_half_rtne(input[i]).x;
}
benchmark::DoNotOptimize(output);
}
state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0)));
}
BENCHMARK(Eigen_float_to_half_rtne)->RangeMultiplier(2)->Range(1<<10, 64<<20);
static void Float16Compressor_compress(benchmark::State& state) {
const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed));
std::vector<float> fp32(state.range(0));
std::vector<uint16_t> fp16(state.range(0));
std::generate(fp32.begin(), fp32.end(), std::ref(rng));
while (state.KeepRunning()) {
float* input = fp32.data();
benchmark::DoNotOptimize(input);
uint16_t* output = fp16.data();
const size_t n = state.range(0);
for (size_t i = 0; i < n; i++) {
output[i] = Float16Compressor::compress(input[i]);
}
benchmark::DoNotOptimize(output);
}
state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0)));
}
BENCHMARK(Float16Compressor_compress)->RangeMultiplier(2)->Range(1<<10, 64<<20);
static void half_float_detail_float2half_table(benchmark::State& state) {
const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed));
std::vector<float> fp32(state.range(0));
std::vector<uint16_t> fp16(state.range(0));
std::generate(fp32.begin(), fp32.end(), std::ref(rng));
while (state.KeepRunning()) {
float* input = fp32.data();
benchmark::DoNotOptimize(input);
uint16_t* output = fp16.data();
const size_t n = state.range(0);
for (size_t i = 0; i < n; i++) {
output[i] =
half_float::detail::float2half_impl<std::round_to_nearest>(
input[i], half_float::detail::true_type());
}
benchmark::DoNotOptimize(output);
}
state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0)));
}
BENCHMARK(half_float_detail_float2half_table)->RangeMultiplier(2)->Range(1<<10, 64<<20);
static void half_float_detail_float2half_branch(benchmark::State& state) {
const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed));
std::vector<float> fp32(state.range(0));
std::vector<uint16_t> fp16(state.range(0));
std::generate(fp32.begin(), fp32.end(), std::ref(rng));
while (state.KeepRunning()) {
float* input = fp32.data();
benchmark::DoNotOptimize(input);
uint16_t* output = fp16.data();
const size_t n = state.range(0);
for (size_t i = 0; i < n; i++) {
output[i] =
half_float::detail::float2half_impl<std::round_to_nearest>(
input[i], half_float::detail::false_type());
}
benchmark::DoNotOptimize(output);
}
state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0)));
}
BENCHMARK(half_float_detail_float2half_branch)->RangeMultiplier(2)->Range(1<<10, 64<<20);
#endif
BENCHMARK_MAIN();