blob: 7fe25e78febc06752d3350fb8183590f33a74198 [file] [log] [blame]
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% SSSSS TTTTT RRRR EEEEE AAA M M %
% SS T R R E A A MM MM %
% SSS T RRRR EEE AAAAA M M M %
% SS T R R E A A M M %
% SSSSS T R R EEEEE A A M M %
% %
% %
% MagickCore Pixel Stream Methods %
% %
% Software Design %
% John Cristy %
% March 2000 %
% %
% %
% Copyright 1999-2012 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% http://www.imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
*/
/*
Include declarations.
*/
#include "MagickCore/studio.h"
#include "MagickCore/blob.h"
#include "MagickCore/blob-private.h"
#include "MagickCore/cache.h"
#include "MagickCore/cache-private.h"
#include "MagickCore/color-private.h"
#include "MagickCore/composite-private.h"
#include "MagickCore/constitute.h"
#include "MagickCore/exception.h"
#include "MagickCore/exception-private.h"
#include "MagickCore/geometry.h"
#include "MagickCore/memory_.h"
#include "MagickCore/pixel.h"
#include "MagickCore/pixel-accessor.h"
#include "MagickCore/quantum.h"
#include "MagickCore/quantum-private.h"
#include "MagickCore/semaphore.h"
#include "MagickCore/stream.h"
#include "MagickCore/stream-private.h"
#include "MagickCore/string_.h"
/*
Typedef declaractions.
*/
struct _StreamInfo
{
const ImageInfo
*image_info;
const Image
*image;
Image
*stream;
QuantumInfo
*quantum_info;
char
*map;
StorageType
storage_type;
unsigned char
*pixels;
RectangleInfo
extract_info;
ssize_t
y;
ExceptionInfo
*exception;
const void
*client_data;
size_t
signature;
};
/*
Declare pixel cache interfaces.
*/
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
static const Quantum
*GetVirtualPixelStream(const Image *,const VirtualPixelMethod,const ssize_t,
const ssize_t,const size_t,const size_t,ExceptionInfo *);
static MagickBooleanType
StreamImagePixels(const StreamInfo *,const Image *,ExceptionInfo *),
SyncAuthenticPixelsStream(Image *,ExceptionInfo *);
static Quantum
*QueueAuthenticPixelsStream(Image *,const ssize_t,const ssize_t,const size_t,
const size_t,ExceptionInfo *);
#if defined(__cplusplus) || defined(c_plusplus)
}
#endif
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ A c q u i r e S t r e a m I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% AcquireStreamInfo() allocates the StreamInfo structure.
%
% The format of the AcquireStreamInfo method is:
%
% StreamInfo *AcquireStreamInfo(const ImageInfo *image_info,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image_info: the image info.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport StreamInfo *AcquireStreamInfo(const ImageInfo *image_info,
ExceptionInfo *exception)
{
StreamInfo
*stream_info;
stream_info=(StreamInfo *) AcquireMagickMemory(sizeof(*stream_info));
if (stream_info == (StreamInfo *) NULL)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
(void) ResetMagickMemory(stream_info,0,sizeof(*stream_info));
stream_info->pixels=(unsigned char *) AcquireMagickMemory(
sizeof(*stream_info->pixels));
if (stream_info->pixels == (unsigned char *) NULL)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
stream_info->map=ConstantString("RGB");
stream_info->storage_type=CharPixel;
stream_info->stream=AcquireImage(image_info,exception);
stream_info->signature=MagickSignature;
return(stream_info);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ D e s t r o y P i x e l S t r e a m %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DestroyPixelStream() deallocates memory associated with the pixel stream.
%
% The format of the DestroyPixelStream() method is:
%
% void DestroyPixelStream(Image *image)
%
% A description of each parameter follows:
%
% o image: the image.
%
*/
static inline void RelinquishStreamPixels(CacheInfo *cache_info)
{
assert(cache_info != (CacheInfo *) NULL);
if (cache_info->mapped == MagickFalse)
(void) RelinquishMagickMemory(cache_info->pixels);
else
(void) UnmapBlob(cache_info->pixels,(size_t) cache_info->length);
cache_info->pixels=(Quantum *) NULL;
cache_info->metacontent=(void *) NULL;
cache_info->length=0;
cache_info->mapped=MagickFalse;
}
static void DestroyPixelStream(Image *image)
{
CacheInfo
*cache_info;
MagickBooleanType
destroy;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
cache_info=(CacheInfo *) image->cache;
assert(cache_info->signature == MagickSignature);
destroy=MagickFalse;
LockSemaphoreInfo(cache_info->semaphore);
cache_info->reference_count--;
if (cache_info->reference_count == 0)
destroy=MagickTrue;
UnlockSemaphoreInfo(cache_info->semaphore);
if (destroy == MagickFalse)
return;
RelinquishStreamPixels(cache_info);
if (cache_info->nexus_info != (NexusInfo **) NULL)
cache_info->nexus_info=DestroyPixelCacheNexus(cache_info->nexus_info,
cache_info->number_threads);
if (cache_info->disk_semaphore != (SemaphoreInfo *) NULL)
DestroySemaphoreInfo(&cache_info->disk_semaphore);
if (cache_info->semaphore != (SemaphoreInfo *) NULL)
DestroySemaphoreInfo(&cache_info->semaphore);
cache_info=(CacheInfo *) RelinquishMagickMemory(cache_info);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ D e s t r o y S t r e a m I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DestroyStreamInfo() destroys memory associated with the StreamInfo
% structure.
%
% The format of the DestroyStreamInfo method is:
%
% StreamInfo *DestroyStreamInfo(StreamInfo *stream_info)
%
% A description of each parameter follows:
%
% o stream_info: the stream info.
%
*/
MagickExport StreamInfo *DestroyStreamInfo(StreamInfo *stream_info)
{
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
assert(stream_info != (StreamInfo *) NULL);
assert(stream_info->signature == MagickSignature);
if (stream_info->map != (char *) NULL)
stream_info->map=DestroyString(stream_info->map);
if (stream_info->pixels != (unsigned char *) NULL)
stream_info->pixels=(unsigned char *) RelinquishMagickMemory(
stream_info->pixels);
if (stream_info->stream != (Image *) NULL)
{
(void) CloseBlob(stream_info->stream);
stream_info->stream=DestroyImage(stream_info->stream);
}
if (stream_info->quantum_info != (QuantumInfo *) NULL)
stream_info->quantum_info=DestroyQuantumInfo(stream_info->quantum_info);
stream_info->signature=(~MagickSignature);
stream_info=(StreamInfo *) RelinquishMagickMemory(stream_info);
return(stream_info);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ G e t A u t h e n t i c M e t a c o n t e n t F r o m S t r e a m %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetAuthenticMetacontentFromStream() returns the metacontent corresponding
% with the last call to QueueAuthenticPixelsStream() or
% GetAuthenticPixelsStream().
%
% The format of the GetAuthenticMetacontentFromStream() method is:
%
% void *GetAuthenticMetacontentFromStream(const Image *image)
%
% A description of each parameter follows:
%
% o image: the image.
%
*/
static void *GetAuthenticMetacontentFromStream(const Image *image)
{
CacheInfo
*cache_info;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
cache_info=(CacheInfo *) image->cache;
assert(cache_info->signature == MagickSignature);
return(cache_info->metacontent);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ G e t A u t h e n t i c P i x e l S t r e a m %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetAuthenticPixelsStream() gets pixels from the in-memory or disk pixel
% cache as defined by the geometry parameters. A pointer to the pixels is
% returned if the pixels are transferred, otherwise a NULL is returned. For
% streams this method is a no-op.
%
% The format of the GetAuthenticPixelsStream() method is:
%
% Quantum *GetAuthenticPixelsStream(Image *image,const ssize_t x,
% const ssize_t y,const size_t columns,const size_t rows,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o x,y,columns,rows: These values define the perimeter of a region of
% pixels.
%
% o exception: return any errors or warnings in this structure.
%
*/
static Quantum *GetAuthenticPixelsStream(Image *image,const ssize_t x,
const ssize_t y,const size_t columns,const size_t rows,
ExceptionInfo *exception)
{
Quantum
*pixels;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
pixels=QueueAuthenticPixelsStream(image,x,y,columns,rows,exception);
return(pixels);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ G e t A u t h e n t i c P i x e l F r o m S t e a m %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetAuthenticPixelsFromStream() returns the pixels associated with the last
% call to QueueAuthenticPixelsStream() or GetAuthenticPixelsStream().
%
% The format of the GetAuthenticPixelsFromStream() method is:
%
% Quantum *GetAuthenticPixelsFromStream(const Image image)
%
% A description of each parameter follows:
%
% o image: the image.
%
*/
static Quantum *GetAuthenticPixelsFromStream(const Image *image)
{
CacheInfo
*cache_info;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
cache_info=(CacheInfo *) image->cache;
assert(cache_info->signature == MagickSignature);
return(cache_info->pixels);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ G e t O n e A u t h e n t i c P i x e l F r o m S t r e a m %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetOneAuthenticPixelFromStream() returns a single pixel at the specified
% (x,y) location. The image background color is returned if an error occurs.
%
% The format of the GetOneAuthenticPixelFromStream() method is:
%
% MagickBooleanType GetOneAuthenticPixelFromStream(const Image image,
% const ssize_t x,const ssize_t y,Quantum *pixel,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o pixel: return a pixel at the specified (x,y) location.
%
% o x,y: These values define the location of the pixel to return.
%
% o exception: return any errors or warnings in this structure.
%
*/
static MagickBooleanType GetOneAuthenticPixelFromStream(Image *image,
const ssize_t x,const ssize_t y,Quantum *pixel,ExceptionInfo *exception)
{
register Quantum
*q;
register ssize_t
i;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
(void) memset(pixel,0,MaxPixelChannels*sizeof(*pixel));
q=GetAuthenticPixelsStream(image,x,y,1,1,exception);
if (q != (Quantum *) NULL)
{
pixel[RedPixelChannel]=ClampToQuantum(image->background_color.red);
pixel[GreenPixelChannel]=ClampToQuantum(image->background_color.green);
pixel[BluePixelChannel]=ClampToQuantum(image->background_color.blue);
pixel[BlackPixelChannel]=ClampToQuantum(image->background_color.black);
pixel[AlphaPixelChannel]=ClampToQuantum(image->background_color.alpha);
return(MagickFalse);
}
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel
channel;
channel=GetPixelChannelMapChannel(image,i);
pixel[channel]=q[i];
}
return(MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ G e t O n e V i r t u a l P i x e l F r o m S t r e a m %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetOneVirtualPixelFromStream() returns a single pixel at the specified
% (x.y) location. The image background color is returned if an error occurs.
%
% The format of the GetOneVirtualPixelFromStream() method is:
%
% MagickBooleanType GetOneVirtualPixelFromStream(const Image image,
% const VirtualPixelMethod virtual_pixel_method,const ssize_t x,
% const ssize_t y,Quantum *pixel,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o virtual_pixel_method: the virtual pixel method.
%
% o x,y: These values define the location of the pixel to return.
%
% o pixel: return a pixel at the specified (x,y) location.
%
% o exception: return any errors or warnings in this structure.
%
*/
static MagickBooleanType GetOneVirtualPixelFromStream(const Image *image,
const VirtualPixelMethod virtual_pixel_method,const ssize_t x,const ssize_t y,
Quantum *pixel,ExceptionInfo *exception)
{
const Quantum
*p;
register ssize_t
i;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
(void) memset(pixel,0,MaxPixelChannels*sizeof(*pixel));
p=GetVirtualPixelStream(image,virtual_pixel_method,x,y,1,1,exception);
if (p == (const Quantum *) NULL)
{
pixel[RedPixelChannel]=ClampToQuantum(image->background_color.red);
pixel[GreenPixelChannel]=ClampToQuantum(image->background_color.green);
pixel[BluePixelChannel]=ClampToQuantum(image->background_color.blue);
pixel[BlackPixelChannel]=ClampToQuantum(image->background_color.black);
pixel[AlphaPixelChannel]=ClampToQuantum(image->background_color.alpha);
return(MagickFalse);
}
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel
channel;
channel=GetPixelChannelMapChannel(image,i);
pixel[channel]=p[i];
}
return(MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ G e t S t r e a m I n f o C l i e n t D a t a %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetStreamInfoClientData() gets the stream info client data.
%
% The format of the GetStreamInfoClientData method is:
%
% const void *GetStreamInfoClientData(StreamInfo *stream_info)
%
% A description of each parameter follows:
%
% o stream_info: the stream info.
%
*/
MagickPrivate const void *GetStreamInfoClientData(StreamInfo *stream_info)
{
assert(stream_info != (StreamInfo *) NULL);
assert(stream_info->signature == MagickSignature);
return(stream_info->client_data);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ G e t V i r t u a l P i x e l s F r o m S t r e a m %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetVirtualPixelsStream() returns the pixels associated with the last
% call to QueueAuthenticPixelsStream() or GetVirtualPixelStream().
%
% The format of the GetVirtualPixelsStream() method is:
%
% const Quantum *GetVirtualPixelsStream(const Image *image)
%
% A description of each parameter follows:
%
% o pixels: return the pixels associated corresponding with the last call to
% QueueAuthenticPixelsStream() or GetVirtualPixelStream().
%
% o image: the image.
%
*/
static const Quantum *GetVirtualPixelsStream(const Image *image)
{
CacheInfo
*cache_info;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
cache_info=(CacheInfo *) image->cache;
assert(cache_info->signature == MagickSignature);
return(cache_info->pixels);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ G e t V i r t u a l I n d e x e s F r o m S t r e a m %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetVirtualMetacontentFromStream() returns the associated pixel
% channels corresponding with the last call to QueueAuthenticPixelsStream() or
% GetVirtualPixelStream().
%
% The format of the GetVirtualMetacontentFromStream() method is:
%
% const void *GetVirtualMetacontentFromStream(const Image *image)
%
% A description of each parameter follows:
%
% o image: the image.
%
*/
static const void *GetVirtualMetacontentFromStream(
const Image *image)
{
CacheInfo
*cache_info;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
cache_info=(CacheInfo *) image->cache;
assert(cache_info->signature == MagickSignature);
return(cache_info->metacontent);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ G e t V i r t u a l P i x e l S t r e a m %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetVirtualPixelStream() gets pixels from the in-memory or disk pixel cache as
% defined by the geometry parameters. A pointer to the pixels is returned if
% the pixels are transferred, otherwise a NULL is returned. For streams this
% method is a no-op.
%
% The format of the GetVirtualPixelStream() method is:
%
% const Quantum *GetVirtualPixelStream(const Image *image,
% const VirtualPixelMethod virtual_pixel_method,const ssize_t x,
% const ssize_t y,const size_t columns,const size_t rows,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o virtual_pixel_method: the virtual pixel method.
%
% o x,y,columns,rows: These values define the perimeter of a region of
% pixels.
%
% o exception: return any errors or warnings in this structure.
%
*/
static inline MagickBooleanType AcquireStreamPixels(CacheInfo *cache_info,
ExceptionInfo *exception)
{
if (cache_info->length != (MagickSizeType) ((size_t) cache_info->length))
return(MagickFalse);
cache_info->mapped=MagickFalse;
cache_info->pixels=(Quantum *) AcquireMagickMemory((size_t)
cache_info->length);
if (cache_info->pixels == (Quantum *) NULL)
{
cache_info->mapped=MagickTrue;
cache_info->pixels=(Quantum *) MapBlob(-1,IOMode,0,(size_t)
cache_info->length);
}
if (cache_info->pixels == (Quantum *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",
cache_info->filename);
return(MagickFalse);
}
return(MagickTrue);
}
static const Quantum *GetVirtualPixelStream(const Image *image,
const VirtualPixelMethod magick_unused(virtual_pixel_method),const ssize_t x,
const ssize_t y,const size_t columns,const size_t rows,
ExceptionInfo *exception)
{
CacheInfo
*cache_info;
MagickBooleanType
status;
MagickSizeType
number_pixels;
size_t
length;
/*
Validate pixel cache geometry.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if ((x < 0) || (y < 0) ||
((x+(ssize_t) columns) > (ssize_t) image->columns) ||
((y+(ssize_t) rows) > (ssize_t) image->rows) ||
(columns == 0) || (rows == 0))
{
(void) ThrowMagickException(exception,GetMagickModule(),StreamError,
"ImageDoesNotContainTheStreamGeometry","`%s'",image->filename);
return((Quantum *) NULL);
}
cache_info=(CacheInfo *) image->cache;
assert(cache_info->signature == MagickSignature);
/*
Pixels are stored in a temporary buffer until they are synced to the cache.
*/
number_pixels=(MagickSizeType) columns*rows;
length=(size_t) number_pixels*cache_info->number_channels*sizeof(Quantum);
if (cache_info->metacontent_extent != 0)
length+=number_pixels*cache_info->metacontent_extent;
if (cache_info->pixels == (Quantum *) NULL)
{
cache_info->length=length;
status=AcquireStreamPixels(cache_info,exception);
if (status == MagickFalse)
{
cache_info->length=0;
return((Quantum *) NULL);
}
}
else
if (cache_info->length != length)
{
RelinquishStreamPixels(cache_info);
cache_info->length=length;
status=AcquireStreamPixels(cache_info,exception);
if (status == MagickFalse)
{
cache_info->length=0;
return((Quantum *) NULL);
}
}
cache_info->metacontent=(void *) NULL;
if (cache_info->metacontent_extent != 0)
cache_info->metacontent=(void *) (cache_info->pixels+number_pixels*
cache_info->number_channels);
return(cache_info->pixels);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ O p e n S t r e a m %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% OpenStream() opens a stream for writing by the StreamImage() method.
%
% The format of the OpenStream method is:
%
% MagickBooleanType OpenStream(const ImageInfo *image_info,
% StreamInfo *stream_info,const char *filename,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image_info: the image info.
%
% o stream_info: the stream info.
%
% o filename: the stream filename.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType OpenStream(const ImageInfo *image_info,
StreamInfo *stream_info,const char *filename,ExceptionInfo *exception)
{
MagickBooleanType
status;
(void) CopyMagickString(stream_info->stream->filename,filename,MaxTextExtent);
status=OpenBlob(image_info,stream_info->stream,WriteBinaryBlobMode,exception);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ Q u e u e A u t h e n t i c P i x e l s S t r e a m %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% QueueAuthenticPixelsStream() allocates an area to store image pixels as
% defined by the region rectangle and returns a pointer to the area. This
% area is subsequently transferred from the pixel cache with method
% SyncAuthenticPixelsStream(). A pointer to the pixels is returned if the
% pixels are transferred, otherwise a NULL is returned.
%
% The format of the QueueAuthenticPixelsStream() method is:
%
% Quantum *QueueAuthenticPixelsStream(Image *image,const ssize_t x,
% const ssize_t y,const size_t columns,const size_t rows,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o x,y,columns,rows: These values define the perimeter of a region of
% pixels.
%
*/
static Quantum *QueueAuthenticPixelsStream(Image *image,const ssize_t x,
const ssize_t y,const size_t columns,const size_t rows,
ExceptionInfo *exception)
{
CacheInfo
*cache_info;
MagickSizeType
number_pixels;
size_t
length;
StreamHandler
stream_handler;
/*
Validate pixel cache geometry.
*/
assert(image != (Image *) NULL);
if ((x < 0) || (y < 0) ||
((x+(ssize_t) columns) > (ssize_t) image->columns) ||
((y+(ssize_t) rows) > (ssize_t) image->rows) ||
(columns == 0) || (rows == 0))
{
(void) ThrowMagickException(exception,GetMagickModule(),StreamError,
"ImageDoesNotContainTheStreamGeometry","`%s'",image->filename);
return((Quantum *) NULL);
}
stream_handler=GetBlobStreamHandler(image);
if (stream_handler == (StreamHandler) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),StreamError,
"NoStreamHandlerIsDefined","`%s'",image->filename);
return((Quantum *) NULL);
}
cache_info=(CacheInfo *) image->cache;
assert(cache_info->signature == MagickSignature);
if ((image->storage_class != GetPixelCacheStorageClass(image->cache)) ||
(image->colorspace != GetPixelCacheColorspace(image->cache)))
{
if (GetPixelCacheStorageClass(image->cache) == UndefinedClass)
(void) stream_handler(image,(const void *) NULL,(size_t)
cache_info->columns);
cache_info->storage_class=image->storage_class;
cache_info->colorspace=image->colorspace;
cache_info->columns=image->columns;
cache_info->rows=image->rows;
image->cache=cache_info;
}
/*
Pixels are stored in a temporary buffer until they are synced to the cache.
*/
cache_info->columns=columns;
cache_info->rows=rows;
number_pixels=(MagickSizeType) columns*rows;
length=(size_t) number_pixels*cache_info->number_channels*sizeof(Quantum);
if (cache_info->metacontent_extent != 0)
length+=number_pixels*cache_info->metacontent_extent;
if (cache_info->pixels == (Quantum *) NULL)
{
cache_info->pixels=(Quantum *) AcquireMagickMemory(length);
cache_info->length=(MagickSizeType) length;
}
else
if (cache_info->length < (MagickSizeType) length)
{
cache_info->pixels=(Quantum *) ResizeMagickMemory(
cache_info->pixels,length);
cache_info->length=(MagickSizeType) length;
}
if (cache_info->pixels == (void *) NULL)
return((Quantum *) NULL);
cache_info->metacontent=(void *) NULL;
if (cache_info->metacontent_extent != 0)
cache_info->metacontent=(void *) (cache_info->pixels+number_pixels*
cache_info->number_channels);
return(cache_info->pixels);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% R e a d S t r e a m %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ReadStream() makes the image pixels available to a user supplied callback
% method immediately upon reading a scanline with the ReadImage() method.
%
% The format of the ReadStream() method is:
%
% Image *ReadStream(const ImageInfo *image_info,StreamHandler stream,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image_info: the image info.
%
% o stream: a callback method.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *ReadStream(const ImageInfo *image_info,StreamHandler stream,
ExceptionInfo *exception)
{
CacheMethods
cache_methods;
Image
*image;
ImageInfo
*read_info;
/*
Stream image pixels.
*/
assert(image_info != (ImageInfo *) NULL);
assert(image_info->signature == MagickSignature);
if (image_info->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
image_info->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
read_info=CloneImageInfo(image_info);
read_info->cache=AcquirePixelCache(0);
GetPixelCacheMethods(&cache_methods);
cache_methods.get_virtual_pixel_handler=GetVirtualPixelStream;
cache_methods.get_virtual_metacontent_from_handler=
GetVirtualMetacontentFromStream;
cache_methods.get_virtual_pixels_handler=GetVirtualPixelsStream;
cache_methods.get_authentic_pixels_handler=GetAuthenticPixelsStream;
cache_methods.queue_authentic_pixels_handler=QueueAuthenticPixelsStream;
cache_methods.sync_authentic_pixels_handler=SyncAuthenticPixelsStream;
cache_methods.get_authentic_pixels_from_handler=GetAuthenticPixelsFromStream;
cache_methods.get_authentic_metacontent_from_handler=
GetAuthenticMetacontentFromStream;
cache_methods.get_one_virtual_pixel_from_handler=GetOneVirtualPixelFromStream;
cache_methods.get_one_authentic_pixel_from_handler=
GetOneAuthenticPixelFromStream;
cache_methods.destroy_pixel_handler=DestroyPixelStream;
SetPixelCacheMethods(read_info->cache,&cache_methods);
read_info->stream=stream;
image=ReadImage(read_info,exception);
read_info=DestroyImageInfo(read_info);
return(image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ S e t S t r e a m I n f o C l i e n t D a t a %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SetStreamInfoClientData() sets the stream info client data.
%
% The format of the SetStreamInfoClientData method is:
%
% void SetStreamInfoClientData(StreamInfo *stream_info,
% const void *client_data)
%
% A description of each parameter follows:
%
% o stream_info: the stream info.
%
% o client_data: the client data.
%
*/
MagickPrivate void SetStreamInfoClientData(StreamInfo *stream_info,
const void *client_data)
{
assert(stream_info != (StreamInfo *) NULL);
assert(stream_info->signature == MagickSignature);
stream_info->client_data=client_data;
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ S e t S t r e a m I n f o M a p %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SetStreamInfoMap() sets the stream info map member.
%
% The format of the SetStreamInfoMap method is:
%
% void SetStreamInfoMap(StreamInfo *stream_info,const char *map)
%
% A description of each parameter follows:
%
% o stream_info: the stream info.
%
% o map: the map.
%
*/
MagickExport void SetStreamInfoMap(StreamInfo *stream_info,const char *map)
{
assert(stream_info != (StreamInfo *) NULL);
assert(stream_info->signature == MagickSignature);
(void) CloneString(&stream_info->map,map);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ S e t S t r e a m I n f o S t o r a g e T y p e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SetStreamInfoStorageType() sets the stream info storage type member.
%
% The format of the SetStreamInfoStorageType method is:
%
% void SetStreamInfoStorageType(StreamInfo *stream_info,
% const StoreageType *storage_type)
%
% A description of each parameter follows:
%
% o stream_info: the stream info.
%
% o storage_type: the storage type.
%
*/
MagickExport void SetStreamInfoStorageType(StreamInfo *stream_info,
const StorageType storage_type)
{
assert(stream_info != (StreamInfo *) NULL);
assert(stream_info->signature == MagickSignature);
stream_info->storage_type=storage_type;
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ S t r e a m I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% StreamImage() streams pixels from an image and writes them in a user
% defined format and storage type (e.g. RGBA as 8-bit unsigned char).
%
% The format of the StreamImage() method is:
%
% Image *StreamImage(const ImageInfo *image_info,
% StreamInfo *stream_info,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image_info: the image info.
%
% o stream_info: the stream info.
%
% o exception: return any errors or warnings in this structure.
%
*/
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
static size_t WriteStreamImage(const Image *image,const void *pixels,
const size_t columns)
{
CacheInfo
*cache_info;
RectangleInfo
extract_info;
size_t
length,
packet_size;
ssize_t
count;
StreamInfo
*stream_info;
(void) pixels;
stream_info=(StreamInfo *) image->client_data;
switch (stream_info->storage_type)
{
default: packet_size=sizeof(unsigned char); break;
case CharPixel: packet_size=sizeof(unsigned char); break;
case DoublePixel: packet_size=sizeof(double); break;
case FloatPixel: packet_size=sizeof(float); break;
case LongPixel: packet_size=sizeof(unsigned int); break;
case LongLongPixel: packet_size=sizeof(MagickSizeType); break;
case QuantumPixel: packet_size=sizeof(Quantum); break;
case ShortPixel: packet_size=sizeof(unsigned short); break;
}
cache_info=(CacheInfo *) image->cache;
assert(cache_info->signature == MagickSignature);
packet_size*=strlen(stream_info->map);
length=packet_size*cache_info->columns*cache_info->rows;
if (image != stream_info->image)
{
ImageInfo
*write_info;
/*
Prepare stream for writing.
*/
stream_info->pixels=(unsigned char *) ResizeQuantumMemory(
stream_info->pixels,length,sizeof(*stream_info->pixels));
if (stream_info->pixels == (unsigned char *) NULL)
return(0);
stream_info->image=image;
write_info=CloneImageInfo(stream_info->image_info);
(void) SetImageInfo(write_info,1,stream_info->exception);
if (write_info->extract != (char *) NULL)
(void) ParseAbsoluteGeometry(write_info->extract,
&stream_info->extract_info);
stream_info->y=0;
write_info=DestroyImageInfo(write_info);
}
extract_info=stream_info->extract_info;
if ((extract_info.width == 0) || (extract_info.height == 0))
{
/*
Write all pixels to stream.
*/
(void) StreamImagePixels(stream_info,image,stream_info->exception);
count=WriteBlob(stream_info->stream,length,stream_info->pixels);
stream_info->y++;
return(count == 0 ? 0 : columns);
}
if ((stream_info->y < extract_info.y) ||
(stream_info->y >= (ssize_t) (extract_info.y+extract_info.height)))
{
stream_info->y++;
return(columns);
}
/*
Write a portion of the pixel row to the stream.
*/
(void) StreamImagePixels(stream_info,image,stream_info->exception);
length=packet_size*extract_info.width;
count=WriteBlob(stream_info->stream,length,stream_info->pixels+packet_size*
extract_info.x);
stream_info->y++;
return(count == 0 ? 0 : columns);
}
#if defined(__cplusplus) || defined(c_plusplus)
}
#endif
MagickExport Image *StreamImage(const ImageInfo *image_info,
StreamInfo *stream_info,ExceptionInfo *exception)
{
Image
*image;
ImageInfo
*read_info;
assert(image_info != (const ImageInfo *) NULL);
assert(image_info->signature == MagickSignature);
if (image_info->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
image_info->filename);
assert(stream_info != (StreamInfo *) NULL);
assert(stream_info->signature == MagickSignature);
assert(exception != (ExceptionInfo *) NULL);
read_info=CloneImageInfo(image_info);
stream_info->image_info=image_info;
stream_info->exception=exception;
read_info->client_data=(void *) stream_info;
image=ReadStream(read_info,&WriteStreamImage,exception);
read_info=DestroyImageInfo(read_info);
stream_info->quantum_info=AcquireQuantumInfo(image_info,image);
if (stream_info->quantum_info == (QuantumInfo *) NULL)
image=DestroyImage(image);
return(image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ S t r e a m I m a g e P i x e l s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% StreamImagePixels() extracts pixel data from an image and returns it in the
% stream_info->pixels structure in the format as defined by
% stream_info->quantum_info->map and stream_info->quantum_info->storage_type.
%
% The format of the StreamImagePixels method is:
%
% MagickBooleanType StreamImagePixels(const StreamInfo *stream_info,
% const Image *image,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o stream_info: the stream info.
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
static MagickBooleanType StreamImagePixels(const StreamInfo *stream_info,
const Image *image,ExceptionInfo *exception)
{
QuantumInfo
*quantum_info;
QuantumType
*quantum_map;
register const Quantum
*p;
register ssize_t
i,
x;
size_t
length;
assert(stream_info != (StreamInfo *) NULL);
assert(stream_info->signature == MagickSignature);
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
length=strlen(stream_info->map);
quantum_map=(QuantumType *) AcquireQuantumMemory(length,sizeof(*quantum_map));
if (quantum_map == (QuantumType *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
return(MagickFalse);
}
for (i=0; i < (ssize_t) length; i++)
{
switch (stream_info->map[i])
{
case 'A':
case 'a':
{
quantum_map[i]=AlphaQuantum;
break;
}
case 'B':
case 'b':
{
quantum_map[i]=BlueQuantum;
break;
}
case 'C':
case 'c':
{
quantum_map[i]=CyanQuantum;
if (image->colorspace == CMYKColorspace)
break;
quantum_map=(QuantumType *) RelinquishMagickMemory(quantum_map);
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",stream_info->map);
return(MagickFalse);
}
case 'g':
case 'G':
{
quantum_map[i]=GreenQuantum;
break;
}
case 'I':
case 'i':
{
quantum_map[i]=IndexQuantum;
break;
}
case 'K':
case 'k':
{
quantum_map[i]=BlackQuantum;
if (image->colorspace == CMYKColorspace)
break;
quantum_map=(QuantumType *) RelinquishMagickMemory(quantum_map);
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",stream_info->map);
return(MagickFalse);
}
case 'M':
case 'm':
{
quantum_map[i]=MagentaQuantum;
if (image->colorspace == CMYKColorspace)
break;
quantum_map=(QuantumType *) RelinquishMagickMemory(quantum_map);
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",stream_info->map);
return(MagickFalse);
}
case 'o':
case 'O':
{
quantum_map[i]=OpacityQuantum;
break;
}
case 'P':
case 'p':
{
quantum_map[i]=UndefinedQuantum;
break;
}
case 'R':
case 'r':
{
quantum_map[i]=RedQuantum;
break;
}
case 'Y':
case 'y':
{
quantum_map[i]=YellowQuantum;
if (image->colorspace == CMYKColorspace)
break;
quantum_map=(QuantumType *) RelinquishMagickMemory(quantum_map);
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",stream_info->map);
return(MagickFalse);
}
default:
{
quantum_map=(QuantumType *) RelinquishMagickMemory(quantum_map);
(void) ThrowMagickException(exception,GetMagickModule(),OptionError,
"UnrecognizedPixelMap","`%s'",stream_info->map);
return(MagickFalse);
}
}
}
quantum_info=stream_info->quantum_info;
switch (stream_info->storage_type)
{
case CharPixel:
{
register unsigned char
*q;
q=(unsigned char *) stream_info->pixels;
if (LocaleCompare(stream_info->map,"BGR") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToChar(GetPixelBlue(image,p));
*q++=ScaleQuantumToChar(GetPixelGreen(image,p));
*q++=ScaleQuantumToChar(GetPixelRed(image,p));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"BGRA") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToChar(GetPixelBlue(image,p));
*q++=ScaleQuantumToChar(GetPixelGreen(image,p));
*q++=ScaleQuantumToChar(GetPixelRed(image,p));
*q++=ScaleQuantumToChar(GetPixelAlpha(image,p));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"BGRP") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToChar(GetPixelBlue(image,p));
*q++=ScaleQuantumToChar(GetPixelGreen(image,p));
*q++=ScaleQuantumToChar(GetPixelRed(image,p));
*q++=ScaleQuantumToChar((Quantum) 0);
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"I") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToChar(GetPixelIntensity(image,p));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGB") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToChar(GetPixelRed(image,p));
*q++=ScaleQuantumToChar(GetPixelGreen(image,p));
*q++=ScaleQuantumToChar(GetPixelBlue(image,p));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGBA") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToChar(GetPixelRed(image,p));
*q++=ScaleQuantumToChar(GetPixelGreen(image,p));
*q++=ScaleQuantumToChar(GetPixelBlue(image,p));
*q++=ScaleQuantumToChar((Quantum) (GetPixelAlpha(image,p)));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGBP") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToChar(GetPixelRed(image,p));
*q++=ScaleQuantumToChar(GetPixelGreen(image,p));
*q++=ScaleQuantumToChar(GetPixelBlue(image,p));
*q++=ScaleQuantumToChar((Quantum) 0);
p++;
}
break;
}
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
for (i=0; i < (ssize_t) length; i++)
{
*q=0;
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
*q=ScaleQuantumToChar(GetPixelRed(image,p));
break;
}
case GreenQuantum:
case MagentaQuantum:
{
*q=ScaleQuantumToChar(GetPixelGreen(image,p));
break;
}
case BlueQuantum:
case YellowQuantum:
{
*q=ScaleQuantumToChar(GetPixelBlue(image,p));
break;
}
case AlphaQuantum:
{
*q=ScaleQuantumToChar((Quantum) (GetPixelAlpha(image,p)));
break;
}
case OpacityQuantum:
{
*q=ScaleQuantumToChar(GetPixelAlpha(image,p));
break;
}
case BlackQuantum:
{
if (image->colorspace == CMYKColorspace)
*q=ScaleQuantumToChar(GetPixelBlack(image,p));
break;
}
case IndexQuantum:
{
*q=ScaleQuantumToChar(GetPixelIntensity(image,p));
break;
}
default:
break;
}
q++;
}
p++;
}
break;
}
case DoublePixel:
{
register double
*q;
q=(double *) stream_info->pixels;
if (LocaleCompare(stream_info->map,"BGR") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=(double) ((QuantumScale*GetPixelBlue(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(double) ((QuantumScale*GetPixelGreen(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(double) ((QuantumScale*GetPixelRed(image,p))*
quantum_info->scale+quantum_info->minimum);
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"BGRA") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=(double) ((QuantumScale*GetPixelBlue(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(double) ((QuantumScale*GetPixelGreen(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(double) ((QuantumScale*GetPixelRed(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(double) ((QuantumScale*GetPixelAlpha(image,p))*
quantum_info->scale+quantum_info->minimum);
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"BGRP") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=(double) ((QuantumScale*GetPixelBlue(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(double) ((QuantumScale*GetPixelGreen(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(double) ((QuantumScale*GetPixelRed(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=0.0;
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"I") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=(double) ((QuantumScale*GetPixelIntensity(image,p))*
quantum_info->scale+quantum_info->minimum);
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGB") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=(double) ((QuantumScale*GetPixelRed(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(double) ((QuantumScale*GetPixelGreen(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(double) ((QuantumScale*GetPixelBlue(image,p))*
quantum_info->scale+quantum_info->minimum);
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGBA") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=(double) ((QuantumScale*GetPixelRed(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(double) ((QuantumScale*GetPixelGreen(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(double) ((QuantumScale*GetPixelBlue(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(double) ((QuantumScale*GetPixelAlpha(image,p))*
quantum_info->scale+quantum_info->minimum);
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGBP") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=(double) ((QuantumScale*GetPixelRed(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(double) ((QuantumScale*GetPixelGreen(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(double) ((QuantumScale*GetPixelBlue(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=0.0;
p++;
}
break;
}
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
for (i=0; i < (ssize_t) length; i++)
{
*q=0;
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
*q=(double) ((QuantumScale*GetPixelRed(image,p))*
quantum_info->scale+quantum_info->minimum);
break;
}
case GreenQuantum:
case MagentaQuantum:
{
*q=(double) ((QuantumScale*GetPixelGreen(image,p))*
quantum_info->scale+quantum_info->minimum);
break;
}
case BlueQuantum:
case YellowQuantum:
{
*q=(double) ((QuantumScale*GetPixelBlue(image,p))*
quantum_info->scale+quantum_info->minimum);
break;
}
case AlphaQuantum:
{
*q=(double) ((QuantumScale*GetPixelAlpha(image,p))*
quantum_info->scale+quantum_info->minimum);
break;
}
case OpacityQuantum:
{
*q=(double) ((QuantumScale*GetPixelAlpha(image,p))*
quantum_info->scale+quantum_info->minimum);
break;
}
case BlackQuantum:
{
if (image->colorspace == CMYKColorspace)
*q=(double) ((QuantumScale*GetPixelBlack(image,p))*
quantum_info->scale+quantum_info->minimum);
break;
}
case IndexQuantum:
{
*q=(double) ((QuantumScale*GetPixelIntensity(image,p))*
quantum_info->scale+quantum_info->minimum);
break;
}
default:
*q=0;
}
q++;
}
p++;
}
break;
}
case FloatPixel:
{
register float
*q;
q=(float *) stream_info->pixels;
if (LocaleCompare(stream_info->map,"BGR") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=(float) ((QuantumScale*GetPixelBlue(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(float) ((QuantumScale*GetPixelGreen(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(float) ((QuantumScale*GetPixelRed(image,p))*
quantum_info->scale+quantum_info->minimum);
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"BGRA") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=(float) ((QuantumScale*GetPixelBlue(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(float) ((QuantumScale*GetPixelGreen(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(float) ((QuantumScale*GetPixelRed(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(float) ((QuantumScale*(Quantum) (GetPixelAlpha(image,p)))*
quantum_info->scale+quantum_info->minimum);
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"BGRP") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=(float) ((QuantumScale*GetPixelBlue(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(float) ((QuantumScale*GetPixelGreen(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(float) ((QuantumScale*GetPixelRed(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=0.0;
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"I") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=(float) ((QuantumScale*GetPixelIntensity(image,p))*
quantum_info->scale+quantum_info->minimum);
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGB") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=(float) ((QuantumScale*GetPixelRed(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(float) ((QuantumScale*GetPixelGreen(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(float) ((QuantumScale*GetPixelBlue(image,p))*
quantum_info->scale+quantum_info->minimum);
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGBA") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=(float) ((QuantumScale*GetPixelRed(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(float) ((QuantumScale*GetPixelGreen(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(float) ((QuantumScale*GetPixelBlue(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(float) ((QuantumScale*GetPixelAlpha(image,p))*
quantum_info->scale+quantum_info->minimum);
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGBP") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=(float) ((QuantumScale*GetPixelRed(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(float) ((QuantumScale*GetPixelGreen(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=(float) ((QuantumScale*GetPixelBlue(image,p))*
quantum_info->scale+quantum_info->minimum);
*q++=0.0;
p++;
}
break;
}
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
for (i=0; i < (ssize_t) length; i++)
{
*q=0;
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
*q=(float) ((QuantumScale*GetPixelRed(image,p))*
quantum_info->scale+quantum_info->minimum);
break;
}
case GreenQuantum:
case MagentaQuantum:
{
*q=(float) ((QuantumScale*GetPixelGreen(image,p))*
quantum_info->scale+quantum_info->minimum);
break;
}
case BlueQuantum:
case YellowQuantum:
{
*q=(float) ((QuantumScale*GetPixelBlue(image,p))*
quantum_info->scale+quantum_info->minimum);
break;
}
case AlphaQuantum:
{
*q=(float) ((QuantumScale*GetPixelAlpha(image,p))*
quantum_info->scale+quantum_info->minimum);
break;
}
case OpacityQuantum:
{
*q=(float) ((QuantumScale*GetPixelAlpha(image,p))*
quantum_info->scale+quantum_info->minimum);
break;
}
case BlackQuantum:
{
if (image->colorspace == CMYKColorspace)
*q=(float) ((QuantumScale*GetPixelBlack(image,p))*
quantum_info->scale+quantum_info->minimum);
break;
}
case IndexQuantum:
{
*q=(float) ((QuantumScale*GetPixelIntensity(image,p))*
quantum_info->scale+quantum_info->minimum);
break;
}
default:
*q=0;
}
q++;
}
p++;
}
break;
}
case LongPixel:
{
register unsigned int
*q;
q=(unsigned int *) stream_info->pixels;
if (LocaleCompare(stream_info->map,"BGR") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToLong(GetPixelBlue(image,p));
*q++=ScaleQuantumToLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLong(GetPixelRed(image,p));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"BGRA") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToLong(GetPixelBlue(image,p));
*q++=ScaleQuantumToLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLong(GetPixelRed(image,p));
*q++=ScaleQuantumToLong((Quantum) (GetPixelAlpha(image,p)));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"BGRP") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToLong(GetPixelBlue(image,p));
*q++=ScaleQuantumToLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLong(GetPixelRed(image,p));
*q++=0;
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"I") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToLong(GetPixelIntensity(image,p));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGB") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToLong(GetPixelRed(image,p));
*q++=ScaleQuantumToLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLong(GetPixelBlue(image,p));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGBA") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToLong(GetPixelRed(image,p));
*q++=ScaleQuantumToLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLong(GetPixelBlue(image,p));
*q++=ScaleQuantumToLong((Quantum) (GetPixelAlpha(image,p)));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGBP") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToLong(GetPixelRed(image,p));
*q++=ScaleQuantumToLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLong(GetPixelBlue(image,p));
*q++=0;
p++;
}
break;
}
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
for (i=0; i < (ssize_t) length; i++)
{
*q=0;
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
*q=ScaleQuantumToLong(GetPixelRed(image,p));
break;
}
case GreenQuantum:
case MagentaQuantum:
{
*q=ScaleQuantumToLong(GetPixelGreen(image,p));
break;
}
case BlueQuantum:
case YellowQuantum:
{
*q=ScaleQuantumToLong(GetPixelBlue(image,p));
break;
}
case AlphaQuantum:
{
*q=ScaleQuantumToLong((Quantum) (GetPixelAlpha(image,p)));
break;
}
case OpacityQuantum:
{
*q=ScaleQuantumToLong(GetPixelAlpha(image,p));
break;
}
case BlackQuantum:
{
if (image->colorspace == CMYKColorspace)
*q=ScaleQuantumToLong(GetPixelBlack(image,p));
break;
}
case IndexQuantum:
{
*q=ScaleQuantumToLong(GetPixelIntensity(image,p));
break;
}
default:
break;
}
q++;
}
p++;
}
break;
}
case LongLongPixel:
{
register MagickSizeType
*q;
q=(MagickSizeType *) stream_info->pixels;
if (LocaleCompare(stream_info->map,"BGR") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToLongLong(GetPixelBlue(image,p));
*q++=ScaleQuantumToLongLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLongLong(GetPixelRed(image,p));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"BGRA") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToLongLong(GetPixelBlue(image,p));
*q++=ScaleQuantumToLongLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLongLong(GetPixelRed(image,p));
*q++=ScaleQuantumToLongLong(GetPixelAlpha(image,p));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"BGRP") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToLongLong(GetPixelBlue(image,p));
*q++=ScaleQuantumToLongLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLongLong(GetPixelRed(image,p));
*q++=0U;
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"I") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToLongLong(
GetPixelIntensity(image,p));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGB") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToLongLong(GetPixelRed(image,p));
*q++=ScaleQuantumToLongLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLongLong(GetPixelBlue(image,p));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGBA") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToLongLong(GetPixelRed(image,p));
*q++=ScaleQuantumToLongLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLongLong(GetPixelBlue(image,p));
*q++=ScaleQuantumToLongLong(GetPixelAlpha(image,p));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGBP") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToLongLong(GetPixelRed(image,p));
*q++=ScaleQuantumToLongLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLongLong(GetPixelBlue(image,p));
*q++=0U;
p++;
}
break;
}
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
for (i=0; i < (ssize_t) length; i++)
{
*q=0;
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
*q=ScaleQuantumToLongLong(GetPixelRed(image,p));
break;
}
case GreenQuantum:
case MagentaQuantum:
{
*q=ScaleQuantumToLongLong(GetPixelGreen(image,p));
break;
}
case BlueQuantum:
case YellowQuantum:
{
*q=ScaleQuantumToLongLong(GetPixelBlue(image,p));
break;
}
case AlphaQuantum:
{
*q=ScaleQuantumToLongLong(GetPixelAlpha(image,p));
break;
}
case OpacityQuantum:
{
*q=ScaleQuantumToLongLong(GetPixelAlpha(image,p));
break;
}
case BlackQuantum:
{
if (image->colorspace == CMYKColorspace)
*q=ScaleQuantumToLongLong(GetPixelBlack(image,p));
break;
}
case IndexQuantum:
{
*q=ScaleQuantumToLongLong(GetPixelIntensity(image,p));
break;
}
default:
*q=0;
}
q++;
}
p++;
}
break;
}
case QuantumPixel:
{
register Quantum
*q;
q=(Quantum *) stream_info->pixels;
if (LocaleCompare(stream_info->map,"BGR") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=GetPixelBlue(image,p);
*q++=GetPixelGreen(image,p);
*q++=GetPixelRed(image,p);
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"BGRA") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=GetPixelBlue(image,p);
*q++=GetPixelGreen(image,p);
*q++=GetPixelRed(image,p);
*q++=GetPixelAlpha(image,p);
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"BGRP") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=GetPixelBlue(image,p);
*q++=GetPixelGreen(image,p);
*q++=GetPixelRed(image,p);
*q++=0;
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"I") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=GetPixelIntensity(image,p);
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGB") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=GetPixelRed(image,p);
*q++=GetPixelGreen(image,p);
*q++=GetPixelBlue(image,p);
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGBA") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=GetPixelRed(image,p);
*q++=GetPixelGreen(image,p);
*q++=GetPixelBlue(image,p);
*q++=GetPixelAlpha(image,p);
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGBP") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=GetPixelRed(image,p);
*q++=GetPixelGreen(image,p);
*q++=GetPixelBlue(image,p);
*q++=0U;
p++;
}
break;
}
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
for (i=0; i < (ssize_t) length; i++)
{
*q=(Quantum) 0;
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
*q=GetPixelRed(image,p);
break;
}
case GreenQuantum:
case MagentaQuantum:
{
*q=GetPixelGreen(image,p);
break;
}
case BlueQuantum:
case YellowQuantum:
{
*q=GetPixelBlue(image,p);
break;
}
case AlphaQuantum:
{
*q=(Quantum) (GetPixelAlpha(image,p));
break;
}
case OpacityQuantum:
{
*q=GetPixelAlpha(image,p);
break;
}
case BlackQuantum:
{
if (image->colorspace == CMYKColorspace)
*q=GetPixelBlack(image,p);
break;
}
case IndexQuantum:
{
*q=GetPixelIntensity(image,p);
break;
}
default:
*q=0;
}
q++;
}
p++;
}
break;
}
case ShortPixel:
{
register unsigned short
*q;
q=(unsigned short *) stream_info->pixels;
if (LocaleCompare(stream_info->map,"BGR") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToShort(GetPixelBlue(image,p));
*q++=ScaleQuantumToShort(GetPixelGreen(image,p));
*q++=ScaleQuantumToShort(GetPixelRed(image,p));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"BGRA") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToShort(GetPixelBlue(image,p));
*q++=ScaleQuantumToShort(GetPixelGreen(image,p));
*q++=ScaleQuantumToShort(GetPixelRed(image,p));
*q++=ScaleQuantumToShort((Quantum) (GetPixelAlpha(image,p)));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"BGRP") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToShort(GetPixelBlue(image,p));
*q++=ScaleQuantumToShort(GetPixelGreen(image,p));
*q++=ScaleQuantumToShort(GetPixelRed(image,p));
*q++=0;
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"I") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToShort(GetPixelIntensity(image,p));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGB") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToShort(GetPixelRed(image,p));
*q++=ScaleQuantumToShort(GetPixelGreen(image,p));
*q++=ScaleQuantumToShort(GetPixelBlue(image,p));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGBA") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToShort(GetPixelRed(image,p));
*q++=ScaleQuantumToShort(GetPixelGreen(image,p));
*q++=ScaleQuantumToShort(GetPixelBlue(image,p));
*q++=ScaleQuantumToShort((Quantum) (GetPixelAlpha(image,p)));
p++;
}
break;
}
if (LocaleCompare(stream_info->map,"RGBP") == 0)
{
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
*q++=ScaleQuantumToShort(GetPixelRed(image,p));
*q++=ScaleQuantumToShort(GetPixelGreen(image,p));
*q++=ScaleQuantumToShort(GetPixelBlue(image,p));
*q++=0;
p++;
}
break;
}
p=GetVirtualPixelQueue(image);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) GetImageExtent(image); x++)
{
for (i=0; i < (ssize_t) length; i++)
{
*q=0;
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
*q=ScaleQuantumToShort(GetPixelRed(image,p));
break;
}
case GreenQuantum:
case MagentaQuantum:
{
*q=ScaleQuantumToShort(GetPixelGreen(image,p));
break;
}
case BlueQuantum:
case YellowQuantum:
{
*q=ScaleQuantumToShort(GetPixelBlue(image,p));
break;
}
case AlphaQuantum:
{
*q=ScaleQuantumToShort(GetPixelAlpha(image,p));
break;
}
case OpacityQuantum:
{
*q=ScaleQuantumToShort(GetPixelAlpha(image,p));
break;
}
case BlackQuantum:
{
if (image->colorspace == CMYKColorspace)
*q=ScaleQuantumToShort(GetPixelBlack(image,p));
break;
}
case IndexQuantum:
{
*q=ScaleQuantumToShort(GetPixelIntensity(image,p));
break;
}
default:
break;
}
q++;
}
p++;
}
break;
}
default:
{
quantum_map=(QuantumType *) RelinquishMagickMemory(quantum_map);
(void) ThrowMagickException(exception,GetMagickModule(),OptionError,
"UnrecognizedPixelMap","`%s'",stream_info->map);
break;
}
}
quantum_map=(QuantumType *) RelinquishMagickMemory(quantum_map);
return(MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ S y n c A u t h e n t i c P i x e l s S t r e a m %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SyncAuthenticPixelsStream() calls the user supplied callback method with
% the latest stream of pixels.
%
% The format of the SyncAuthenticPixelsStream method is:
%
% MagickBooleanType SyncAuthenticPixelsStream(Image *image,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
static MagickBooleanType SyncAuthenticPixelsStream(Image *image,
ExceptionInfo *exception)
{
CacheInfo
*cache_info;
size_t
length;
StreamHandler
stream_handler;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
cache_info=(CacheInfo *) image->cache;
assert(cache_info->signature == MagickSignature);
stream_handler=GetBlobStreamHandler(image);
if (stream_handler == (StreamHandler) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),StreamError,
"NoStreamHandlerIsDefined","`%s'",image->filename);
return(MagickFalse);
}
length=stream_handler(image,cache_info->pixels,(size_t) cache_info->columns);
return(length == cache_info->columns ? MagickTrue : MagickFalse);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% W r i t e S t r e a m %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% WriteStream() makes the image pixels available to a user supplied callback
% method immediately upon writing pixel data with the WriteImage() method.
%
% The format of the WriteStream() method is:
%
% MagickBooleanType WriteStream(const ImageInfo *image_info,Image *,
% StreamHandler stream,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image_info: the image info.
%
% o stream: A callback method.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType WriteStream(const ImageInfo *image_info,
Image *image,StreamHandler stream,ExceptionInfo *exception)
{
ImageInfo
*write_info;
MagickBooleanType
status;
assert(image_info != (ImageInfo *) NULL);
assert(image_info->signature == MagickSignature);
if (image_info->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
image_info->filename);
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
write_info=CloneImageInfo(image_info);
write_info->stream=stream;
status=WriteImage(write_info,image,exception);
write_info=DestroyImageInfo(write_info);
return(status);
}