| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % RRRR EEEEE SSSSS AAA M M PPPP L EEEEE % |
| % R R E SS A A MM MM P P L E % |
| % RRRR EEE SSS AAAAA M M M PPPP L EEE % |
| % R R E SS A A M M P L E % |
| % R R EEEEE SSSSS A A M M P LLLLL EEEEE % |
| % % |
| % % |
| % MagickCore Pixel Resampling Methods % |
| % % |
| % Software Design % |
| % John Cristy % |
| % Anthony Thyssen % |
| % August 2007 % |
| % % |
| % % |
| % Copyright 1999-2010 ImageMagick Studio LLC, a non-profit organization % |
| % dedicated to making software imaging solutions freely available. % |
| % % |
| % You may not use this file except in compliance with the License. You may % |
| % obtain a copy of the License at % |
| % % |
| % http://www.imagemagick.org/script/license.php % |
| % % |
| % Unless required by applicable law or agreed to in writing, software % |
| % distributed under the License is distributed on an "AS IS" BASIS, % |
| % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % |
| % See the License for the specific language governing permissions and % |
| % limitations under the License. % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % |
| */ |
| |
| /* |
| Include declarations. |
| */ |
| #include "magick/studio.h" |
| #include "magick/artifact.h" |
| #include "magick/color-private.h" |
| #include "magick/cache.h" |
| #include "magick/draw.h" |
| #include "magick/exception-private.h" |
| #include "magick/gem.h" |
| #include "magick/image.h" |
| #include "magick/image-private.h" |
| #include "magick/log.h" |
| #include "magick/memory_.h" |
| #include "magick/pixel-private.h" |
| #include "magick/quantum.h" |
| #include "magick/random_.h" |
| #include "magick/resample.h" |
| #include "magick/resize.h" |
| #include "magick/resize-private.h" |
| #include "magick/transform.h" |
| #include "magick/signature-private.h" |
| /* |
| Typedef declarations. |
| */ |
| #define WLUT_WIDTH 1024 |
| struct _ResampleFilter |
| { |
| Image |
| *image; |
| |
| CacheView |
| *view; |
| |
| ExceptionInfo |
| *exception; |
| |
| MagickBooleanType |
| debug; |
| |
| /* Information about image being resampled */ |
| long |
| image_area; |
| |
| InterpolatePixelMethod |
| interpolate; |
| |
| VirtualPixelMethod |
| virtual_pixel; |
| |
| FilterTypes |
| filter; |
| |
| /* processing settings needed */ |
| MagickBooleanType |
| limit_reached, |
| do_interpolate, |
| average_defined; |
| |
| MagickPixelPacket |
| average_pixel; |
| |
| /* current ellipitical area being resampled around center point */ |
| double |
| A, B, C, |
| sqrtA, sqrtC, sqrtU, slope; |
| |
| /* LUT of weights for filtered average in elliptical area */ |
| double |
| filter_lut[WLUT_WIDTH], |
| support; |
| |
| unsigned long |
| signature; |
| }; |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % A c q u i r e R e s a m p l e I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % AcquireResampleFilter() initializes the information resample needs do to a |
| % scaled lookup of a color from an image, using area sampling. |
| % |
| % The algorithm is based on a Elliptical Weighted Average, where the pixels |
| % found in a large elliptical area is averaged together according to a |
| % weighting (filter) function. For more details see "Fundamentals of Texture |
| % Mapping and Image Warping" a master's thesis by Paul.S.Heckbert, June 17, |
| % 1989. Available for free from, http://www.cs.cmu.edu/~ph/ |
| % |
| % As EWA resampling (or any sort of resampling) can require a lot of |
| % calculations to produce a distorted scaling of the source image for each |
| % output pixel, the ResampleFilter structure generated holds that information |
| % between individual image resampling. |
| % |
| % This function will make the appropriate AcquireCacheView() calls |
| % to view the image, calling functions do not need to open a cache view. |
| % |
| % Usage Example... |
| % resample_filter=AcquireResampleFilter(image,exception); |
| % for (y=0; y < (long) image->rows; y++) { |
| % for (x=0; x < (long) image->columns; x++) { |
| % X= ....; Y= ....; |
| % ScaleResampleFilter(resample_filter, ... scaling vectors ...); |
| % (void) ResamplePixelColor(resample_filter,X,Y,&pixel); |
| % ... assign resampled pixel value ... |
| % } |
| % } |
| % DestroyResampleFilter(resample_filter); |
| % |
| % The format of the AcquireResampleFilter method is: |
| % |
| % ResampleFilter *AcquireResampleFilter(const Image *image, |
| % ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| MagickExport ResampleFilter *AcquireResampleFilter(const Image *image, |
| ExceptionInfo *exception) |
| { |
| register ResampleFilter |
| *resample_filter; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickSignature); |
| |
| resample_filter=(ResampleFilter *) AcquireMagickMemory( |
| sizeof(*resample_filter)); |
| if (resample_filter == (ResampleFilter *) NULL) |
| ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); |
| (void) ResetMagickMemory(resample_filter,0,sizeof(*resample_filter)); |
| |
| resample_filter->image=ReferenceImage((Image *) image); |
| resample_filter->view=AcquireCacheView(resample_filter->image); |
| resample_filter->exception=exception; |
| |
| resample_filter->debug=IsEventLogging(); |
| resample_filter->signature=MagickSignature; |
| |
| resample_filter->image_area = (long) resample_filter->image->columns * |
| resample_filter->image->rows; |
| resample_filter->average_defined = MagickFalse; |
| |
| /* initialise the resampling filter settings */ |
| SetResampleFilter(resample_filter, resample_filter->image->filter, |
| resample_filter->image->blur); |
| resample_filter->interpolate = resample_filter->image->interpolate; |
| resample_filter->virtual_pixel=GetImageVirtualPixelMethod(image); |
| |
| /* init scale to a default of a unit circle */ |
| ScaleResampleFilter(resample_filter, 1.0, 0.0, 0.0, 1.0); |
| |
| return(resample_filter); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % D e s t r o y R e s a m p l e I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % DestroyResampleFilter() finalizes and cleans up the resampling |
| % resample_filter as returned by AcquireResampleFilter(), freeing any memory |
| % or other information as needed. |
| % |
| % The format of the DestroyResampleFilter method is: |
| % |
| % ResampleFilter *DestroyResampleFilter(ResampleFilter *resample_filter) |
| % |
| % A description of each parameter follows: |
| % |
| % o resample_filter: resampling information structure |
| % |
| */ |
| MagickExport ResampleFilter *DestroyResampleFilter( |
| ResampleFilter *resample_filter) |
| { |
| assert(resample_filter != (ResampleFilter *) NULL); |
| assert(resample_filter->signature == MagickSignature); |
| assert(resample_filter->image != (Image *) NULL); |
| if (resample_filter->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s", |
| resample_filter->image->filename); |
| resample_filter->view=DestroyCacheView(resample_filter->view); |
| resample_filter->image=DestroyImage(resample_filter->image); |
| resample_filter->signature=(~MagickSignature); |
| resample_filter=(ResampleFilter *) RelinquishMagickMemory(resample_filter); |
| return(resample_filter); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % I n t e r p o l a t e R e s a m p l e F i l t e r % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % InterpolateResampleFilter() applies bi-linear or tri-linear interpolation |
| % between a floating point coordinate and the pixels surrounding that |
| % coordinate. No pixel area resampling, or scaling of the result is |
| % performed. |
| % |
| % The format of the InterpolateResampleFilter method is: |
| % |
| % MagickBooleanType InterpolateResampleFilter( |
| % ResampleInfo *resample_filter,const InterpolatePixelMethod method, |
| % const double x,const double y,MagickPixelPacket *pixel) |
| % |
| % A description of each parameter follows: |
| % |
| % o resample_filter: the resample filter. |
| % |
| % o method: the pixel clor interpolation method. |
| % |
| % o x,y: A double representing the current (x,y) position of the pixel. |
| % |
| % o pixel: return the interpolated pixel here. |
| % |
| */ |
| |
| static inline double MagickMax(const double x,const double y) |
| { |
| if (x > y) |
| return(x); |
| return(y); |
| } |
| |
| static void BicubicInterpolate(const MagickPixelPacket *pixels,const double dx, |
| MagickPixelPacket *pixel) |
| { |
| MagickRealType |
| dx2, |
| p, |
| q, |
| r, |
| s; |
| |
| dx2=dx*dx; |
| p=(pixels[3].red-pixels[2].red)-(pixels[0].red-pixels[1].red); |
| q=(pixels[0].red-pixels[1].red)-p; |
| r=pixels[2].red-pixels[0].red; |
| s=pixels[1].red; |
| pixel->red=(dx*dx2*p)+(dx2*q)+(dx*r)+s; |
| p=(pixels[3].green-pixels[2].green)-(pixels[0].green-pixels[1].green); |
| q=(pixels[0].green-pixels[1].green)-p; |
| r=pixels[2].green-pixels[0].green; |
| s=pixels[1].green; |
| pixel->green=(dx*dx2*p)+(dx2*q)+(dx*r)+s; |
| p=(pixels[3].blue-pixels[2].blue)-(pixels[0].blue-pixels[1].blue); |
| q=(pixels[0].blue-pixels[1].blue)-p; |
| r=pixels[2].blue-pixels[0].blue; |
| s=pixels[1].blue; |
| pixel->blue=(dx*dx2*p)+(dx2*q)+(dx*r)+s; |
| p=(pixels[3].opacity-pixels[2].opacity)-(pixels[0].opacity-pixels[1].opacity); |
| q=(pixels[0].opacity-pixels[1].opacity)-p; |
| r=pixels[2].opacity-pixels[0].opacity; |
| s=pixels[1].opacity; |
| pixel->opacity=(dx*dx2*p)+(dx2*q)+(dx*r)+s; |
| if (pixel->colorspace == CMYKColorspace) |
| { |
| p=(pixels[3].index-pixels[2].index)-(pixels[0].index-pixels[1].index); |
| q=(pixels[0].index-pixels[1].index)-p; |
| r=pixels[2].index-pixels[0].index; |
| s=pixels[1].index; |
| pixel->index=(dx*dx2*p)+(dx2*q)+(dx*r)+s; |
| } |
| } |
| |
| static inline MagickRealType CubicWeightingFunction(const MagickRealType x) |
| { |
| MagickRealType |
| alpha, |
| gamma; |
| |
| alpha=MagickMax(x+2.0,0.0); |
| gamma=1.0*alpha*alpha*alpha; |
| alpha=MagickMax(x+1.0,0.0); |
| gamma-=4.0*alpha*alpha*alpha; |
| alpha=MagickMax(x+0.0,0.0); |
| gamma+=6.0*alpha*alpha*alpha; |
| alpha=MagickMax(x-1.0,0.0); |
| gamma-=4.0*alpha*alpha*alpha; |
| return(gamma/6.0); |
| } |
| |
| static inline double MeshInterpolate(const PointInfo *delta,const double p, |
| const double x,const double y) |
| { |
| return(delta->x*x+delta->y*y+(1.0-delta->x-delta->y)*p); |
| } |
| |
| static inline long NearestNeighbor(MagickRealType x) |
| { |
| if (x >= 0.0) |
| return((long) (x+0.5)); |
| return((long) (x-0.5)); |
| } |
| |
| static MagickBooleanType InterpolateResampleFilter( |
| ResampleFilter *resample_filter,const InterpolatePixelMethod method, |
| const double x,const double y,MagickPixelPacket *pixel) |
| { |
| MagickBooleanType |
| status; |
| |
| register const IndexPacket |
| *indexes; |
| |
| register const PixelPacket |
| *p; |
| |
| register long |
| i; |
| |
| assert(resample_filter != (ResampleFilter *) NULL); |
| assert(resample_filter->signature == MagickSignature); |
| status=MagickTrue; |
| switch (method) |
| { |
| case AverageInterpolatePixel: |
| { |
| MagickPixelPacket |
| pixels[16]; |
| |
| MagickRealType |
| alpha[16], |
| gamma; |
| |
| p=GetCacheViewVirtualPixels(resample_filter->view,(long) floor(x)-1,(long) |
| floor(y)-1,4,4,resample_filter->exception); |
| if (p == (const PixelPacket *) NULL) |
| { |
| status=MagickFalse; |
| break; |
| } |
| indexes=GetCacheViewVirtualIndexQueue(resample_filter->view); |
| for (i=0; i < 16L; i++) |
| { |
| GetMagickPixelPacket(resample_filter->image,pixels+i); |
| SetMagickPixelPacket(resample_filter->image,p,indexes+i,pixels+i); |
| alpha[i]=1.0; |
| if (resample_filter->image->matte != MagickFalse) |
| { |
| alpha[i]=QuantumScale*((MagickRealType) QuantumRange-p->opacity); |
| pixels[i].red*=alpha[i]; |
| pixels[i].green*=alpha[i]; |
| pixels[i].blue*=alpha[i]; |
| if (resample_filter->image->colorspace == CMYKColorspace) |
| pixels[i].index*=alpha[i]; |
| } |
| gamma=alpha[i]; |
| gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma); |
| pixel->red+=gamma*0.0625*pixels[i].red; |
| pixel->green+=gamma*0.0625*pixels[i].green; |
| pixel->blue+=gamma*0.0625*pixels[i].blue; |
| pixel->opacity+=0.0625*pixels[i].opacity; |
| if (resample_filter->image->colorspace == CMYKColorspace) |
| pixel->index+=gamma*0.0625*pixels[i].index; |
| p++; |
| } |
| break; |
| } |
| case BicubicInterpolatePixel: |
| { |
| MagickPixelPacket |
| pixels[16], |
| u[4]; |
| |
| MagickRealType |
| alpha[16]; |
| |
| PointInfo |
| delta; |
| |
| p=GetCacheViewVirtualPixels(resample_filter->view,(long) floor(x)-1,(long) |
| floor(y)-1,4,4,resample_filter->exception); |
| if (p == (const PixelPacket *) NULL) |
| { |
| status=MagickFalse; |
| break; |
| } |
| indexes=GetCacheViewVirtualIndexQueue(resample_filter->view); |
| for (i=0; i < 16L; i++) |
| { |
| GetMagickPixelPacket(resample_filter->image,pixels+i); |
| SetMagickPixelPacket(resample_filter->image,p,indexes+i,pixels+i); |
| alpha[i]=1.0; |
| if (resample_filter->image->matte != MagickFalse) |
| { |
| alpha[i]=QuantumScale*((MagickRealType) QuantumRange-p->opacity); |
| pixels[i].red*=alpha[i]; |
| pixels[i].green*=alpha[i]; |
| pixels[i].blue*=alpha[i]; |
| if (resample_filter->image->colorspace == CMYKColorspace) |
| pixels[i].index*=alpha[i]; |
| } |
| p++; |
| } |
| delta.x=x-floor(x); |
| for (i=0; i < 4L; i++) |
| BicubicInterpolate(pixels+4*i,delta.x,u+i); |
| delta.y=y-floor(y); |
| BicubicInterpolate(u,delta.y,pixel); |
| break; |
| } |
| case BilinearInterpolatePixel: |
| default: |
| { |
| MagickPixelPacket |
| pixels[4]; |
| |
| MagickRealType |
| alpha[4], |
| gamma; |
| |
| PointInfo |
| delta, |
| epsilon; |
| |
| p=GetCacheViewVirtualPixels(resample_filter->view,(long) floor(x),(long) |
| floor(y),2,2,resample_filter->exception); |
| if (p == (const PixelPacket *) NULL) |
| { |
| status=MagickFalse; |
| break; |
| } |
| indexes=GetCacheViewVirtualIndexQueue(resample_filter->view); |
| for (i=0; i < 4L; i++) |
| { |
| pixels[i].red=(MagickRealType) p[i].red; |
| pixels[i].green=(MagickRealType) p[i].green; |
| pixels[i].blue=(MagickRealType) p[i].blue; |
| pixels[i].opacity=(MagickRealType) p[i].opacity; |
| alpha[i]=1.0; |
| } |
| if (resample_filter->image->matte != MagickFalse) |
| for (i=0; i < 4L; i++) |
| { |
| alpha[i]=QuantumScale*((MagickRealType) QuantumRange-p[i].opacity); |
| pixels[i].red*=alpha[i]; |
| pixels[i].green*=alpha[i]; |
| pixels[i].blue*=alpha[i]; |
| } |
| if (indexes != (IndexPacket *) NULL) |
| for (i=0; i < 4L; i++) |
| { |
| pixels[i].index=(MagickRealType) indexes[i]; |
| if (resample_filter->image->colorspace == CMYKColorspace) |
| pixels[i].index*=alpha[i]; |
| } |
| delta.x=x-floor(x); |
| delta.y=y-floor(y); |
| epsilon.x=1.0-delta.x; |
| epsilon.y=1.0-delta.y; |
| gamma=((epsilon.y*(epsilon.x*alpha[0]+delta.x*alpha[1])+delta.y* |
| (epsilon.x*alpha[2]+delta.x*alpha[3]))); |
| gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma); |
| pixel->red=gamma*(epsilon.y*(epsilon.x*pixels[0].red+delta.x* |
| pixels[1].red)+delta.y*(epsilon.x*pixels[2].red+delta.x*pixels[3].red)); |
| pixel->green=gamma*(epsilon.y*(epsilon.x*pixels[0].green+delta.x* |
| pixels[1].green)+delta.y*(epsilon.x*pixels[2].green+delta.x* |
| pixels[3].green)); |
| pixel->blue=gamma*(epsilon.y*(epsilon.x*pixels[0].blue+delta.x* |
| pixels[1].blue)+delta.y*(epsilon.x*pixels[2].blue+delta.x* |
| pixels[3].blue)); |
| pixel->opacity=(epsilon.y*(epsilon.x*pixels[0].opacity+delta.x* |
| pixels[1].opacity)+delta.y*(epsilon.x*pixels[2].opacity+delta.x* |
| pixels[3].opacity)); |
| if (resample_filter->image->colorspace == CMYKColorspace) |
| pixel->index=gamma*(epsilon.y*(epsilon.x*pixels[0].index+delta.x* |
| pixels[1].index)+delta.y*(epsilon.x*pixels[2].index+delta.x* |
| pixels[3].index)); |
| break; |
| } |
| case FilterInterpolatePixel: |
| { |
| Image |
| *excerpt_image, |
| *filter_image; |
| |
| MagickPixelPacket |
| pixels[1]; |
| |
| RectangleInfo |
| geometry; |
| |
| CacheView |
| *filter_view; |
| |
| geometry.width=4L; |
| geometry.height=4L; |
| geometry.x=(long) floor(x)-1L; |
| geometry.y=(long) floor(y)-1L; |
| excerpt_image=ExcerptImage(resample_filter->image,&geometry, |
| resample_filter->exception); |
| if (excerpt_image == (Image *) NULL) |
| { |
| status=MagickFalse; |
| break; |
| } |
| filter_image=ResizeImage(excerpt_image,1,1,resample_filter->image->filter, |
| resample_filter->image->blur,resample_filter->exception); |
| excerpt_image=DestroyImage(excerpt_image); |
| if (filter_image == (Image *) NULL) |
| break; |
| filter_view=AcquireCacheView(filter_image); |
| p=GetCacheViewVirtualPixels(filter_view,0,0,1,1, |
| resample_filter->exception); |
| if (p != (const PixelPacket *) NULL) |
| { |
| indexes=GetVirtualIndexQueue(filter_image); |
| GetMagickPixelPacket(resample_filter->image,pixels); |
| SetMagickPixelPacket(resample_filter->image,p,indexes,pixel); |
| } |
| filter_view=DestroyCacheView(filter_view); |
| filter_image=DestroyImage(filter_image); |
| break; |
| } |
| case IntegerInterpolatePixel: |
| { |
| MagickPixelPacket |
| pixels[1]; |
| |
| p=GetCacheViewVirtualPixels(resample_filter->view,(long) floor(x),(long) |
| floor(y),1,1,resample_filter->exception); |
| if (p == (const PixelPacket *) NULL) |
| { |
| status=MagickFalse; |
| break; |
| } |
| indexes=GetCacheViewVirtualIndexQueue(resample_filter->view); |
| GetMagickPixelPacket(resample_filter->image,pixels); |
| SetMagickPixelPacket(resample_filter->image,p,indexes,pixel); |
| break; |
| } |
| case MeshInterpolatePixel: |
| { |
| MagickPixelPacket |
| pixels[4]; |
| |
| MagickRealType |
| alpha[4], |
| gamma; |
| |
| PointInfo |
| delta, |
| luminance; |
| |
| p=GetCacheViewVirtualPixels(resample_filter->view,(long) floor(x),(long) |
| floor(y),2,2,resample_filter->exception); |
| if (p == (const PixelPacket *) NULL) |
| { |
| status=MagickFalse; |
| break; |
| } |
| indexes=GetCacheViewVirtualIndexQueue(resample_filter->view); |
| for (i=0; i < 4L; i++) |
| { |
| GetMagickPixelPacket(resample_filter->image,pixels+i); |
| SetMagickPixelPacket(resample_filter->image,p,indexes+i,pixels+i); |
| alpha[i]=1.0; |
| if (resample_filter->image->matte != MagickFalse) |
| { |
| alpha[i]=QuantumScale*((MagickRealType) QuantumRange-p->opacity); |
| pixels[i].red*=alpha[i]; |
| pixels[i].green*=alpha[i]; |
| pixels[i].blue*=alpha[i]; |
| if (resample_filter->image->colorspace == CMYKColorspace) |
| pixels[i].index*=alpha[i]; |
| } |
| p++; |
| } |
| delta.x=x-floor(x); |
| delta.y=y-floor(y); |
| luminance.x=MagickPixelLuminance(pixels+0)-MagickPixelLuminance(pixels+3); |
| luminance.y=MagickPixelLuminance(pixels+1)-MagickPixelLuminance(pixels+2); |
| if (fabs(luminance.x) < fabs(luminance.y)) |
| { |
| /* |
| Diagonal 0-3 NW-SE. |
| */ |
| if (delta.x <= delta.y) |
| { |
| /* |
| Bottom-left triangle (pixel:2, diagonal: 0-3). |
| */ |
| delta.y=1.0-delta.y; |
| gamma=MeshInterpolate(&delta,alpha[2],alpha[3],alpha[0]); |
| gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma); |
| pixel->red=gamma*MeshInterpolate(&delta,pixels[2].red, |
| pixels[3].red,pixels[0].red); |
| pixel->green=gamma*MeshInterpolate(&delta,pixels[2].green, |
| pixels[3].green,pixels[0].green); |
| pixel->blue=gamma*MeshInterpolate(&delta,pixels[2].blue, |
| pixels[3].blue,pixels[0].blue); |
| pixel->opacity=gamma*MeshInterpolate(&delta,pixels[2].opacity, |
| pixels[3].opacity,pixels[0].opacity); |
| if (resample_filter->image->colorspace == CMYKColorspace) |
| pixel->index=gamma*MeshInterpolate(&delta,pixels[2].index, |
| pixels[3].index,pixels[0].index); |
| } |
| else |
| { |
| /* |
| Top-right triangle (pixel:1, diagonal: 0-3). |
| */ |
| delta.x=1.0-delta.x; |
| gamma=MeshInterpolate(&delta,alpha[1],alpha[0],alpha[3]); |
| gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma); |
| pixel->red=gamma*MeshInterpolate(&delta,pixels[1].red, |
| pixels[0].red,pixels[3].red); |
| pixel->green=gamma*MeshInterpolate(&delta,pixels[1].green, |
| pixels[0].green,pixels[3].green); |
| pixel->blue=gamma*MeshInterpolate(&delta,pixels[1].blue, |
| pixels[0].blue,pixels[3].blue); |
| pixel->opacity=gamma*MeshInterpolate(&delta,pixels[1].opacity, |
| pixels[0].opacity,pixels[3].opacity); |
| if (resample_filter->image->colorspace == CMYKColorspace) |
| pixel->index=gamma*MeshInterpolate(&delta,pixels[1].index, |
| pixels[0].index,pixels[3].index); |
| } |
| } |
| else |
| { |
| /* |
| Diagonal 1-2 NE-SW. |
| */ |
| if (delta.x <= (1.0-delta.y)) |
| { |
| /* |
| Top-left triangle (pixel 0, diagonal: 1-2). |
| */ |
| gamma=MeshInterpolate(&delta,alpha[0],alpha[1],alpha[2]); |
| gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma); |
| pixel->red=gamma*MeshInterpolate(&delta,pixels[0].red, |
| pixels[1].red,pixels[2].red); |
| pixel->green=gamma*MeshInterpolate(&delta,pixels[0].green, |
| pixels[1].green,pixels[2].green); |
| pixel->blue=gamma*MeshInterpolate(&delta,pixels[0].blue, |
| pixels[1].blue,pixels[2].blue); |
| pixel->opacity=gamma*MeshInterpolate(&delta,pixels[0].opacity, |
| pixels[1].opacity,pixels[2].opacity); |
| if (resample_filter->image->colorspace == CMYKColorspace) |
| pixel->index=gamma*MeshInterpolate(&delta,pixels[0].index, |
| pixels[1].index,pixels[2].index); |
| } |
| else |
| { |
| /* |
| Bottom-right triangle (pixel: 3, diagonal: 1-2). |
| */ |
| delta.x=1.0-delta.x; |
| delta.y=1.0-delta.y; |
| gamma=MeshInterpolate(&delta,alpha[3],alpha[2],alpha[1]); |
| gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma); |
| pixel->red=gamma*MeshInterpolate(&delta,pixels[3].red, |
| pixels[2].red,pixels[1].red); |
| pixel->green=gamma*MeshInterpolate(&delta,pixels[3].green, |
| pixels[2].green,pixels[1].green); |
| pixel->blue=gamma*MeshInterpolate(&delta,pixels[3].blue, |
| pixels[2].blue,pixels[1].blue); |
| pixel->opacity=gamma*MeshInterpolate(&delta,pixels[3].opacity, |
| pixels[2].opacity,pixels[1].opacity); |
| if (resample_filter->image->colorspace == CMYKColorspace) |
| pixel->index=gamma*MeshInterpolate(&delta,pixels[3].index, |
| pixels[2].index,pixels[1].index); |
| } |
| } |
| break; |
| } |
| case NearestNeighborInterpolatePixel: |
| { |
| MagickPixelPacket |
| pixels[1]; |
| |
| p=GetCacheViewVirtualPixels(resample_filter->view,NearestNeighbor(x), |
| NearestNeighbor(y),1,1,resample_filter->exception); |
| if (p == (const PixelPacket *) NULL) |
| { |
| status=MagickFalse; |
| break; |
| } |
| indexes=GetCacheViewVirtualIndexQueue(resample_filter->view); |
| GetMagickPixelPacket(resample_filter->image,pixels); |
| SetMagickPixelPacket(resample_filter->image,p,indexes,pixel); |
| break; |
| } |
| case SplineInterpolatePixel: |
| { |
| long |
| j, |
| n; |
| |
| MagickPixelPacket |
| pixels[16]; |
| |
| MagickRealType |
| alpha[16], |
| dx, |
| dy, |
| gamma; |
| |
| PointInfo |
| delta; |
| |
| p=GetCacheViewVirtualPixels(resample_filter->view,(long) floor(x)-1,(long) |
| floor(y)-1,4,4,resample_filter->exception); |
| if (p == (const PixelPacket *) NULL) |
| { |
| status=MagickFalse; |
| break; |
| } |
| indexes=GetCacheViewVirtualIndexQueue(resample_filter->view); |
| n=0; |
| delta.x=x-floor(x); |
| delta.y=y-floor(y); |
| for (i=(-1); i < 3L; i++) |
| { |
| dy=CubicWeightingFunction((MagickRealType) i-delta.y); |
| for (j=(-1); j < 3L; j++) |
| { |
| GetMagickPixelPacket(resample_filter->image,pixels+n); |
| SetMagickPixelPacket(resample_filter->image,p,indexes+n,pixels+n); |
| alpha[n]=1.0; |
| if (resample_filter->image->matte != MagickFalse) |
| { |
| alpha[n]=QuantumScale*((MagickRealType) QuantumRange-p->opacity); |
| pixels[n].red*=alpha[n]; |
| pixels[n].green*=alpha[n]; |
| pixels[n].blue*=alpha[n]; |
| if (resample_filter->image->colorspace == CMYKColorspace) |
| pixels[n].index*=alpha[n]; |
| } |
| dx=CubicWeightingFunction(delta.x-(MagickRealType) j); |
| gamma=alpha[n]; |
| gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma); |
| pixel->red+=gamma*dx*dy*pixels[n].red; |
| pixel->green+=gamma*dx*dy*pixels[n].green; |
| pixel->blue+=gamma*dx*dy*pixels[n].blue; |
| if (resample_filter->image->matte != MagickFalse) |
| pixel->opacity+=dx*dy*pixels[n].opacity; |
| if (resample_filter->image->colorspace == CMYKColorspace) |
| pixel->index+=gamma*dx*dy*pixels[n].index; |
| n++; |
| p++; |
| } |
| } |
| break; |
| } |
| } |
| return(status); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % R e s a m p l e P i x e l C o l o r % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ResamplePixelColor() samples the pixel values surrounding the location |
| % given using an elliptical weighted average, at the scale previously |
| % calculated, and in the most efficent manner possible for the |
| % VirtualPixelMethod setting. |
| % |
| % The format of the ResamplePixelColor method is: |
| % |
| % MagickBooleanType ResamplePixelColor(ResampleFilter *resample_filter, |
| % const double u0,const double v0,MagickPixelPacket *pixel) |
| % |
| % A description of each parameter follows: |
| % |
| % o resample_filter: the resample filter. |
| % |
| % o u0,v0: A double representing the center of the area to resample, |
| % The distortion transformed transformed x,y coordinate. |
| % |
| % o pixel: the resampled pixel is returned here. |
| % |
| */ |
| MagickExport MagickBooleanType ResamplePixelColor( |
| ResampleFilter *resample_filter,const double u0,const double v0, |
| MagickPixelPacket *pixel) |
| { |
| MagickBooleanType |
| status; |
| |
| long u,v, uw,v1,v2, hit; |
| double u1; |
| double U,V,Q,DQ,DDQ; |
| double divisor_c,divisor_m; |
| register double weight; |
| register const PixelPacket *pixels; |
| register const IndexPacket *indexes; |
| assert(resample_filter != (ResampleFilter *) NULL); |
| assert(resample_filter->signature == MagickSignature); |
| |
| status=MagickTrue; |
| GetMagickPixelPacket(resample_filter->image,pixel); |
| if ( resample_filter->do_interpolate ) { |
| status=InterpolateResampleFilter(resample_filter, |
| resample_filter->interpolate,u0,v0,pixel); |
| return(status); |
| } |
| |
| /* |
| Does resample area Miss the image? |
| And is that area a simple solid color - then return that color |
| */ |
| hit = 0; |
| switch ( resample_filter->virtual_pixel ) { |
| case BackgroundVirtualPixelMethod: |
| case ConstantVirtualPixelMethod: |
| case TransparentVirtualPixelMethod: |
| case BlackVirtualPixelMethod: |
| case GrayVirtualPixelMethod: |
| case WhiteVirtualPixelMethod: |
| case MaskVirtualPixelMethod: |
| if ( resample_filter->limit_reached |
| || u0 + resample_filter->sqrtC < 0.0 |
| || u0 - resample_filter->sqrtC > (double) resample_filter->image->columns |
| || v0 + resample_filter->sqrtA < 0.0 |
| || v0 - resample_filter->sqrtA > (double) resample_filter->image->rows |
| ) |
| hit++; |
| break; |
| |
| case UndefinedVirtualPixelMethod: |
| case EdgeVirtualPixelMethod: |
| if ( ( u0 + resample_filter->sqrtC < 0.0 && v0 + resample_filter->sqrtA < 0.0 ) |
| || ( u0 + resample_filter->sqrtC < 0.0 |
| && v0 - resample_filter->sqrtA > (double) resample_filter->image->rows ) |
| || ( u0 - resample_filter->sqrtC > (double) resample_filter->image->columns |
| && v0 + resample_filter->sqrtA < 0.0 ) |
| || ( u0 - resample_filter->sqrtC > (double) resample_filter->image->columns |
| && v0 - resample_filter->sqrtA > (double) resample_filter->image->rows ) |
| ) |
| hit++; |
| break; |
| case HorizontalTileVirtualPixelMethod: |
| if ( v0 + resample_filter->sqrtA < 0.0 |
| || v0 - resample_filter->sqrtA > (double) resample_filter->image->rows |
| ) |
| hit++; /* outside the horizontally tiled images. */ |
| break; |
| case VerticalTileVirtualPixelMethod: |
| if ( u0 + resample_filter->sqrtC < 0.0 |
| || u0 - resample_filter->sqrtC > (double) resample_filter->image->columns |
| ) |
| hit++; /* outside the vertically tiled images. */ |
| break; |
| case DitherVirtualPixelMethod: |
| if ( ( u0 + resample_filter->sqrtC < -32.0 && v0 + resample_filter->sqrtA < -32.0 ) |
| || ( u0 + resample_filter->sqrtC < -32.0 |
| && v0 - resample_filter->sqrtA > (double) resample_filter->image->rows+32.0 ) |
| || ( u0 - resample_filter->sqrtC > (double) resample_filter->image->columns+32.0 |
| && v0 + resample_filter->sqrtA < -32.0 ) |
| || ( u0 - resample_filter->sqrtC > (double) resample_filter->image->columns+32.0 |
| && v0 - resample_filter->sqrtA > (double) resample_filter->image->rows+32.0 ) |
| ) |
| hit++; |
| break; |
| case TileVirtualPixelMethod: |
| case MirrorVirtualPixelMethod: |
| case RandomVirtualPixelMethod: |
| case HorizontalTileEdgeVirtualPixelMethod: |
| case VerticalTileEdgeVirtualPixelMethod: |
| case CheckerTileVirtualPixelMethod: |
| /* resampling of area is always needed - no VP limits */ |
| break; |
| } |
| if ( hit ) { |
| /* whole area is a solid color -- just return that color */ |
| status=InterpolateResampleFilter(resample_filter,IntegerInterpolatePixel, |
| u0,v0,pixel); |
| return(status); |
| } |
| |
| /* |
| Scaling limits reached, return an 'averaged' result. |
| */ |
| if ( resample_filter->limit_reached ) { |
| switch ( resample_filter->virtual_pixel ) { |
| /* This is always handled by the above, so no need. |
| case BackgroundVirtualPixelMethod: |
| case ConstantVirtualPixelMethod: |
| case TransparentVirtualPixelMethod: |
| case GrayVirtualPixelMethod, |
| case WhiteVirtualPixelMethod |
| case MaskVirtualPixelMethod: |
| */ |
| case UndefinedVirtualPixelMethod: |
| case EdgeVirtualPixelMethod: |
| case DitherVirtualPixelMethod: |
| case HorizontalTileEdgeVirtualPixelMethod: |
| case VerticalTileEdgeVirtualPixelMethod: |
| /* We need an average edge pixel, for the right edge! |
| How should I calculate an average edge color? |
| Just returning an averaged neighbourhood, |
| works well in general, but falls down for TileEdge methods. |
| This needs to be done properly!!!!!! |
| */ |
| status=InterpolateResampleFilter(resample_filter, |
| AverageInterpolatePixel,u0,v0,pixel); |
| break; |
| case HorizontalTileVirtualPixelMethod: |
| case VerticalTileVirtualPixelMethod: |
| /* just return the background pixel - Is there more direct way? */ |
| status=InterpolateResampleFilter(resample_filter, |
| IntegerInterpolatePixel,(double)-1,(double)-1,pixel); |
| break; |
| case TileVirtualPixelMethod: |
| case MirrorVirtualPixelMethod: |
| case RandomVirtualPixelMethod: |
| case CheckerTileVirtualPixelMethod: |
| default: |
| /* generate a average color of the WHOLE image */ |
| if ( resample_filter->average_defined == MagickFalse ) { |
| Image |
| *average_image; |
| |
| CacheView |
| *average_view; |
| |
| GetMagickPixelPacket(resample_filter->image, |
| (MagickPixelPacket *)&(resample_filter->average_pixel)); |
| resample_filter->average_defined = MagickTrue; |
| |
| /* Try to get an averaged pixel color of whole image */ |
| average_image=ResizeImage(resample_filter->image,1,1,BoxFilter,1.0, |
| resample_filter->exception); |
| if (average_image == (Image *) NULL) |
| { |
| *pixel=resample_filter->average_pixel; /* FAILED */ |
| break; |
| } |
| average_view=AcquireCacheView(average_image); |
| pixels=(PixelPacket *)GetCacheViewVirtualPixels(average_view,0,0,1,1, |
| resample_filter->exception); |
| if (pixels == (const PixelPacket *) NULL) { |
| average_view=DestroyCacheView(average_view); |
| average_image=DestroyImage(average_image); |
| *pixel=resample_filter->average_pixel; /* FAILED */ |
| break; |
| } |
| indexes=(IndexPacket *) GetCacheViewAuthenticIndexQueue(average_view); |
| SetMagickPixelPacket(resample_filter->image,pixels,indexes, |
| &(resample_filter->average_pixel)); |
| average_view=DestroyCacheView(average_view); |
| average_image=DestroyImage(average_image); |
| #if 0 |
| /* CheckerTile should average the image with background color */ |
| //if ( resample_filter->virtual_pixel == CheckerTileVirtualPixelMethod ) { |
| #if 0 |
| resample_filter->average_pixel.red = |
| ( resample_filter->average_pixel.red + |
| resample_filter->image->background_color.red ) /2; |
| resample_filter->average_pixel.green = |
| ( resample_filter->average_pixel.green + |
| resample_filter->image->background_color.green ) /2; |
| resample_filter->average_pixel.blue = |
| ( resample_filter->average_pixel.blue + |
| resample_filter->image->background_color.blue ) /2; |
| resample_filter->average_pixel.matte = |
| ( resample_filter->average_pixel.matte + |
| resample_filter->image->background_color.matte ) /2; |
| resample_filter->average_pixel.black = |
| ( resample_filter->average_pixel.black + |
| resample_filter->image->background_color.black ) /2; |
| #else |
| resample_filter->average_pixel = |
| resample_filter->image->background_color; |
| #endif |
| } |
| #endif |
| } |
| *pixel=resample_filter->average_pixel; |
| break; |
| } |
| return(status); |
| } |
| |
| /* |
| Initialize weighted average data collection |
| */ |
| hit = 0; |
| divisor_c = 0.0; |
| divisor_m = 0.0; |
| pixel->red = pixel->green = pixel->blue = 0.0; |
| if (resample_filter->image->matte != MagickFalse) pixel->opacity = 0.0; |
| if (resample_filter->image->colorspace == CMYKColorspace) pixel->index = 0.0; |
| |
| /* |
| Determine the parellelogram bounding box fitted to the ellipse |
| centered at u0,v0. This area is bounding by the lines... |
| v = +/- sqrt(A) |
| u = -By/2A +/- sqrt(F/A) |
| Which has been pre-calculated above. |
| */ |
| v1 = (long)(v0 - resample_filter->sqrtA); /* range of scan lines */ |
| v2 = (long)(v0 + resample_filter->sqrtA + 1); |
| |
| u1 = u0 + (v1-v0)*resample_filter->slope - resample_filter->sqrtU; /* start of scanline for v=v1 */ |
| uw = (long)(2*resample_filter->sqrtU)+1; /* width of parallelogram */ |
| |
| /* |
| Do weighted resampling of all pixels, within the scaled ellipse, |
| bound by a Parellelogram fitted to the ellipse. |
| */ |
| DDQ = 2*resample_filter->A; |
| for( v=v1; v<=v2; v++, u1+=resample_filter->slope ) { |
| u = (long)u1; /* first pixel in scanline ( floor(u1) ) */ |
| U = (double)u-u0; /* location of that pixel, relative to u0,v0 */ |
| V = (double)v-v0; |
| |
| /* Q = ellipse quotent ( if Q<F then pixel is inside ellipse) */ |
| Q = U*(resample_filter->A*U + resample_filter->B*V) + resample_filter->C*V*V; |
| DQ = resample_filter->A*(2.0*U+1) + resample_filter->B*V; |
| |
| /* get the scanline of pixels for this v */ |
| pixels=GetCacheViewVirtualPixels(resample_filter->view,u,v,(unsigned long) uw, |
| 1,resample_filter->exception); |
| if (pixels == (const PixelPacket *) NULL) |
| return(MagickFalse); |
| indexes=GetCacheViewVirtualIndexQueue(resample_filter->view); |
| |
| /* count up the weighted pixel colors */ |
| for( u=0; u<uw; u++ ) { |
| /* Note that the ellipse has been pre-scaled so F = WLUT_WIDTH */ |
| if ( Q < (double)WLUT_WIDTH ) { |
| weight = resample_filter->filter_lut[(int)Q]; |
| |
| pixel->opacity += weight*pixels->opacity; |
| divisor_m += weight; |
| |
| if (resample_filter->image->matte != MagickFalse) |
| weight *= QuantumScale*((MagickRealType)(QuantumRange-pixels->opacity)); |
| pixel->red += weight*pixels->red; |
| pixel->green += weight*pixels->green; |
| pixel->blue += weight*pixels->blue; |
| if (resample_filter->image->colorspace == CMYKColorspace) |
| pixel->index += weight*(*indexes); |
| divisor_c += weight; |
| |
| hit++; |
| } |
| pixels++; |
| indexes++; |
| Q += DQ; |
| DQ += DDQ; |
| } |
| } |
| |
| /* |
| Result sanity check -- this should NOT happen |
| */ |
| if ( hit < 4 || divisor_c < 1.0 ) { |
| /* not enough pixels in resampling, resort to direct interpolation */ |
| status=InterpolateResampleFilter(resample_filter, |
| resample_filter->interpolate,u0,v0,pixel); |
| return status; |
| } |
| |
| /* |
| Finialize results of resampling |
| */ |
| divisor_m = 1.0/divisor_m; |
| pixel->opacity = (MagickRealType) RoundToQuantum(divisor_m*pixel->opacity); |
| divisor_c = 1.0/divisor_c; |
| pixel->red = (MagickRealType) RoundToQuantum(divisor_c*pixel->red); |
| pixel->green = (MagickRealType) RoundToQuantum(divisor_c*pixel->green); |
| pixel->blue = (MagickRealType) RoundToQuantum(divisor_c*pixel->blue); |
| if (resample_filter->image->colorspace == CMYKColorspace) |
| pixel->index = (MagickRealType) RoundToQuantum(divisor_c*pixel->index); |
| return(MagickTrue); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % S c a l e R e s a m p l e F i l t e r % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ScaleResampleFilter() does all the calculations needed to resample an image |
| % at a specific scale, defined by two scaling vectors. This not using |
| % a orthogonal scaling, but two distorted scaling vectors, to allow the |
| % generation of a angled ellipse. |
| % |
| % As only two deritive scaling vectors are used the center of the ellipse |
| % must be the center of the lookup. That is any curvature that the |
| % distortion may produce is discounted. |
| % |
| % The input vectors are produced by either finding the derivitives of the |
| % distortion function, or the partial derivitives from a distortion mapping. |
| % They do not need to be the orthogonal dx,dy scaling vectors, but can be |
| % calculated from other derivatives. For example you could use dr,da/r |
| % polar coordinate vector scaling vectors |
| % |
| % If u,v = DistortEquation(x,y) |
| % Then the scaling vectors dx,dy (in u,v space) are the derivitives... |
| % du/dx, dv/dx and du/dy, dv/dy |
| % If the scaling is only othogonally aligned then... |
| % dv/dx = 0 and du/dy = 0 |
| % Producing an othogonally alligned ellipse for the area to be resampled. |
| % |
| % Note that scaling vectors are different to argument order. Argument order |
| % is the general order the deritives are extracted from the distortion |
| % equations, EG: U(x,y), V(x,y). Caution is advised if you are trying to |
| % define the ellipse directly from scaling vectors. |
| % |
| % The format of the ScaleResampleFilter method is: |
| % |
| % void ScaleResampleFilter(const ResampleFilter *resample_filter, |
| % const double dux,const double duy,const double dvx,const double dvy) |
| % |
| % A description of each parameter follows: |
| % |
| % o resample_filter: the resampling resample_filterrmation defining the |
| % image being resampled |
| % |
| % o dux,duy,dvx,dvy: |
| % The partial derivitives or scaling vectors for resampling. |
| % dx = du/dx, dv/dx and dy = du/dy, dv/dy |
| % |
| % The values are used to define the size and angle of the |
| % elliptical resampling area, centered on the lookup point. |
| % |
| */ |
| MagickExport void ScaleResampleFilter(ResampleFilter *resample_filter, |
| const double dux,const double duy,const double dvx,const double dvy) |
| { |
| double A,B,C,F, area; |
| |
| assert(resample_filter != (ResampleFilter *) NULL); |
| assert(resample_filter->signature == MagickSignature); |
| |
| resample_filter->limit_reached = MagickFalse; |
| resample_filter->do_interpolate = MagickFalse; |
| |
| /* A 'point' filter forces use of interpolation instead of area sampling */ |
| if ( resample_filter->filter == PointFilter ) { |
| resample_filter->do_interpolate = MagickTrue; |
| return; |
| } |
| |
| /* Find Ellipse Coefficents such that |
| A*u^2 + B*u*v + C*v^2 = F |
| With u,v relative to point around which we are resampling. |
| And the given scaling dx,dy vectors in u,v space |
| du/dx,dv/dx and du/dy,dv/dy |
| */ |
| #if 0 |
| /* Direct conversions of derivatives to elliptical coefficients |
| No scaling will result in F == 1.0 and a unit circle. |
| */ |
| A = dvx*dvx+dvy*dvy; |
| B = (dux*dvx+duy*dvy)*-2.0; |
| C = dux*dux+duy*duy; |
| F = dux*dvy+duy*dvx; |
| F *= F; |
| #define F_UNITY 1.0 |
| #else |
| /* This Paul Heckbert's recomended "Higher Quality EWA" formula, from page |
| 60 in his thesis, which adds a unit circle to the elliptical area so are |
| to do both Reconstruction and Prefiltering of the pixels in the |
| resampling. It also means it is likely to have at least 4 pixels within |
| the area of the ellipse, for weighted averaging. |
| No scaling will result if F == 4.0 and a circle of radius 2.0 |
| */ |
| A = dvx*dvx+dvy*dvy+1; |
| B = (dux*dvx+duy*dvy)*-2.0; |
| C = dux*dux+duy*duy+1; |
| F = A*C - B*B/4; |
| #define F_UNITY 4.0 |
| #endif |
| |
| /* DEBUGGING OUTPUT */ |
| #if 0 |
| fprintf(stderr, "dux=%lf; dvx=%lf; duy=%lf; dvy%lf;\n", |
| dux, dvx, duy, dvy); |
| fprintf(stderr, "A=%lf; B=%lf; C=%lf; F=%lf\n", A,B,C,F); |
| #endif |
| |
| #if 0 |
| /* Figure out the Ellipses Major and Minor Axis, and other info. |
| This information currently not needed at this time, but may be |
| needed later for better limit determination. |
| */ |
| { double alpha, beta, gamma, Major, Minor; |
| double Eccentricity, Ellipse_Area, Ellipse_angle; |
| double max_horizontal_cross_section, max_vertical_cross_section; |
| alpha = A+C; |
| beta = A-C; |
| gamma = sqrt(beta*beta + B*B ); |
| |
| if ( alpha - gamma <= MagickEpsilon ) |
| Major = MagickHuge; |
| else |
| Major = sqrt(2*F/(alpha - gamma)); |
| Minor = sqrt(2*F/(alpha + gamma)); |
| |
| fprintf(stderr, "\tMajor=%lf; Minor=%lf\n", |
| Major, Minor ); |
| |
| /* other information about ellipse include... */ |
| Eccentricity = Major/Minor; |
| Ellipse_Area = MagickPI*Major*Minor; |
| Ellipse_angle = atan2(B, A-C); |
| |
| fprintf(stderr, "\tAngle=%lf Area=%lf\n", |
| RadiansToDegrees(Ellipse_angle), Ellipse_Area ); |
| |
| /* Ellipse limits */ |
| |
| /* orthogonal rectangle - improved ellipse */ |
| max_horizontal_orthogonal = sqrt(A); /* = sqrt(4*A*F/(4*A*C-B*B)) */ |
| max_vertical_orthogonal = sqrt(C); /* = sqrt(4*C*F/(4*A*C-B*B)) */ |
| |
| /* parallelogram bounds -- what we are using */ |
| max_horizontal_cross_section = sqrt(F/A); |
| max_vertical_cross_section = sqrt(F/C); |
| } |
| #endif |
| |
| /* Is default elliptical area, too small? Image being magnified? |
| Switch to doing pure 'point' interpolation of the pixel. |
| That is turn off EWA Resampling. |
| */ |
| if ( F <= F_UNITY ) { |
| resample_filter->do_interpolate = MagickTrue; |
| return; |
| } |
| |
| |
| /* If F is impossibly large, we may as well not bother doing any |
| * form of resampling, as you risk an infinite resampled area. |
| */ |
| if ( F > MagickHuge ) { |
| resample_filter->limit_reached = MagickTrue; |
| return; |
| } |
| |
| /* Othogonal bounds of the ellipse */ |
| resample_filter->sqrtA = sqrt(A)+1.0; /* Vertical Orthogonal Limit */ |
| resample_filter->sqrtC = sqrt(C)+1.0; /* Horizontal Orthogonal Limit */ |
| |
| /* Horizontally aligned Parallelogram fitted to ellipse */ |
| resample_filter->sqrtU = sqrt(F/A)+1.0; /* Parallelogram Width */ |
| resample_filter->slope = -B/(2*A); /* Slope of the parallelogram */ |
| |
| /* The size of the area of the parallelogram we will be sampling */ |
| area = 4 * resample_filter->sqrtA * resample_filter->sqrtU; |
| |
| /* Absolute limit on the area to be resampled |
| * This limit needs more work, as it gets too slow for |
| * larger images involved with tiled views of the horizon. */ |
| if ( area > 20.0*resample_filter->image_area ) { |
| resample_filter->limit_reached = MagickTrue; |
| return; |
| } |
| |
| /* Scale ellipse formula to directly fit the Filter Lookup Table */ |
| { register double scale; |
| scale = (double)WLUT_WIDTH/F; |
| resample_filter->A = A*scale; |
| resample_filter->B = B*scale; |
| resample_filter->C = C*scale; |
| /* ..ple_filter->F = WLUT_WIDTH; -- hardcoded */ |
| } |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % S e t R e s a m p l e F i l t e r % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % SetResampleFilter() set the resampling filter lookup table based on a |
| % specific filter. Note that the filter is used as a radial filter not as a |
| % two pass othogonally aligned resampling filter. |
| % |
| % The default Filter, is Gaussian, which is the standard filter used by the |
| % original paper on the Elliptical Weighted Everage Algorithm. However other |
| % filters can also be used. |
| % |
| % The format of the SetResampleFilter method is: |
| % |
| % void SetResampleFilter(ResampleFilter *resample_filter, |
| % const FilterTypes filter,const double blur) |
| % |
| % A description of each parameter follows: |
| % |
| % o resample_filter: resampling resample_filterrmation structure |
| % |
| % o filter: the resize filter for elliptical weighting LUT |
| % |
| % o blur: filter blur factor (radial scaling) for elliptical weighting LUT |
| % |
| */ |
| MagickExport void SetResampleFilter(ResampleFilter *resample_filter, |
| const FilterTypes filter,const double blur) |
| { |
| register int |
| Q; |
| |
| double |
| r_scale; |
| |
| ResizeFilter |
| *resize_filter; |
| |
| assert(resample_filter != (ResampleFilter *) NULL); |
| assert(resample_filter->signature == MagickSignature); |
| |
| resample_filter->filter = filter; |
| |
| /* Scale radius so it equals 1.0, at edge of ellipse when a |
| default blurring factor of 1.0 is used. |
| |
| Note that these filters are being used as a radial filter, not as |
| an othoginally alligned filter. How this effects results is still |
| being worked out. |
| |
| Future: Direct use of teh resize filters in "resize.c" to set the lookup |
| table, based on the filters working support window. |
| */ |
| r_scale = sqrt(1.0/(double)WLUT_WIDTH)/blur; |
| r_scale *= 2; /* for 2 pixel radius of Improved Elliptical Formula */ |
| |
| switch ( filter ) { |
| case PointFilter: |
| /* This equivelent to turning off the EWA algroithm. |
| Only Interpolated lookup will be used. */ |
| break; |
| default: |
| /* |
| Fill the LUT with a 1D resize filter function |
| But make the Sinc/Bessel tapered window 2.0 |
| I also normalize the result so the filter is 1.0 |
| */ |
| resize_filter = AcquireResizeFilter(resample_filter->image,filter, |
| (MagickRealType)1.0,MagickTrue,resample_filter->exception); |
| if (resize_filter != (ResizeFilter *) NULL) { |
| resample_filter->support = GetResizeFilterSupport(resize_filter); |
| resample_filter->support /= blur; /* taken into account above */ |
| resample_filter->support *= resample_filter->support; |
| resample_filter->support *= (double)WLUT_WIDTH/4; |
| if ( resample_filter->support >= (double)WLUT_WIDTH ) |
| resample_filter->support = (double)WLUT_WIDTH; /* hack */ |
| for(Q=0; Q<WLUT_WIDTH; Q++) |
| if ( (double) Q < resample_filter->support ) |
| resample_filter->filter_lut[Q] = (double) |
| GetResizeFilterWeight(resize_filter,sqrt((double)Q)*r_scale); |
| else |
| resample_filter->filter_lut[Q] = 0.0; |
| resize_filter = DestroyResizeFilter(resize_filter); |
| break; |
| } |
| else { |
| (void) ThrowMagickException(resample_filter->exception,GetMagickModule(), |
| ModuleError, "UnableToSetFilteringValue", |
| "Fall back to default EWA gaussian filter"); |
| } |
| /* FALLTHRU - on exception */ |
| /*case GaussianFilter:*/ |
| case UndefinedFilter: |
| /* |
| Create Normal Gaussian 2D Filter Weighted Lookup Table. |
| A normal EWA guassual lookup would use exp(Q*ALPHA) |
| where Q = distantce squared from 0.0 (center) to 1.0 (edge) |
| and ALPHA = -4.0*ln(2.0) ==> -2.77258872223978123767 |
| However the table is of length 1024, and equates to a radius of 2px |
| thus needs to be scaled by ALPHA*4/1024 and any blur factor squared |
| */ |
| /*r_scale = -2.77258872223978123767*4/WLUT_WIDTH/blur/blur;*/ |
| r_scale = -2.77258872223978123767/WLUT_WIDTH/blur/blur; |
| for(Q=0; Q<WLUT_WIDTH; Q++) |
| resample_filter->filter_lut[Q] = exp((double)Q*r_scale); |
| resample_filter->support = WLUT_WIDTH; |
| break; |
| } |
| if (GetImageArtifact(resample_filter->image,"resample:verbose") |
| != (const char *) NULL) |
| /* Debug output of the filter weighting LUT |
| Gnuplot the LUT with hoizontal adjusted to 'r' using... |
| plot [0:2][-.2:1] "lut.dat" using (sqrt($0/1024)*2):1 with lines |
| THe filter values is normalized for comparision |
| */ |
| for(Q=0; Q<WLUT_WIDTH; Q++) |
| printf("%lf\n", resample_filter->filter_lut[Q] |
| /resample_filter->filter_lut[0] ); |
| return; |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % S e t R e s a m p l e F i l t e r I n t e r p o l a t e M e t h o d % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % SetResampleFilterInterpolateMethod() changes the interpolation method |
| % associated with the specified resample filter. |
| % |
| % The format of the SetResampleFilterInterpolateMethod method is: |
| % |
| % MagickBooleanType SetResampleFilterInterpolateMethod( |
| % ResampleFilter *resample_filter,const InterpolateMethod method) |
| % |
| % A description of each parameter follows: |
| % |
| % o resample_filter: the resample filter. |
| % |
| % o method: the interpolation method. |
| % |
| */ |
| MagickExport MagickBooleanType SetResampleFilterInterpolateMethod( |
| ResampleFilter *resample_filter,const InterpolatePixelMethod method) |
| { |
| assert(resample_filter != (ResampleFilter *) NULL); |
| assert(resample_filter->signature == MagickSignature); |
| assert(resample_filter->image != (Image *) NULL); |
| if (resample_filter->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s", |
| resample_filter->image->filename); |
| resample_filter->interpolate=method; |
| return(MagickTrue); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % S e t R e s a m p l e F i l t e r V i r t u a l P i x e l M e t h o d % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % SetResampleFilterVirtualPixelMethod() changes the virtual pixel method |
| % associated with the specified resample filter. |
| % |
| % The format of the SetResampleFilterVirtualPixelMethod method is: |
| % |
| % MagickBooleanType SetResampleFilterVirtualPixelMethod( |
| % ResampleFilter *resample_filter,const VirtualPixelMethod method) |
| % |
| % A description of each parameter follows: |
| % |
| % o resample_filter: the resample filter. |
| % |
| % o method: the virtual pixel method. |
| % |
| */ |
| MagickExport MagickBooleanType SetResampleFilterVirtualPixelMethod( |
| ResampleFilter *resample_filter,const VirtualPixelMethod method) |
| { |
| assert(resample_filter != (ResampleFilter *) NULL); |
| assert(resample_filter->signature == MagickSignature); |
| assert(resample_filter->image != (Image *) NULL); |
| if (resample_filter->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s", |
| resample_filter->image->filename); |
| resample_filter->virtual_pixel=method; |
| (void) SetCacheViewVirtualPixelMethod(resample_filter->view,method); |
| return(MagickTrue); |
| } |