| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % QQQ U U AAA N N TTTTT U U M M % |
| % Q Q U U A A NN N T U U MM MM % |
| % Q Q U U AAAAA N N N T U U M M M % |
| % Q QQ U U A A N NN T U U M M % |
| % QQQQ UUU A A N N T UUU M M % |
| % % |
| % EEEEE X X PPPP OOO RRRR TTTTT % |
| % E X X P P O O R R T % |
| % EEE X PPPP O O RRRR T % |
| % E X X P O O R R T % |
| % EEEEE X X P OOO R R T % |
| % % |
| % MagickCore Methods to Export Quantum Pixels % |
| % % |
| % Software Design % |
| % John Cristy % |
| % October 1998 % |
| % % |
| % % |
| % Copyright 1999-2008 ImageMagick Studio LLC, a non-profit organization % |
| % dedicated to making software imaging solutions freely available. % |
| % % |
| % You may not use this file except in compliance with the License. You may % |
| % obtain a copy of the License at % |
| % % |
| % http://www.imagemagick.org/script/license.php % |
| % % |
| % Unless required by applicable law or agreed to in writing, software % |
| % distributed under the License is distributed on an "AS IS" BASIS, % |
| % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % |
| % See the License for the specific language governing permissions and % |
| % limitations under the License. % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % |
| */ |
| |
| /* |
| Include declarations. |
| */ |
| #include "magick/studio.h" |
| #include "magick/property.h" |
| #include "magick/blob.h" |
| #include "magick/blob-private.h" |
| #include "magick/color-private.h" |
| #include "magick/exception.h" |
| #include "magick/exception-private.h" |
| #include "magick/cache.h" |
| #include "magick/constitute.h" |
| #include "magick/delegate.h" |
| #include "magick/geometry.h" |
| #include "magick/list.h" |
| #include "magick/magick.h" |
| #include "magick/memory_.h" |
| #include "magick/monitor.h" |
| #include "magick/option.h" |
| #include "magick/pixel.h" |
| #include "magick/pixel-private.h" |
| #include "magick/quantum.h" |
| #include "magick/quantum-private.h" |
| #include "magick/resource_.h" |
| #include "magick/semaphore.h" |
| #include "magick/statistic.h" |
| #include "magick/stream.h" |
| #include "magick/string_.h" |
| #include "magick/utility.h" |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + E x p o r t Q u a n t u m P i x e l s % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ExportQuantumPixels() transfers one or more pixel components from the image |
| % pixel cache to a user supplied buffer. The pixels are returned in network |
| % byte order. MagickTrue is returned if the pixels are successfully |
| % transferred, otherwise MagickFalse. |
| % |
| % The format of the ExportQuantumPixels method is: |
| % |
| % size_t ExportQuantumPixels(const Image *image, |
| % const CacheView *image_view,const QuantumInfo *quantum_info, |
| % const QuantumType quantum_type,unsigned char *pixels, |
| % ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o image_view: the image cache view. |
| % |
| % o quantum_info: the quantum info. |
| % |
| % o quantum_type: Declare which pixel components to transfer (RGB, RGBA, |
| % etc). |
| % |
| % o pixels: The components are transferred to this buffer. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| |
| static inline unsigned char *PopDoublePixel(const QuantumState *quantum_state, |
| const double pixel,unsigned char *pixels) |
| { |
| double |
| *p; |
| |
| unsigned char |
| quantum[8]; |
| |
| p=(double *) quantum; |
| *p=(double) (pixel*quantum_state->inverse_scale+quantum_state->minimum); |
| if (quantum_state->endian != LSBEndian) |
| { |
| *pixels++=quantum[7]; |
| *pixels++=quantum[6]; |
| *pixels++=quantum[5]; |
| *pixels++=quantum[4]; |
| *pixels++=quantum[3]; |
| *pixels++=quantum[2]; |
| *pixels++=quantum[1]; |
| *pixels++=quantum[0]; |
| return(pixels); |
| } |
| *pixels++=quantum[0]; |
| *pixels++=quantum[1]; |
| *pixels++=quantum[2]; |
| *pixels++=quantum[3]; |
| *pixels++=quantum[4]; |
| *pixels++=quantum[5]; |
| *pixels++=quantum[6]; |
| *pixels++=quantum[7]; |
| return(pixels); |
| } |
| |
| static inline unsigned char *PopFloatPixel(const QuantumState *quantum_state, |
| const float pixel,unsigned char *pixels) |
| { |
| float |
| *p; |
| |
| unsigned char |
| quantum[4]; |
| |
| p=(float *) quantum; |
| *p=(float) ((double) pixel*quantum_state->inverse_scale+ |
| quantum_state->minimum); |
| if (quantum_state->endian != LSBEndian) |
| { |
| *pixels++=quantum[3]; |
| *pixels++=quantum[2]; |
| *pixels++=quantum[1]; |
| *pixels++=quantum[0]; |
| return(pixels); |
| } |
| *pixels++=quantum[0]; |
| *pixels++=quantum[1]; |
| *pixels++=quantum[2]; |
| *pixels++=quantum[3]; |
| return(pixels); |
| } |
| |
| static inline unsigned char *PopQuantumPixel(QuantumState *quantum_state, |
| const size_t depth,const QuantumAny pixel,unsigned char *pixels) |
| { |
| register ssize_t |
| i; |
| |
| size_t |
| quantum_bits; |
| |
| if (quantum_state->bits == 0UL) |
| quantum_state->bits=8U; |
| for (i=(ssize_t) depth; i > 0L; ) |
| { |
| quantum_bits=(size_t) i; |
| if (quantum_bits > quantum_state->bits) |
| quantum_bits=quantum_state->bits; |
| i-=(ssize_t) quantum_bits; |
| if (quantum_state->bits == 8UL) |
| *pixels='\0'; |
| quantum_state->bits-=quantum_bits; |
| *pixels|=(((pixel >> i) &~ ((~0UL) << quantum_bits)) << |
| quantum_state->bits); |
| if (quantum_state->bits == 0UL) |
| { |
| pixels++; |
| quantum_state->bits=8UL; |
| } |
| } |
| return(pixels); |
| } |
| |
| static inline unsigned char *PopQuantumLongPixel(QuantumState *quantum_state, |
| const size_t depth,const size_t pixel,unsigned char *pixels) |
| { |
| register ssize_t |
| i; |
| |
| size_t |
| quantum_bits; |
| |
| if (quantum_state->bits == 0U) |
| quantum_state->bits=32UL; |
| for (i=(ssize_t) depth; i > 0; ) |
| { |
| quantum_bits=(size_t) i; |
| if (quantum_bits > quantum_state->bits) |
| quantum_bits=quantum_state->bits; |
| quantum_state->pixel|=(((pixel >> (depth-i)) & |
| quantum_state->mask[quantum_bits]) << (32U-quantum_state->bits)); |
| i-=(ssize_t) quantum_bits; |
| quantum_state->bits-=quantum_bits; |
| if (quantum_state->bits == 0U) |
| { |
| pixels=PopLongPixel(quantum_state->endian,quantum_state->pixel,pixels); |
| quantum_state->pixel=0U; |
| quantum_state->bits=32U; |
| } |
| } |
| return(pixels); |
| } |
| |
| MagickExport size_t ExportQuantumPixels(const Image *image, |
| const CacheView *image_view,const QuantumInfo *quantum_info, |
| const QuantumType quantum_type,unsigned char *pixels,ExceptionInfo *exception) |
| { |
| EndianType |
| endian; |
| |
| ssize_t |
| bit; |
| |
| MagickRealType |
| alpha; |
| |
| MagickSizeType |
| number_pixels; |
| |
| QuantumAny |
| range; |
| |
| QuantumState |
| quantum_state; |
| |
| register const IndexPacket |
| *restrict indexes; |
| |
| register const PixelPacket |
| *restrict p; |
| |
| register ssize_t |
| x; |
| |
| register unsigned char |
| *restrict q; |
| |
| size_t |
| extent; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| assert(quantum_info != (QuantumInfo *) NULL); |
| assert(quantum_info->signature == MagickSignature); |
| if (pixels == (unsigned char *) NULL) |
| pixels=GetQuantumPixels(quantum_info); |
| if (image_view == (CacheView *) NULL) |
| { |
| number_pixels=GetImageExtent(image); |
| p=GetVirtualPixelQueue(image); |
| indexes=GetVirtualIndexQueue(image); |
| } |
| else |
| { |
| number_pixels=GetCacheViewExtent(image_view); |
| p=GetCacheViewVirtualPixelQueue(image_view); |
| indexes=GetCacheViewVirtualIndexQueue(image_view); |
| } |
| if (quantum_info->alpha_type == AssociatedQuantumAlpha) |
| { |
| register PixelPacket |
| *restrict q; |
| |
| /* |
| Associate alpha. |
| */ |
| q=GetAuthenticPixelQueue(image); |
| if (image_view != (CacheView *) NULL) |
| q=(PixelPacket *) GetCacheViewVirtualPixelQueue(image_view); |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| alpha=QuantumScale*((double) QuantumRange-q->opacity); |
| q->red=ClampToQuantum(alpha*q->red); |
| q->green=ClampToQuantum(alpha*q->green); |
| q->blue=ClampToQuantum(alpha*q->blue); |
| q++; |
| } |
| } |
| if ((quantum_type == RGBOQuantum) || (quantum_type == CMYKOQuantum)) |
| { |
| register PixelPacket |
| *restrict q; |
| |
| q=GetAuthenticPixelQueue(image); |
| if (image_view != (CacheView *) NULL) |
| q=(PixelPacket *) GetCacheViewVirtualPixelQueue(image_view); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q->opacity=(Quantum) GetAlphaPixelComponent(q); |
| q++; |
| } |
| } |
| if ((quantum_type == CbYCrQuantum) || (quantum_type == CbYCrAQuantum)) |
| { |
| Quantum |
| quantum; |
| |
| register PixelPacket |
| *restrict q; |
| |
| q=GetAuthenticPixelQueue(image); |
| if (image_view != (CacheView *) NULL) |
| q=GetAuthenticPixelQueue(image); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| quantum=q->red; |
| q->red=q->green; |
| q->green=quantum; |
| q++; |
| } |
| } |
| x=0; |
| q=pixels; |
| InitializeQuantumState(quantum_info,image->endian,&quantum_state); |
| extent=GetQuantumExtent(image,quantum_info,quantum_type); |
| endian=quantum_state.endian; |
| switch (quantum_type) |
| { |
| case IndexQuantum: |
| { |
| if (image->storage_class != PseudoClass) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(),ImageError, |
| "ColormappedImageRequired","`%s'",image->filename); |
| return(extent); |
| } |
| switch (quantum_info->depth) |
| { |
| case 1: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=((ssize_t) number_pixels-7); x > 0; x-=8) |
| { |
| pixel=(unsigned char) *indexes++; |
| *q=((pixel & 0x01) << 7); |
| pixel=(unsigned char) *indexes++; |
| *q|=((pixel & 0x01) << 6); |
| pixel=(unsigned char) *indexes++; |
| *q|=((pixel & 0x01) << 5); |
| pixel=(unsigned char) *indexes++; |
| *q|=((pixel & 0x01) << 4); |
| pixel=(unsigned char) *indexes++; |
| *q|=((pixel & 0x01) << 3); |
| pixel=(unsigned char) *indexes++; |
| *q|=((pixel & 0x01) << 2); |
| pixel=(unsigned char) *indexes++; |
| *q|=((pixel & 0x01) << 1); |
| pixel=(unsigned char) *indexes++; |
| *q|=((pixel & 0x01) << 0); |
| q++; |
| } |
| if ((number_pixels % 8) != 0) |
| { |
| *q='\0'; |
| for (bit=7; bit >= (ssize_t) (8-(number_pixels % 8)); bit--) |
| { |
| pixel=(unsigned char) *indexes++; |
| *q|=((pixel & 0x01) << (unsigned char) bit); |
| } |
| q++; |
| } |
| break; |
| } |
| case 4: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) (number_pixels-1) ; x+=2) |
| { |
| pixel=(unsigned char) *indexes++; |
| *q=((pixel & 0xf) << 4); |
| pixel=(unsigned char) *indexes++; |
| *q|=((pixel & 0xf) << 0); |
| q++; |
| } |
| if ((number_pixels % 2) != 0) |
| { |
| pixel=(unsigned char) *indexes++; |
| *q=((pixel & 0xf) << 4); |
| q++; |
| } |
| break; |
| } |
| case 8: |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopCharPixel((unsigned char) indexes[x],q); |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 16: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopShortPixel(endian,SinglePrecisionToHalf(QuantumScale* |
| indexes[x]),q); |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopShortPixel(endian,(unsigned short) indexes[x],q); |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 32: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopFloatPixel(&quantum_state,(float) indexes[x],q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopLongPixel(endian,(unsigned int) indexes[x],q); |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopDoublePixel(&quantum_state,(double) indexes[x],q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopQuantumPixel(&quantum_state,image->depth,indexes[x],q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case IndexAlphaQuantum: |
| { |
| if (image->storage_class != PseudoClass) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(),ImageError, |
| "ColormappedImageRequired","`%s'",image->filename); |
| return(extent); |
| } |
| switch (quantum_info->depth) |
| { |
| case 1: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=((ssize_t) number_pixels-3); x > 0; x-=4) |
| { |
| pixel=(unsigned char) *indexes++; |
| *q=((pixel & 0x01) << 7); |
| pixel=(unsigned char) (p->opacity == (Quantum) TransparentOpacity ? |
| 1 : 0); |
| *q|=((pixel & 0x01) << 6); |
| p++; |
| pixel=(unsigned char) *indexes++; |
| *q|=((pixel & 0x01) << 5); |
| pixel=(unsigned char) (p->opacity == (Quantum) TransparentOpacity ? |
| 1 : 0); |
| *q|=((pixel & 0x01) << 4); |
| p++; |
| pixel=(unsigned char) *indexes++; |
| *q|=((pixel & 0x01) << 3); |
| pixel=(unsigned char) (p->opacity == (Quantum) TransparentOpacity ? |
| 1 : 0); |
| *q|=((pixel & 0x01) << 2); |
| p++; |
| pixel=(unsigned char) *indexes++; |
| *q|=((pixel & 0x01) << 1); |
| pixel=(unsigned char) (p->opacity == (Quantum) TransparentOpacity ? |
| 1 : 0); |
| *q|=((pixel & 0x01) << 0); |
| p++; |
| q++; |
| } |
| if ((number_pixels % 4) != 0) |
| { |
| *q='\0'; |
| for (bit=3; bit >= (ssize_t) (4-(number_pixels % 4)); bit-=2) |
| { |
| pixel=(unsigned char) *indexes++; |
| *q|=((pixel & 0x01) << (unsigned char) (bit+4)); |
| pixel=(unsigned char) (p->opacity == (Quantum) |
| TransparentOpacity ? 1 : 0); |
| *q|=((pixel & 0x01) << (unsigned char) (bit+4-1)); |
| p++; |
| } |
| q++; |
| } |
| break; |
| } |
| case 4: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels ; x++) |
| { |
| pixel=(unsigned char) *indexes++; |
| *q=((pixel & 0xf) << 4); |
| pixel=(unsigned char) (16*QuantumScale*((Quantum) (QuantumRange- |
| GetOpacityPixelComponent(p)))+0.5); |
| *q|=((pixel & 0xf) << 0); |
| p++; |
| q++; |
| } |
| break; |
| } |
| case 8: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopCharPixel((unsigned char) indexes[x],q); |
| pixel=ScaleQuantumToChar((Quantum) (QuantumRange- |
| GetOpacityPixelComponent(p))); |
| q=PopCharPixel(pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 16: |
| { |
| register unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopShortPixel(endian,(unsigned short) indexes[x],q); |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetAlphaPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopShortPixel(endian,(unsigned short) indexes[x],q); |
| pixel=ScaleQuantumToShort((Quantum) (QuantumRange- |
| GetOpacityPixelComponent(p))); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 32: |
| { |
| register unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| float |
| pixel; |
| |
| q=PopFloatPixel(&quantum_state,(float) indexes[x],q); |
| pixel=(float) (GetAlphaPixelComponent(p)); |
| q=PopFloatPixel(&quantum_state,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopLongPixel(endian,(unsigned int) indexes[x],q); |
| pixel=ScaleQuantumToLong((Quantum) (QuantumRange- |
| GetOpacityPixelComponent(p))); |
| q=PopLongPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| double |
| pixel; |
| |
| q=PopDoublePixel(&quantum_state,(double) indexes[x],q); |
| pixel=(double) (GetAlphaPixelComponent(p)); |
| q=PopDoublePixel(&quantum_state,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopQuantumPixel(&quantum_state,image->depth,indexes[x],q); |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| (Quantum) (GetAlphaPixelComponent(p)),range),q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case GrayQuantum: |
| { |
| switch (quantum_info->depth) |
| { |
| case 1: |
| { |
| register Quantum |
| threshold; |
| |
| register unsigned char |
| black, |
| white; |
| |
| black=0x00; |
| white=0x01; |
| if (quantum_info->min_is_white != MagickFalse) |
| { |
| black=0x01; |
| white=0x00; |
| } |
| threshold=(Quantum) (QuantumRange/2); |
| for (x=((ssize_t) number_pixels-7); x > 0; x-=8) |
| { |
| *q='\0'; |
| *q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 7; |
| p++; |
| *q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 6; |
| p++; |
| *q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 5; |
| p++; |
| *q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 4; |
| p++; |
| *q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 3; |
| p++; |
| *q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 2; |
| p++; |
| *q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 1; |
| p++; |
| *q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 0; |
| p++; |
| q++; |
| } |
| if ((number_pixels % 8) != 0) |
| { |
| *q='\0'; |
| for (bit=7; bit >= (ssize_t) (8-(number_pixels % 8)); bit--) |
| { |
| *q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << |
| bit; |
| p++; |
| } |
| q++; |
| } |
| break; |
| } |
| case 4: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) (number_pixels-1) ; x+=2) |
| { |
| pixel=ScaleQuantumToChar(PixelIntensityToQuantum(p)); |
| *q=(((pixel >> 4) & 0xf) << 4); |
| p++; |
| pixel=ScaleQuantumToChar(PixelIntensityToQuantum(p)); |
| *q|=pixel >> 4; |
| p++; |
| q++; |
| } |
| if ((number_pixels % 2) != 0) |
| { |
| pixel=ScaleQuantumToChar(PixelIntensityToQuantum(p)); |
| *q=(((pixel >> 4) & 0xf) << 4); |
| p++; |
| q++; |
| } |
| break; |
| } |
| case 8: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToChar(PixelIntensityToQuantum(p)); |
| q=PopCharPixel(pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 10: |
| { |
| range=GetQuantumRange(image->depth); |
| if (quantum_info->pack == MagickFalse) |
| { |
| register unsigned int |
| pixel; |
| |
| for (x=0; x < (ssize_t) (number_pixels-2); x+=3) |
| { |
| pixel=(unsigned int) ( |
| ScaleQuantumToAny(PixelIntensityToQuantum(p+2),range) << 22 | |
| ScaleQuantumToAny(PixelIntensityToQuantum(p+1),range) << 12 | |
| ScaleQuantumToAny(PixelIntensityToQuantum(p+0),range) << 2); |
| q=PopLongPixel(endian,pixel,q); |
| p+=3; |
| q+=quantum_info->pad; |
| } |
| pixel=0UL; |
| if (x++ < (ssize_t) (number_pixels-1)) |
| pixel|=ScaleQuantumToAny(PixelIntensityToQuantum(p+1), |
| range) << 12; |
| if (x++ < (ssize_t) number_pixels) |
| pixel|=ScaleQuantumToAny(PixelIntensityToQuantum(p+0), |
| range) << 2; |
| q=PopLongPixel(endian,pixel,q); |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| PixelIntensityToQuantum(p),range),q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 12: |
| { |
| register unsigned short |
| pixel; |
| |
| range=GetQuantumRange(image->depth); |
| if (quantum_info->pack == MagickFalse) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToShort(PixelIntensityToQuantum(p)); |
| q=PopShortPixel(endian,(unsigned short) (pixel >> 4),q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| PixelIntensityToQuantum(p),range),q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 16: |
| { |
| register unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| PixelIntensityToQuantum(p)); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToShort(PixelIntensityToQuantum(p)); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 32: |
| { |
| register unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| float |
| pixel; |
| |
| pixel=(float) PixelIntensityToQuantum(p); |
| q=PopFloatPixel(&quantum_state,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToLong(PixelIntensityToQuantum(p)); |
| q=PopLongPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| double |
| pixel; |
| |
| pixel=(double) PixelIntensityToQuantum(p); |
| q=PopDoublePixel(&quantum_state,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| PixelIntensityToQuantum(p),range),q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case GrayAlphaQuantum: |
| { |
| switch (quantum_info->depth) |
| { |
| case 1: |
| { |
| register Quantum |
| threshold; |
| |
| register unsigned char |
| black, |
| pixel, |
| white; |
| |
| black=0x00; |
| white=0x01; |
| if (quantum_info->min_is_white == MagickFalse) |
| { |
| black=0x01; |
| white=0x00; |
| } |
| threshold=(Quantum) (QuantumRange/2); |
| for (x=((ssize_t) number_pixels-3); x > 0; x-=4) |
| { |
| *q='\0'; |
| *q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 7; |
| pixel=(unsigned char) (p->opacity == OpaqueOpacity ? 0x00 : 0x01); |
| *q|=(((int) pixel != 0 ? 0x00 : 0x01) << 6); |
| p++; |
| *q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 5; |
| pixel=(unsigned char) (p->opacity == OpaqueOpacity ? 0x00 : 0x01); |
| *q|=(((int) pixel != 0 ? 0x00 : 0x01) << 4); |
| p++; |
| *q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 3; |
| pixel=(unsigned char) (p->opacity == OpaqueOpacity ? 0x00 : 0x01); |
| *q|=(((int) pixel != 0 ? 0x00 : 0x01) << 2); |
| p++; |
| *q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 1; |
| pixel=(unsigned char) (p->opacity == OpaqueOpacity ? 0x00 : 0x01); |
| *q|=(((int) pixel != 0 ? 0x00 : 0x01) << 0); |
| p++; |
| q++; |
| } |
| if ((number_pixels % 4) != 0) |
| { |
| *q='\0'; |
| for (bit=3; bit >= (ssize_t) (4-(number_pixels % 4)); bit-=2) |
| { |
| *q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << |
| (bit+4); |
| pixel=(unsigned char) (p->opacity == OpaqueOpacity ? 0x00 : |
| 0x01); |
| *q|=(((int) pixel != 0 ? 0x00 : 0x01) << (unsigned char) |
| (bit+4-1)); |
| p++; |
| } |
| q++; |
| } |
| break; |
| } |
| case 4: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels ; x++) |
| { |
| pixel=ScaleQuantumToChar(PixelIntensityToQuantum(p)); |
| *q=(((pixel >> 4) & 0xf) << 4); |
| pixel=(unsigned char) (16*QuantumScale*((Quantum) (QuantumRange- |
| GetOpacityPixelComponent(p)))+0.5); |
| *q|=pixel & 0xf; |
| p++; |
| q++; |
| } |
| break; |
| } |
| case 8: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToChar(PixelIntensityToQuantum(p)); |
| q=PopCharPixel(pixel,q); |
| pixel=ScaleQuantumToChar((Quantum) (QuantumRange- |
| GetOpacityPixelComponent(p))); |
| q=PopCharPixel(pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 16: |
| { |
| register unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| PixelIntensityToQuantum(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetAlphaPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToShort(PixelIntensityToQuantum(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=ScaleQuantumToShort((Quantum) (QuantumRange- |
| GetOpacityPixelComponent(p))); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 32: |
| { |
| register unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| float |
| pixel; |
| |
| pixel=(float) PixelIntensityToQuantum(p); |
| q=PopFloatPixel(&quantum_state,pixel,q); |
| pixel=(float) (GetAlphaPixelComponent(p)); |
| q=PopFloatPixel(&quantum_state,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToLong(PixelIntensityToQuantum(p)); |
| q=PopLongPixel(endian,pixel,q); |
| pixel=ScaleQuantumToLong((Quantum) (QuantumRange- |
| GetOpacityPixelComponent(p))); |
| q=PopLongPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| double |
| pixel; |
| |
| pixel=(double) PixelIntensityToQuantum(p); |
| q=PopDoublePixel(&quantum_state,pixel,q); |
| pixel=(double) (GetAlphaPixelComponent(p)); |
| q=PopDoublePixel(&quantum_state,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| PixelIntensityToQuantum(p),range),q); |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| (Quantum) (GetAlphaPixelComponent(p)),range),q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case RedQuantum: |
| case CyanQuantum: |
| { |
| switch (quantum_info->depth) |
| { |
| case 8: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToChar(GetRedPixelComponent(p)); |
| q=PopCharPixel(pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 16: |
| { |
| register unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetRedPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToShort(GetRedPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 32: |
| { |
| register unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopFloatPixel(&quantum_state,(float) p->red,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToLong(GetRedPixelComponent(p)); |
| q=PopLongPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopDoublePixel(&quantum_state,(double) p->red,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| p->red,range),q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case GreenQuantum: |
| case MagentaQuantum: |
| { |
| switch (quantum_info->depth) |
| { |
| case 8: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToChar(GetGreenPixelComponent(p)); |
| q=PopCharPixel(pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 16: |
| { |
| register unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetGreenPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToShort(GetGreenPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 32: |
| { |
| register unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopFloatPixel(&quantum_state,(float) p->green,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToLong(GetGreenPixelComponent(p)); |
| q=PopLongPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopDoublePixel(&quantum_state,(double) p->green,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| p->green,range),q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case BlueQuantum: |
| case YellowQuantum: |
| { |
| switch (quantum_info->depth) |
| { |
| case 8: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToChar(GetBluePixelComponent(p)); |
| q=PopCharPixel(pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 16: |
| { |
| register unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetBluePixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToShort(GetBluePixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 32: |
| { |
| register unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopFloatPixel(&quantum_state,(float) p->blue,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToLong(GetBluePixelComponent(p)); |
| q=PopLongPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopDoublePixel(&quantum_state,(double) p->blue,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| p->blue,range),q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case AlphaQuantum: |
| { |
| switch (quantum_info->depth) |
| { |
| case 8: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToChar((Quantum) (QuantumRange- |
| GetOpacityPixelComponent(p))); |
| q=PopCharPixel(pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 16: |
| { |
| register unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetAlphaPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToShort((Quantum) (QuantumRange- |
| GetOpacityPixelComponent(p))); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 32: |
| { |
| register unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| float |
| pixel; |
| |
| pixel=(float) (GetAlphaPixelComponent(p)); |
| q=PopFloatPixel(&quantum_state,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToLong((Quantum) (QuantumRange- |
| GetOpacityPixelComponent(p))); |
| q=PopLongPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| double |
| pixel; |
| |
| pixel=(double) (GetAlphaPixelComponent(p)); |
| q=PopDoublePixel(&quantum_state,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| (Quantum) (GetAlphaPixelComponent(p)),range),q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case OpacityQuantum: |
| { |
| switch (quantum_info->depth) |
| { |
| case 8: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToChar(GetOpacityPixelComponent(p)); |
| q=PopCharPixel(pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 16: |
| { |
| register unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetOpacityPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToShort(GetOpacityPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 32: |
| { |
| register unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopFloatPixel(&quantum_state,(float) p->opacity,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToLong(GetOpacityPixelComponent(p)); |
| q=PopLongPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopDoublePixel(&quantum_state,(double) p->opacity,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| p->opacity,range),q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case BlackQuantum: |
| { |
| if (image->colorspace != CMYKColorspace) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(),ImageError, |
| "ColorSeparatedImageRequired","`%s'",image->filename); |
| return(extent); |
| } |
| switch (quantum_info->depth) |
| { |
| case 8: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToChar(indexes[x]); |
| q=PopCharPixel(pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 16: |
| { |
| register unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=SinglePrecisionToHalf(QuantumScale*indexes[x]); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToShort(indexes[x]); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 32: |
| { |
| register unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopFloatPixel(&quantum_state,(float) indexes[x],q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToLong(indexes[x]); |
| q=PopLongPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopDoublePixel(&quantum_state,(double) indexes[x],q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| (Quantum) indexes[x],range),q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case RGBQuantum: |
| case CbYCrQuantum: |
| { |
| switch (quantum_info->depth) |
| { |
| case 8: |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopCharPixel(ScaleQuantumToChar(GetRedPixelComponent(p)),q); |
| q=PopCharPixel(ScaleQuantumToChar(GetGreenPixelComponent(p)),q); |
| q=PopCharPixel(ScaleQuantumToChar(GetBluePixelComponent(p)),q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 10: |
| { |
| register unsigned int |
| pixel; |
| |
| range=GetQuantumRange(image->depth); |
| if (quantum_info->pack == MagickFalse) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=(unsigned int) (ScaleQuantumToAny(p->red,range) << 22 | |
| ScaleQuantumToAny(p->green,range) << 12 | |
| ScaleQuantumToAny(p->blue,range) << 2); |
| q=PopLongPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| if (quantum_info->quantum == 32UL) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=(unsigned int) ScaleQuantumToAny(p->red,range); |
| q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q); |
| pixel=(unsigned int) ScaleQuantumToAny(p->green,range); |
| q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q); |
| pixel=(unsigned int) ScaleQuantumToAny(p->blue,range); |
| q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=(unsigned int) ScaleQuantumToAny(p->red,range); |
| q=PopQuantumPixel(&quantum_state,image->depth,pixel,q); |
| pixel=(unsigned int) ScaleQuantumToAny(p->green,range); |
| q=PopQuantumPixel(&quantum_state,image->depth,pixel,q); |
| pixel=(unsigned int) ScaleQuantumToAny(p->blue,range); |
| q=PopQuantumPixel(&quantum_state,image->depth,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 12: |
| { |
| register unsigned int |
| pixel; |
| |
| range=GetQuantumRange(image->depth); |
| if (quantum_info->pack == MagickFalse) |
| { |
| for (x=0; x < (ssize_t) (3*number_pixels-1); x+=2) |
| { |
| switch (x % 3) |
| { |
| default: |
| case 0: |
| { |
| pixel=(unsigned int) ScaleQuantumToAny(p->red,range); |
| break; |
| } |
| case 1: |
| { |
| pixel=(unsigned int) ScaleQuantumToAny(p->green,range); |
| break; |
| } |
| case 2: |
| { |
| pixel=(unsigned int) ScaleQuantumToAny(p->blue,range); |
| p++; |
| break; |
| } |
| } |
| q=PopShortPixel(endian,(unsigned short) (pixel << 4),q); |
| switch ((x+1) % 3) |
| { |
| default: |
| case 0: |
| { |
| pixel=(unsigned int) ScaleQuantumToAny(p->red,range); |
| break; |
| } |
| case 1: |
| { |
| pixel=(unsigned int) ScaleQuantumToAny(p->green,range); |
| break; |
| } |
| case 2: |
| { |
| pixel=(unsigned int) ScaleQuantumToAny(p->blue,range); |
| p++; |
| break; |
| } |
| } |
| q=PopShortPixel(endian,(unsigned short) (pixel << 4),q); |
| q+=quantum_info->pad; |
| } |
| for (bit=0; bit < (ssize_t) (3*number_pixels % 2); bit++) |
| { |
| switch ((x+bit) % 3) |
| { |
| default: |
| case 0: |
| { |
| pixel=(unsigned int) ScaleQuantumToAny(p->red,range); |
| break; |
| } |
| case 1: |
| { |
| pixel=(unsigned int) ScaleQuantumToAny(p->green,range); |
| break; |
| } |
| case 2: |
| { |
| pixel=(unsigned int) ScaleQuantumToAny(p->blue,range); |
| p++; |
| break; |
| } |
| } |
| q=PopShortPixel(endian,(unsigned short) (pixel << 4),q); |
| q+=quantum_info->pad; |
| } |
| if (bit != 0) |
| p++; |
| break; |
| } |
| if (quantum_info->quantum == 32UL) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=(unsigned int) ScaleQuantumToAny(p->red,range); |
| q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q); |
| pixel=(unsigned int) ScaleQuantumToAny(p->green,range); |
| q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q); |
| pixel=(unsigned int) ScaleQuantumToAny(p->blue,range); |
| q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=(unsigned int) ScaleQuantumToAny(p->red,range); |
| q=PopQuantumPixel(&quantum_state,image->depth,pixel,q); |
| pixel=(unsigned int) ScaleQuantumToAny(p->green,range); |
| q=PopQuantumPixel(&quantum_state,image->depth,pixel,q); |
| pixel=(unsigned int) ScaleQuantumToAny(p->blue,range); |
| q=PopQuantumPixel(&quantum_state,image->depth,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 16: |
| { |
| register unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetRedPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetGreenPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetBluePixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToShort(GetRedPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=ScaleQuantumToShort(GetGreenPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=ScaleQuantumToShort(GetBluePixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 32: |
| { |
| register unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopFloatPixel(&quantum_state,(float) p->red,q); |
| q=PopFloatPixel(&quantum_state,(float) p->green,q); |
| q=PopFloatPixel(&quantum_state,(float) p->blue,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToLong(GetRedPixelComponent(p)); |
| q=PopLongPixel(endian,pixel,q); |
| pixel=ScaleQuantumToLong(GetGreenPixelComponent(p)); |
| q=PopLongPixel(endian,pixel,q); |
| pixel=ScaleQuantumToLong(GetBluePixelComponent(p)); |
| q=PopLongPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopDoublePixel(&quantum_state,(double) p->red,q); |
| q=PopDoublePixel(&quantum_state,(double) p->green,q); |
| q=PopDoublePixel(&quantum_state,(double) p->blue,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| p->red,range),q); |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| p->green,range),q); |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| p->blue,range),q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case RGBAQuantum: |
| case RGBOQuantum: |
| case CbYCrAQuantum: |
| { |
| switch (quantum_info->depth) |
| { |
| case 8: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToChar(GetRedPixelComponent(p)); |
| q=PopCharPixel(pixel,q); |
| pixel=ScaleQuantumToChar(GetGreenPixelComponent(p)); |
| q=PopCharPixel(pixel,q); |
| pixel=ScaleQuantumToChar(GetBluePixelComponent(p)); |
| q=PopCharPixel(pixel,q); |
| pixel=ScaleQuantumToChar((Quantum) GetAlphaPixelComponent(p)); |
| q=PopCharPixel(pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 10: |
| { |
| register unsigned int |
| pixel; |
| |
| range=GetQuantumRange(image->depth); |
| if (quantum_info->pack == MagickFalse) |
| { |
| ssize_t |
| n; |
| |
| register ssize_t |
| i; |
| |
| size_t |
| quantum; |
| |
| n=0; |
| quantum=0; |
| pixel=0; |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| for (i=0; i < 4; i++) |
| { |
| switch (i) |
| { |
| case 0: quantum=p->red; break; |
| case 1: quantum=p->green; break; |
| case 2: quantum=p->blue; break; |
| case 3: quantum=(Quantum) (QuantumRange-p->opacity); break; |
| } |
| switch (n % 3) |
| { |
| case 0: |
| { |
| pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, |
| range) << 22); |
| break; |
| } |
| case 1: |
| { |
| pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, |
| range) << 12); |
| break; |
| } |
| case 2: |
| { |
| pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum, |
| range) << 2); |
| q=PopLongPixel(endian,pixel,q); |
| pixel=0; |
| break; |
| } |
| } |
| n++; |
| } |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| if (quantum_info->quantum == 32UL) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=(unsigned int) ScaleQuantumToAny(p->red,range); |
| q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q); |
| pixel=(unsigned int) ScaleQuantumToAny(p->green,range); |
| q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q); |
| pixel=(unsigned int) ScaleQuantumToAny(p->blue,range); |
| q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q); |
| pixel=(unsigned int) ScaleQuantumToAny((Quantum) (QuantumRange- |
| p->opacity),range); |
| q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=(unsigned int) ScaleQuantumToAny(p->red,range); |
| q=PopQuantumPixel(&quantum_state,image->depth,pixel,q); |
| pixel=(unsigned int) ScaleQuantumToAny(p->green,range); |
| q=PopQuantumPixel(&quantum_state,image->depth,pixel,q); |
| pixel=(unsigned int) ScaleQuantumToAny(p->blue,range); |
| q=PopQuantumPixel(&quantum_state,image->depth,pixel,q); |
| pixel=(unsigned int) ScaleQuantumToAny((Quantum) (QuantumRange- |
| p->opacity),range); |
| q=PopQuantumPixel(&quantum_state,image->depth,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 16: |
| { |
| register unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetRedPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetGreenPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetBluePixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetAlphaPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToShort(GetRedPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=ScaleQuantumToShort(GetGreenPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=ScaleQuantumToShort(GetBluePixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=ScaleQuantumToShort((Quantum) GetAlphaPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 32: |
| { |
| register unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| float |
| pixel; |
| |
| q=PopFloatPixel(&quantum_state,(float) p->red,q); |
| q=PopFloatPixel(&quantum_state,(float) p->green,q); |
| q=PopFloatPixel(&quantum_state,(float) p->blue,q); |
| pixel=(float) GetAlphaPixelComponent(p); |
| q=PopFloatPixel(&quantum_state,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToLong(GetRedPixelComponent(p)); |
| q=PopLongPixel(endian,pixel,q); |
| pixel=ScaleQuantumToLong(GetGreenPixelComponent(p)); |
| q=PopLongPixel(endian,pixel,q); |
| pixel=ScaleQuantumToLong(GetBluePixelComponent(p)); |
| q=PopLongPixel(endian,pixel,q); |
| pixel=ScaleQuantumToLong((Quantum) GetAlphaPixelComponent(p)); |
| q=PopLongPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| double |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopDoublePixel(&quantum_state,(double) p->red,q); |
| q=PopDoublePixel(&quantum_state,(double) p->green,q); |
| q=PopDoublePixel(&quantum_state,(double) p->blue,q); |
| pixel=(double) GetAlphaPixelComponent(p); |
| q=PopDoublePixel(&quantum_state,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| GetRedPixelComponent(p),range),q); |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| GetGreenPixelComponent(p),range),q); |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| GetBluePixelComponent(p),range),q); |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| (Quantum) GetAlphaPixelComponent(p),range),q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case CMYKQuantum: |
| { |
| if (image->colorspace != CMYKColorspace) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(),ImageError, |
| "ColorSeparatedImageRequired","`%s'",image->filename); |
| return(extent); |
| } |
| switch (quantum_info->depth) |
| { |
| case 8: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToChar(GetRedPixelComponent(p)); |
| q=PopCharPixel(pixel,q); |
| pixel=ScaleQuantumToChar(GetGreenPixelComponent(p)); |
| q=PopCharPixel(pixel,q); |
| pixel=ScaleQuantumToChar(GetBluePixelComponent(p)); |
| q=PopCharPixel(pixel,q); |
| pixel=ScaleQuantumToChar(indexes[x]); |
| q=PopCharPixel(pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 16: |
| { |
| register unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetRedPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetGreenPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetBluePixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=SinglePrecisionToHalf(QuantumScale*indexes[x]); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToShort(GetRedPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=ScaleQuantumToShort(GetGreenPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=ScaleQuantumToShort(GetBluePixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=ScaleQuantumToShort(indexes[x]); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 32: |
| { |
| register unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopFloatPixel(&quantum_state,(float) p->red,q); |
| q=PopFloatPixel(&quantum_state,(float) p->green,q); |
| q=PopFloatPixel(&quantum_state,(float) p->blue,q); |
| q=PopFloatPixel(&quantum_state,(float) indexes[x],q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToLong(GetRedPixelComponent(p)); |
| q=PopLongPixel(endian,pixel,q); |
| pixel=ScaleQuantumToLong(GetGreenPixelComponent(p)); |
| q=PopLongPixel(endian,pixel,q); |
| pixel=ScaleQuantumToLong(GetBluePixelComponent(p)); |
| q=PopLongPixel(endian,pixel,q); |
| pixel=ScaleQuantumToLong(indexes[x]); |
| q=PopLongPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopDoublePixel(&quantum_state,(double) p->red,q); |
| q=PopDoublePixel(&quantum_state,(double) p->green,q); |
| q=PopDoublePixel(&quantum_state,(double) p->blue,q); |
| q=PopDoublePixel(&quantum_state,(double) indexes[x],q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| p->red,range),q); |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| p->green,range),q); |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| p->blue,range),q); |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| indexes[x],range),q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case CMYKAQuantum: |
| case CMYKOQuantum: |
| { |
| if (image->colorspace != CMYKColorspace) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(),ImageError, |
| "ColorSeparatedImageRequired","`%s'",image->filename); |
| return(extent); |
| } |
| switch (quantum_info->depth) |
| { |
| case 8: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToChar(GetRedPixelComponent(p)); |
| q=PopCharPixel(pixel,q); |
| pixel=ScaleQuantumToChar(GetGreenPixelComponent(p)); |
| q=PopCharPixel(pixel,q); |
| pixel=ScaleQuantumToChar(GetBluePixelComponent(p)); |
| q=PopCharPixel(pixel,q); |
| pixel=ScaleQuantumToChar(indexes[x]); |
| q=PopCharPixel(pixel,q); |
| pixel=ScaleQuantumToChar((Quantum) (QuantumRange- |
| GetOpacityPixelComponent(p))); |
| q=PopCharPixel(pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 16: |
| { |
| register unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetRedPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetGreenPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetBluePixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=SinglePrecisionToHalf(QuantumScale*indexes[x]); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=SinglePrecisionToHalf(QuantumScale* |
| GetAlphaPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToShort(GetRedPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=ScaleQuantumToShort(GetGreenPixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=ScaleQuantumToShort(GetBluePixelComponent(p)); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=ScaleQuantumToShort(indexes[x]); |
| q=PopShortPixel(endian,pixel,q); |
| pixel=ScaleQuantumToShort((Quantum) (QuantumRange- |
| GetOpacityPixelComponent(p))); |
| q=PopShortPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 32: |
| { |
| register unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| float |
| pixel; |
| |
| q=PopFloatPixel(&quantum_state,(float) p->red,q); |
| q=PopFloatPixel(&quantum_state,(float) p->green,q); |
| q=PopFloatPixel(&quantum_state,(float) p->blue,q); |
| q=PopFloatPixel(&quantum_state,(float) indexes[x],q); |
| pixel=(float) (GetAlphaPixelComponent(p)); |
| q=PopFloatPixel(&quantum_state,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=ScaleQuantumToLong(GetRedPixelComponent(p)); |
| q=PopLongPixel(endian,pixel,q); |
| pixel=ScaleQuantumToLong(GetGreenPixelComponent(p)); |
| q=PopLongPixel(endian,pixel,q); |
| pixel=ScaleQuantumToLong(GetBluePixelComponent(p)); |
| q=PopLongPixel(endian,pixel,q); |
| pixel=ScaleQuantumToLong(indexes[x]); |
| q=PopLongPixel(endian,pixel,q); |
| pixel=ScaleQuantumToLong((Quantum) (QuantumRange- |
| GetOpacityPixelComponent(p))); |
| q=PopLongPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| double |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopDoublePixel(&quantum_state,(double) p->red,q); |
| q=PopDoublePixel(&quantum_state,(double) p->green,q); |
| q=PopDoublePixel(&quantum_state,(double) p->blue,q); |
| q=PopDoublePixel(&quantum_state,(double) indexes[x],q); |
| pixel=(double) (GetAlphaPixelComponent(p)); |
| q=PopDoublePixel(&quantum_state,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| p->red,range),q); |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| p->green,range),q); |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| p->blue,range),q); |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| indexes[x],range),q); |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| p->opacity,range),q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case CbYCrYQuantum: |
| { |
| ssize_t |
| n; |
| |
| Quantum |
| cbcr[4]; |
| |
| register ssize_t |
| i; |
| |
| register unsigned int |
| pixel; |
| |
| size_t |
| quantum; |
| |
| n=0; |
| quantum=0; |
| range=GetQuantumRange(image->depth); |
| switch (quantum_info->depth) |
| { |
| case 10: |
| { |
| if (quantum_info->pack == MagickFalse) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x+=2) |
| { |
| for (i=0; i < 4; i++) |
| { |
| switch (n % 3) |
| { |
| case 0: |
| { |
| quantum=GetRedPixelComponent(p); |
| break; |
| } |
| case 1: |
| { |
| quantum=GetGreenPixelComponent(p); |
| break; |
| } |
| case 2: |
| { |
| quantum=GetBluePixelComponent(p); |
| break; |
| } |
| } |
| cbcr[i]=(Quantum) quantum; |
| n++; |
| } |
| pixel=(unsigned int) ((size_t) (cbcr[1]) << 22 | |
| (size_t) (cbcr[0]) << 12 | |
| (size_t) (cbcr[2]) << 2); |
| q=PopLongPixel(endian,pixel,q); |
| p++; |
| pixel=(unsigned int) ((size_t) (cbcr[3]) << 22 | |
| (size_t) (cbcr[0]) << 12 | |
| (size_t) (cbcr[2]) << 2); |
| q=PopLongPixel(endian,pixel,q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| break; |
| } |
| default: |
| { |
| for (x=0; x < (ssize_t) number_pixels; x+=2) |
| { |
| for (i=0; i < 4; i++) |
| { |
| switch (n % 3) |
| { |
| case 0: |
| { |
| quantum=GetRedPixelComponent(p); |
| break; |
| } |
| case 1: |
| { |
| quantum=GetGreenPixelComponent(p); |
| break; |
| } |
| case 2: |
| { |
| quantum=GetBluePixelComponent(p); |
| break; |
| } |
| } |
| cbcr[i]=(Quantum) quantum; |
| n++; |
| } |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| cbcr[1],range),q); |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| cbcr[0],range),q); |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| cbcr[2],range),q); |
| p++; |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| cbcr[3],range),q); |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| cbcr[0],range),q); |
| q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny( |
| cbcr[2],range),q); |
| p++; |
| q+=quantum_info->pad; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| if ((quantum_type == CbYCrQuantum) || (quantum_type == CbYCrAQuantum)) |
| { |
| Quantum |
| quantum; |
| |
| register PixelPacket |
| *restrict q; |
| |
| q=GetAuthenticPixelQueue(image); |
| if (image_view != (CacheView *) NULL) |
| q=(PixelPacket *) GetCacheViewVirtualPixelQueue(image_view); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| quantum=q->red; |
| q->red=q->green; |
| q->green=quantum; |
| q++; |
| } |
| } |
| if ((quantum_type == RGBOQuantum) || (quantum_type == CMYKOQuantum)) |
| { |
| register PixelPacket |
| *restrict q; |
| |
| q=GetAuthenticPixelQueue(image); |
| if (image_view != (CacheView *) NULL) |
| q=(PixelPacket *) GetCacheViewVirtualPixelQueue(image_view); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q->opacity=(Quantum) GetAlphaPixelComponent(q); |
| q++; |
| } |
| } |
| return(extent); |
| } |