| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % M M AAA TTTTT RRRR IIIII X X % |
| % MM MM A A T R R I X X % |
| % M M M AAAAA T RRRR I X % |
| % M M A A T R R I X X % |
| % M M A A T R R IIIII X X % |
| % % |
| % % |
| % MagickCore Matrix Methods % |
| % % |
| % Software Design % |
| % Cristy % |
| % August 2007 % |
| % % |
| % % |
| % Copyright 1999-2019 ImageMagick Studio LLC, a non-profit organization % |
| % dedicated to making software imaging solutions freely available. % |
| % % |
| % You may not use this file except in compliance with the License. You may % |
| % obtain a copy of the License at % |
| % % |
| % https://imagemagick.org/script/license.php % |
| % % |
| % Unless required by applicable law or agreed to in writing, software % |
| % distributed under the License is distributed on an "AS IS" BASIS, % |
| % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % |
| % See the License for the specific language governing permissions and % |
| % limitations under the License. % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % |
| */ |
| |
| /* |
| Include declarations. |
| */ |
| #include "MagickCore/studio.h" |
| #include "MagickCore/blob.h" |
| #include "MagickCore/blob-private.h" |
| #include "MagickCore/cache.h" |
| #include "MagickCore/exception.h" |
| #include "MagickCore/exception-private.h" |
| #include "MagickCore/image-private.h" |
| #include "MagickCore/matrix.h" |
| #include "MagickCore/matrix-private.h" |
| #include "MagickCore/memory_.h" |
| #include "MagickCore/pixel-accessor.h" |
| #include "MagickCore/pixel-private.h" |
| #include "MagickCore/resource_.h" |
| #include "MagickCore/semaphore.h" |
| #include "MagickCore/thread-private.h" |
| #include "MagickCore/utility.h" |
| |
| /* |
| Typedef declaration. |
| */ |
| struct _MatrixInfo |
| { |
| CacheType |
| type; |
| |
| size_t |
| columns, |
| rows, |
| stride; |
| |
| MagickSizeType |
| length; |
| |
| MagickBooleanType |
| mapped, |
| synchronize; |
| |
| char |
| path[MagickPathExtent]; |
| |
| int |
| file; |
| |
| void |
| *elements; |
| |
| SemaphoreInfo |
| *semaphore; |
| |
| size_t |
| signature; |
| }; |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % A c q u i r e M a t r i x I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % AcquireMatrixInfo() allocates the ImageInfo structure. |
| % |
| % The format of the AcquireMatrixInfo method is: |
| % |
| % MatrixInfo *AcquireMatrixInfo(const size_t columns,const size_t rows, |
| % const size_t stride,ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o columns: the matrix columns. |
| % |
| % o rows: the matrix rows. |
| % |
| % o stride: the matrix stride. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| |
| #if defined(SIGBUS) |
| static void MatrixSignalHandler(int status) |
| { |
| ThrowFatalException(CacheFatalError,"UnableToExtendMatrixCache"); |
| } |
| #endif |
| |
| static inline MagickOffsetType WriteMatrixElements( |
| const MatrixInfo *magick_restrict matrix_info,const MagickOffsetType offset, |
| const MagickSizeType length,const unsigned char *magick_restrict buffer) |
| { |
| register MagickOffsetType |
| i; |
| |
| ssize_t |
| count; |
| |
| #if !defined(MAGICKCORE_HAVE_PWRITE) |
| LockSemaphoreInfo(matrix_info->semaphore); |
| if (lseek(matrix_info->file,offset,SEEK_SET) < 0) |
| { |
| UnlockSemaphoreInfo(matrix_info->semaphore); |
| return((MagickOffsetType) -1); |
| } |
| #endif |
| count=0; |
| for (i=0; i < (MagickOffsetType) length; i+=count) |
| { |
| #if !defined(MAGICKCORE_HAVE_PWRITE) |
| count=write(matrix_info->file,buffer+i,(size_t) MagickMin(length-i, |
| (MagickSizeType) SSIZE_MAX)); |
| #else |
| count=pwrite(matrix_info->file,buffer+i,(size_t) MagickMin(length-i, |
| (MagickSizeType) SSIZE_MAX),(off_t) (offset+i)); |
| #endif |
| if (count <= 0) |
| { |
| count=0; |
| if (errno != EINTR) |
| break; |
| } |
| } |
| #if !defined(MAGICKCORE_HAVE_PWRITE) |
| UnlockSemaphoreInfo(matrix_info->semaphore); |
| #endif |
| return(i); |
| } |
| |
| static MagickBooleanType SetMatrixExtent( |
| MatrixInfo *magick_restrict matrix_info,MagickSizeType length) |
| { |
| MagickOffsetType |
| count, |
| extent, |
| offset; |
| |
| if (length != (MagickSizeType) ((MagickOffsetType) length)) |
| return(MagickFalse); |
| offset=(MagickOffsetType) lseek(matrix_info->file,0,SEEK_END); |
| if (offset < 0) |
| return(MagickFalse); |
| if ((MagickSizeType) offset >= length) |
| return(MagickTrue); |
| extent=(MagickOffsetType) length-1; |
| count=WriteMatrixElements(matrix_info,extent,1,(const unsigned char *) ""); |
| #if defined(MAGICKCORE_HAVE_POSIX_FALLOCATE) |
| if (matrix_info->synchronize != MagickFalse) |
| (void) posix_fallocate(matrix_info->file,offset+1,extent-offset); |
| #endif |
| #if defined(SIGBUS) |
| (void) signal(SIGBUS,MatrixSignalHandler); |
| #endif |
| return(count != (MagickOffsetType) 1 ? MagickFalse : MagickTrue); |
| } |
| |
| MagickExport MatrixInfo *AcquireMatrixInfo(const size_t columns, |
| const size_t rows,const size_t stride,ExceptionInfo *exception) |
| { |
| char |
| *synchronize; |
| |
| MagickBooleanType |
| status; |
| |
| MatrixInfo |
| *matrix_info; |
| |
| matrix_info=(MatrixInfo *) AcquireMagickMemory(sizeof(*matrix_info)); |
| if (matrix_info == (MatrixInfo *) NULL) |
| return((MatrixInfo *) NULL); |
| (void) memset(matrix_info,0,sizeof(*matrix_info)); |
| matrix_info->signature=MagickCoreSignature; |
| matrix_info->columns=columns; |
| matrix_info->rows=rows; |
| matrix_info->stride=stride; |
| matrix_info->semaphore=AcquireSemaphoreInfo(); |
| synchronize=GetEnvironmentValue("MAGICK_SYNCHRONIZE"); |
| if (synchronize != (const char *) NULL) |
| { |
| matrix_info->synchronize=IsStringTrue(synchronize); |
| synchronize=DestroyString(synchronize); |
| } |
| matrix_info->length=(MagickSizeType) columns*rows*stride; |
| if (matrix_info->columns != (size_t) (matrix_info->length/rows/stride)) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(),CacheError, |
| "CacheResourcesExhausted","`%s'","matrix cache"); |
| return(DestroyMatrixInfo(matrix_info)); |
| } |
| matrix_info->type=MemoryCache; |
| status=AcquireMagickResource(AreaResource,matrix_info->length); |
| if ((status != MagickFalse) && |
| (matrix_info->length == (MagickSizeType) ((size_t) matrix_info->length))) |
| { |
| status=AcquireMagickResource(MemoryResource,matrix_info->length); |
| if (status != MagickFalse) |
| { |
| matrix_info->mapped=MagickFalse; |
| matrix_info->elements=AcquireMagickMemory((size_t) |
| matrix_info->length); |
| if (matrix_info->elements == NULL) |
| { |
| matrix_info->mapped=MagickTrue; |
| matrix_info->elements=MapBlob(-1,IOMode,0,(size_t) |
| matrix_info->length); |
| } |
| if (matrix_info->elements == (unsigned short *) NULL) |
| RelinquishMagickResource(MemoryResource,matrix_info->length); |
| } |
| } |
| matrix_info->file=(-1); |
| if (matrix_info->elements == (unsigned short *) NULL) |
| { |
| status=AcquireMagickResource(DiskResource,matrix_info->length); |
| if (status == MagickFalse) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(),CacheError, |
| "CacheResourcesExhausted","`%s'","matrix cache"); |
| return(DestroyMatrixInfo(matrix_info)); |
| } |
| matrix_info->type=DiskCache; |
| matrix_info->file=AcquireUniqueFileResource(matrix_info->path); |
| if (matrix_info->file == -1) |
| return(DestroyMatrixInfo(matrix_info)); |
| status=AcquireMagickResource(MapResource,matrix_info->length); |
| if (status != MagickFalse) |
| { |
| status=SetMatrixExtent(matrix_info,matrix_info->length); |
| if (status != MagickFalse) |
| matrix_info->elements=(void *) MapBlob(matrix_info->file,IOMode,0, |
| (size_t) matrix_info->length); |
| if (matrix_info->elements != NULL) |
| matrix_info->type=MapCache; |
| else |
| RelinquishMagickResource(MapResource,matrix_info->length); |
| } |
| } |
| return(matrix_info); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % A c q u i r e M a g i c k M a t r i x % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % AcquireMagickMatrix() allocates and returns a matrix in the form of an |
| % array of pointers to an array of doubles, with all values pre-set to zero. |
| % |
| % This used to generate the two dimensional matrix, and vectors required |
| % for the GaussJordanElimination() method below, solving some system of |
| % simultanious equations. |
| % |
| % The format of the AcquireMagickMatrix method is: |
| % |
| % double **AcquireMagickMatrix(const size_t number_rows, |
| % const size_t size) |
| % |
| % A description of each parameter follows: |
| % |
| % o number_rows: the number pointers for the array of pointers |
| % (first dimension). |
| % |
| % o size: the size of the array of doubles each pointer points to |
| % (second dimension). |
| % |
| */ |
| MagickExport double **AcquireMagickMatrix(const size_t number_rows, |
| const size_t size) |
| { |
| double |
| **matrix; |
| |
| register ssize_t |
| i, |
| j; |
| |
| matrix=(double **) AcquireQuantumMemory(number_rows,sizeof(*matrix)); |
| if (matrix == (double **) NULL) |
| return((double **) NULL); |
| for (i=0; i < (ssize_t) number_rows; i++) |
| { |
| matrix[i]=(double *) AcquireQuantumMemory(size,sizeof(*matrix[i])); |
| if (matrix[i] == (double *) NULL) |
| { |
| for (j=0; j < i; j++) |
| matrix[j]=(double *) RelinquishMagickMemory(matrix[j]); |
| matrix=(double **) RelinquishMagickMemory(matrix); |
| return((double **) NULL); |
| } |
| for (j=0; j < (ssize_t) size; j++) |
| matrix[i][j]=0.0; |
| } |
| return(matrix); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % D e s t r o y M a t r i x I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % DestroyMatrixInfo() dereferences a matrix, deallocating memory associated |
| % with the matrix. |
| % |
| % The format of the DestroyImage method is: |
| % |
| % MatrixInfo *DestroyMatrixInfo(MatrixInfo *matrix_info) |
| % |
| % A description of each parameter follows: |
| % |
| % o matrix_info: the matrix. |
| % |
| */ |
| MagickExport MatrixInfo *DestroyMatrixInfo(MatrixInfo *matrix_info) |
| { |
| assert(matrix_info != (MatrixInfo *) NULL); |
| assert(matrix_info->signature == MagickCoreSignature); |
| LockSemaphoreInfo(matrix_info->semaphore); |
| switch (matrix_info->type) |
| { |
| case MemoryCache: |
| { |
| if (matrix_info->mapped == MagickFalse) |
| matrix_info->elements=RelinquishMagickMemory(matrix_info->elements); |
| else |
| { |
| (void) UnmapBlob(matrix_info->elements,(size_t) matrix_info->length); |
| matrix_info->elements=(unsigned short *) NULL; |
| } |
| RelinquishMagickResource(MemoryResource,matrix_info->length); |
| break; |
| } |
| case MapCache: |
| { |
| (void) UnmapBlob(matrix_info->elements,(size_t) matrix_info->length); |
| matrix_info->elements=NULL; |
| RelinquishMagickResource(MapResource,matrix_info->length); |
| } |
| case DiskCache: |
| { |
| if (matrix_info->file != -1) |
| (void) close(matrix_info->file); |
| (void) RelinquishUniqueFileResource(matrix_info->path); |
| RelinquishMagickResource(DiskResource,matrix_info->length); |
| break; |
| } |
| default: |
| break; |
| } |
| UnlockSemaphoreInfo(matrix_info->semaphore); |
| RelinquishSemaphoreInfo(&matrix_info->semaphore); |
| return((MatrixInfo *) RelinquishMagickMemory(matrix_info)); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + G a u s s J o r d a n E l i m i n a t i o n % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % GaussJordanElimination() returns a matrix in reduced row echelon form, |
| % while simultaneously reducing and thus solving the augumented results |
| % matrix. |
| % |
| % See also http://en.wikipedia.org/wiki/Gauss-Jordan_elimination |
| % |
| % The format of the GaussJordanElimination method is: |
| % |
| % MagickBooleanType GaussJordanElimination(double **matrix, |
| % double **vectors,const size_t rank,const size_t number_vectors) |
| % |
| % A description of each parameter follows: |
| % |
| % o matrix: the matrix to be reduced, as an 'array of row pointers'. |
| % |
| % o vectors: the additional matrix argumenting the matrix for row reduction. |
| % Producing an 'array of column vectors'. |
| % |
| % o rank: The size of the matrix (both rows and columns). |
| % Also represents the number terms that need to be solved. |
| % |
| % o number_vectors: Number of vectors columns, argumenting the above matrix. |
| % Usally 1, but can be more for more complex equation solving. |
| % |
| % Note that the 'matrix' is given as a 'array of row pointers' of rank size. |
| % That is values can be assigned as matrix[row][column] where 'row' is |
| % typically the equation, and 'column' is the term of the equation. |
| % That is the matrix is in the form of a 'row first array'. |
| % |
| % However 'vectors' is a 'array of column pointers' which can have any number |
| % of columns, with each column array the same 'rank' size as 'matrix'. |
| % |
| % This allows for simpler handling of the results, especially is only one |
| % column 'vector' is all that is required to produce the desired solution. |
| % |
| % For example, the 'vectors' can consist of a pointer to a simple array of |
| % doubles. when only one set of simultanious equations is to be solved from |
| % the given set of coefficient weighted terms. |
| % |
| % double **matrix = AcquireMagickMatrix(8UL,8UL); |
| % double coefficents[8]; |
| % ... |
| % GaussJordanElimination(matrix, &coefficents, 8UL, 1UL); |
| % |
| % However by specifing more 'columns' (as an 'array of vector columns', |
| % you can use this function to solve a set of 'separable' equations. |
| % |
| % For example a distortion function where u = U(x,y) v = V(x,y) |
| % And the functions U() and V() have separate coefficents, but are being |
| % generated from a common x,y->u,v data set. |
| % |
| % Another example is generation of a color gradient from a set of colors at |
| % specific coordients, such as a list x,y -> r,g,b,a. |
| % |
| % You can also use the 'vectors' to generate an inverse of the given 'matrix' |
| % though as a 'column first array' rather than a 'row first array'. For |
| % details see http://en.wikipedia.org/wiki/Gauss-Jordan_elimination |
| % |
| */ |
| MagickPrivate MagickBooleanType GaussJordanElimination(double **matrix, |
| double **vectors,const size_t rank,const size_t number_vectors) |
| { |
| #define GaussJordanSwap(x,y) \ |
| { \ |
| if ((x) != (y)) \ |
| { \ |
| (x)+=(y); \ |
| (y)=(x)-(y); \ |
| (x)=(x)-(y); \ |
| } \ |
| } |
| |
| double |
| max, |
| scale; |
| |
| register ssize_t |
| i, |
| j, |
| k; |
| |
| ssize_t |
| column, |
| *columns, |
| *pivots, |
| row, |
| *rows; |
| |
| columns=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*columns)); |
| rows=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*rows)); |
| pivots=(ssize_t *) AcquireQuantumMemory(rank,sizeof(*pivots)); |
| if ((rows == (ssize_t *) NULL) || (columns == (ssize_t *) NULL) || |
| (pivots == (ssize_t *) NULL)) |
| { |
| if (pivots != (ssize_t *) NULL) |
| pivots=(ssize_t *) RelinquishMagickMemory(pivots); |
| if (columns != (ssize_t *) NULL) |
| columns=(ssize_t *) RelinquishMagickMemory(columns); |
| if (rows != (ssize_t *) NULL) |
| rows=(ssize_t *) RelinquishMagickMemory(rows); |
| return(MagickFalse); |
| } |
| (void) memset(columns,0,rank*sizeof(*columns)); |
| (void) memset(rows,0,rank*sizeof(*rows)); |
| (void) memset(pivots,0,rank*sizeof(*pivots)); |
| column=0; |
| row=0; |
| for (i=0; i < (ssize_t) rank; i++) |
| { |
| max=0.0; |
| for (j=0; j < (ssize_t) rank; j++) |
| if (pivots[j] != 1) |
| { |
| for (k=0; k < (ssize_t) rank; k++) |
| if (pivots[k] != 0) |
| { |
| if (pivots[k] > 1) |
| return(MagickFalse); |
| } |
| else |
| if (fabs(matrix[j][k]) >= max) |
| { |
| max=fabs(matrix[j][k]); |
| row=j; |
| column=k; |
| } |
| } |
| pivots[column]++; |
| if (row != column) |
| { |
| for (k=0; k < (ssize_t) rank; k++) |
| GaussJordanSwap(matrix[row][k],matrix[column][k]); |
| for (k=0; k < (ssize_t) number_vectors; k++) |
| GaussJordanSwap(vectors[k][row],vectors[k][column]); |
| } |
| rows[i]=row; |
| columns[i]=column; |
| if (matrix[column][column] == 0.0) |
| return(MagickFalse); /* sigularity */ |
| scale=PerceptibleReciprocal(matrix[column][column]); |
| matrix[column][column]=1.0; |
| for (j=0; j < (ssize_t) rank; j++) |
| matrix[column][j]*=scale; |
| for (j=0; j < (ssize_t) number_vectors; j++) |
| vectors[j][column]*=scale; |
| for (j=0; j < (ssize_t) rank; j++) |
| if (j != column) |
| { |
| scale=matrix[j][column]; |
| matrix[j][column]=0.0; |
| for (k=0; k < (ssize_t) rank; k++) |
| matrix[j][k]-=scale*matrix[column][k]; |
| for (k=0; k < (ssize_t) number_vectors; k++) |
| vectors[k][j]-=scale*vectors[k][column]; |
| } |
| } |
| for (j=(ssize_t) rank-1; j >= 0; j--) |
| if (columns[j] != rows[j]) |
| for (i=0; i < (ssize_t) rank; i++) |
| GaussJordanSwap(matrix[i][rows[j]],matrix[i][columns[j]]); |
| pivots=(ssize_t *) RelinquishMagickMemory(pivots); |
| rows=(ssize_t *) RelinquishMagickMemory(rows); |
| columns=(ssize_t *) RelinquishMagickMemory(columns); |
| return(MagickTrue); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % G e t M a t r i x C o l u m n s % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % GetMatrixColumns() returns the number of columns in the matrix. |
| % |
| % The format of the GetMatrixColumns method is: |
| % |
| % size_t GetMatrixColumns(const MatrixInfo *matrix_info) |
| % |
| % A description of each parameter follows: |
| % |
| % o matrix_info: the matrix. |
| % |
| */ |
| MagickExport size_t GetMatrixColumns(const MatrixInfo *matrix_info) |
| { |
| assert(matrix_info != (MatrixInfo *) NULL); |
| assert(matrix_info->signature == MagickCoreSignature); |
| return(matrix_info->columns); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % G e t M a t r i x E l e m e n t % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % GetMatrixElement() returns the specifed element in the matrix. |
| % |
| % The format of the GetMatrixElement method is: |
| % |
| % MagickBooleanType GetMatrixElement(const MatrixInfo *matrix_info, |
| % const ssize_t x,const ssize_t y,void *value) |
| % |
| % A description of each parameter follows: |
| % |
| % o matrix_info: the matrix columns. |
| % |
| % o x: the matrix x-offset. |
| % |
| % o y: the matrix y-offset. |
| % |
| % o value: return the matrix element in this buffer. |
| % |
| */ |
| |
| static inline ssize_t EdgeX(const ssize_t x,const size_t columns) |
| { |
| if (x < 0L) |
| return(0L); |
| if (x >= (ssize_t) columns) |
| return((ssize_t) (columns-1)); |
| return(x); |
| } |
| |
| static inline ssize_t EdgeY(const ssize_t y,const size_t rows) |
| { |
| if (y < 0L) |
| return(0L); |
| if (y >= (ssize_t) rows) |
| return((ssize_t) (rows-1)); |
| return(y); |
| } |
| |
| static inline MagickOffsetType ReadMatrixElements( |
| const MatrixInfo *magick_restrict matrix_info,const MagickOffsetType offset, |
| const MagickSizeType length,unsigned char *magick_restrict buffer) |
| { |
| register MagickOffsetType |
| i; |
| |
| ssize_t |
| count; |
| |
| #if !defined(MAGICKCORE_HAVE_PREAD) |
| LockSemaphoreInfo(matrix_info->semaphore); |
| if (lseek(matrix_info->file,offset,SEEK_SET) < 0) |
| { |
| UnlockSemaphoreInfo(matrix_info->semaphore); |
| return((MagickOffsetType) -1); |
| } |
| #endif |
| count=0; |
| for (i=0; i < (MagickOffsetType) length; i+=count) |
| { |
| #if !defined(MAGICKCORE_HAVE_PREAD) |
| count=read(matrix_info->file,buffer+i,(size_t) MagickMin(length-i, |
| (MagickSizeType) SSIZE_MAX)); |
| #else |
| count=pread(matrix_info->file,buffer+i,(size_t) MagickMin(length-i, |
| (MagickSizeType) SSIZE_MAX),(off_t) (offset+i)); |
| #endif |
| if (count <= 0) |
| { |
| count=0; |
| if (errno != EINTR) |
| break; |
| } |
| } |
| #if !defined(MAGICKCORE_HAVE_PREAD) |
| UnlockSemaphoreInfo(matrix_info->semaphore); |
| #endif |
| return(i); |
| } |
| |
| MagickExport MagickBooleanType GetMatrixElement(const MatrixInfo *matrix_info, |
| const ssize_t x,const ssize_t y,void *value) |
| { |
| MagickOffsetType |
| count, |
| i; |
| |
| assert(matrix_info != (const MatrixInfo *) NULL); |
| assert(matrix_info->signature == MagickCoreSignature); |
| i=(MagickOffsetType) EdgeY(y,matrix_info->rows)*matrix_info->columns+ |
| EdgeX(x,matrix_info->columns); |
| if (matrix_info->type != DiskCache) |
| { |
| (void) memcpy(value,(unsigned char *) matrix_info->elements+i* |
| matrix_info->stride,matrix_info->stride); |
| return(MagickTrue); |
| } |
| count=ReadMatrixElements(matrix_info,i*matrix_info->stride, |
| matrix_info->stride,(unsigned char *) value); |
| if (count != (MagickOffsetType) matrix_info->stride) |
| return(MagickFalse); |
| return(MagickTrue); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % G e t M a t r i x R o w s % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % GetMatrixRows() returns the number of rows in the matrix. |
| % |
| % The format of the GetMatrixRows method is: |
| % |
| % size_t GetMatrixRows(const MatrixInfo *matrix_info) |
| % |
| % A description of each parameter follows: |
| % |
| % o matrix_info: the matrix. |
| % |
| */ |
| MagickExport size_t GetMatrixRows(const MatrixInfo *matrix_info) |
| { |
| assert(matrix_info != (const MatrixInfo *) NULL); |
| assert(matrix_info->signature == MagickCoreSignature); |
| return(matrix_info->rows); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + L e a s t S q u a r e s A d d T e r m s % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % LeastSquaresAddTerms() adds one set of terms and associate results to the |
| % given matrix and vectors for solving using least-squares function fitting. |
| % |
| % The format of the AcquireMagickMatrix method is: |
| % |
| % void LeastSquaresAddTerms(double **matrix,double **vectors, |
| % const double *terms,const double *results,const size_t rank, |
| % const size_t number_vectors); |
| % |
| % A description of each parameter follows: |
| % |
| % o matrix: the square matrix to add given terms/results to. |
| % |
| % o vectors: the result vectors to add terms/results to. |
| % |
| % o terms: the pre-calculated terms (without the unknown coefficent |
| % weights) that forms the equation being added. |
| % |
| % o results: the result(s) that should be generated from the given terms |
| % weighted by the yet-to-be-solved coefficents. |
| % |
| % o rank: the rank or size of the dimensions of the square matrix. |
| % Also the length of vectors, and number of terms being added. |
| % |
| % o number_vectors: Number of result vectors, and number or results being |
| % added. Also represents the number of separable systems of equations |
| % that is being solved. |
| % |
| % Example of use... |
| % |
| % 2 dimensional Affine Equations (which are separable) |
| % c0*x + c2*y + c4*1 => u |
| % c1*x + c3*y + c5*1 => v |
| % |
| % double **matrix = AcquireMagickMatrix(3UL,3UL); |
| % double **vectors = AcquireMagickMatrix(2UL,3UL); |
| % double terms[3], results[2]; |
| % ... |
| % for each given x,y -> u,v |
| % terms[0] = x; |
| % terms[1] = y; |
| % terms[2] = 1; |
| % results[0] = u; |
| % results[1] = v; |
| % LeastSquaresAddTerms(matrix,vectors,terms,results,3UL,2UL); |
| % ... |
| % if ( GaussJordanElimination(matrix,vectors,3UL,2UL) ) { |
| % c0 = vectors[0][0]; |
| % c2 = vectors[0][1]; |
| % c4 = vectors[0][2]; |
| % c1 = vectors[1][0]; |
| % c3 = vectors[1][1]; |
| % c5 = vectors[1][2]; |
| % } |
| % else |
| % printf("Matrix unsolvable\n); |
| % RelinquishMagickMatrix(matrix,3UL); |
| % RelinquishMagickMatrix(vectors,2UL); |
| % |
| */ |
| MagickPrivate void LeastSquaresAddTerms(double **matrix,double **vectors, |
| const double *terms,const double *results,const size_t rank, |
| const size_t number_vectors) |
| { |
| register ssize_t |
| i, |
| j; |
| |
| for (j=0; j < (ssize_t) rank; j++) |
| { |
| for (i=0; i < (ssize_t) rank; i++) |
| matrix[i][j]+=terms[i]*terms[j]; |
| for (i=0; i < (ssize_t) number_vectors; i++) |
| vectors[i][j]+=results[i]*terms[j]; |
| } |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % M a t r i x T o I m a g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % MatrixToImage() returns a matrix as an image. The matrix elements must be |
| % of type double otherwise nonsense is returned. |
| % |
| % The format of the MatrixToImage method is: |
| % |
| % Image *MatrixToImage(const MatrixInfo *matrix_info, |
| % ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o matrix_info: the matrix. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| MagickExport Image *MatrixToImage(const MatrixInfo *matrix_info, |
| ExceptionInfo *exception) |
| { |
| CacheView |
| *image_view; |
| |
| double |
| max_value, |
| min_value, |
| scale_factor, |
| value; |
| |
| Image |
| *image; |
| |
| MagickBooleanType |
| status; |
| |
| ssize_t |
| y; |
| |
| assert(matrix_info != (const MatrixInfo *) NULL); |
| assert(matrix_info->signature == MagickCoreSignature); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickCoreSignature); |
| if (matrix_info->stride < sizeof(double)) |
| return((Image *) NULL); |
| /* |
| Determine range of matrix. |
| */ |
| (void) GetMatrixElement(matrix_info,0,0,&value); |
| min_value=value; |
| max_value=value; |
| for (y=0; y < (ssize_t) matrix_info->rows; y++) |
| { |
| register ssize_t |
| x; |
| |
| for (x=0; x < (ssize_t) matrix_info->columns; x++) |
| { |
| if (GetMatrixElement(matrix_info,x,y,&value) == MagickFalse) |
| continue; |
| if (value < min_value) |
| min_value=value; |
| else |
| if (value > max_value) |
| max_value=value; |
| } |
| } |
| if ((min_value == 0.0) && (max_value == 0.0)) |
| scale_factor=0; |
| else |
| if (min_value == max_value) |
| { |
| scale_factor=(double) QuantumRange/min_value; |
| min_value=0; |
| } |
| else |
| scale_factor=(double) QuantumRange/(max_value-min_value); |
| /* |
| Convert matrix to image. |
| */ |
| image=AcquireImage((ImageInfo *) NULL,exception); |
| image->columns=matrix_info->columns; |
| image->rows=matrix_info->rows; |
| image->colorspace=GRAYColorspace; |
| status=MagickTrue; |
| image_view=AcquireAuthenticCacheView(image,exception); |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel for schedule(static) shared(status) \ |
| magick_number_threads(image,image,image->rows,1) |
| #endif |
| for (y=0; y < (ssize_t) image->rows; y++) |
| { |
| double |
| value; |
| |
| register Quantum |
| *q; |
| |
| register ssize_t |
| x; |
| |
| if (status == MagickFalse) |
| continue; |
| q=QueueCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); |
| if (q == (Quantum *) NULL) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| if (GetMatrixElement(matrix_info,x,y,&value) == MagickFalse) |
| continue; |
| value=scale_factor*(value-min_value); |
| *q=ClampToQuantum(value); |
| q+=GetPixelChannels(image); |
| } |
| if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) |
| status=MagickFalse; |
| } |
| image_view=DestroyCacheView(image_view); |
| if (status == MagickFalse) |
| image=DestroyImage(image); |
| return(image); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % N u l l M a t r i x % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % NullMatrix() sets all elements of the matrix to zero. |
| % |
| % The format of the memset method is: |
| % |
| % MagickBooleanType *NullMatrix(MatrixInfo *matrix_info) |
| % |
| % A description of each parameter follows: |
| % |
| % o matrix_info: the matrix. |
| % |
| */ |
| MagickExport MagickBooleanType NullMatrix(MatrixInfo *matrix_info) |
| { |
| register ssize_t |
| x; |
| |
| ssize_t |
| count, |
| y; |
| |
| unsigned char |
| value; |
| |
| assert(matrix_info != (const MatrixInfo *) NULL); |
| assert(matrix_info->signature == MagickCoreSignature); |
| if (matrix_info->type != DiskCache) |
| { |
| (void) memset(matrix_info->elements,0,(size_t) |
| matrix_info->length); |
| return(MagickTrue); |
| } |
| value=0; |
| (void) lseek(matrix_info->file,0,SEEK_SET); |
| for (y=0; y < (ssize_t) matrix_info->rows; y++) |
| { |
| for (x=0; x < (ssize_t) matrix_info->length; x++) |
| { |
| count=write(matrix_info->file,&value,sizeof(value)); |
| if (count != (ssize_t) sizeof(value)) |
| break; |
| } |
| if (x < (ssize_t) matrix_info->length) |
| break; |
| } |
| return(y < (ssize_t) matrix_info->rows ? MagickFalse : MagickTrue); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % R e l i n q u i s h M a g i c k M a t r i x % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % RelinquishMagickMatrix() frees the previously acquired matrix (array of |
| % pointers to arrays of doubles). |
| % |
| % The format of the RelinquishMagickMatrix method is: |
| % |
| % double **RelinquishMagickMatrix(double **matrix, |
| % const size_t number_rows) |
| % |
| % A description of each parameter follows: |
| % |
| % o matrix: the matrix to relinquish |
| % |
| % o number_rows: the first dimension of the acquired matrix (number of |
| % pointers) |
| % |
| */ |
| MagickExport double **RelinquishMagickMatrix(double **matrix, |
| const size_t number_rows) |
| { |
| register ssize_t |
| i; |
| |
| if (matrix == (double **) NULL ) |
| return(matrix); |
| for (i=0; i < (ssize_t) number_rows; i++) |
| matrix[i]=(double *) RelinquishMagickMemory(matrix[i]); |
| matrix=(double **) RelinquishMagickMemory(matrix); |
| return(matrix); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % S e t M a t r i x E l e m e n t % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % SetMatrixElement() sets the specifed element in the matrix. |
| % |
| % The format of the SetMatrixElement method is: |
| % |
| % MagickBooleanType SetMatrixElement(const MatrixInfo *matrix_info, |
| % const ssize_t x,const ssize_t y,void *value) |
| % |
| % A description of each parameter follows: |
| % |
| % o matrix_info: the matrix columns. |
| % |
| % o x: the matrix x-offset. |
| % |
| % o y: the matrix y-offset. |
| % |
| % o value: set the matrix element to this value. |
| % |
| */ |
| |
| MagickExport MagickBooleanType SetMatrixElement(const MatrixInfo *matrix_info, |
| const ssize_t x,const ssize_t y,const void *value) |
| { |
| MagickOffsetType |
| count, |
| i; |
| |
| assert(matrix_info != (const MatrixInfo *) NULL); |
| assert(matrix_info->signature == MagickCoreSignature); |
| i=(MagickOffsetType) y*matrix_info->columns+x; |
| if ((i < 0) || |
| ((MagickSizeType) (i*matrix_info->stride) >= matrix_info->length)) |
| return(MagickFalse); |
| if (matrix_info->type != DiskCache) |
| { |
| (void) memcpy((unsigned char *) matrix_info->elements+i* |
| matrix_info->stride,value,matrix_info->stride); |
| return(MagickTrue); |
| } |
| count=WriteMatrixElements(matrix_info,i*matrix_info->stride, |
| matrix_info->stride,(unsigned char *) value); |
| if (count != (MagickOffsetType) matrix_info->stride) |
| return(MagickFalse); |
| return(MagickTrue); |
| } |