| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % QQQ U U AAA N N TTTTT U U M M % |
| % Q Q U U A A NN N T U U MM MM % |
| % Q Q U U AAAAA N N N T U U M M M % |
| % Q QQ U U A A N NN T U U M M % |
| % QQQQ UUU A A N N T UUU M M % |
| % % |
| % IIIII M M PPPP OOO RRRR TTTTT % |
| % I MM MM P P O O R R T % |
| % I M M M PPPP O O RRRR T % |
| % I M M P O O R R T % |
| % IIIII M M P OOO R R T % |
| % % |
| % MagickCore Methods to Import Quantum Pixels % |
| % % |
| % Software Design % |
| % John Cristy % |
| % October 1998 % |
| % % |
| % % |
| % Copyright 1999-2008 ImageMagick Studio LLC, a non-profit organization % |
| % dedicated to making software imaging solutions freely available. % |
| % % |
| % You may not use this file except in compliance with the License. You may % |
| % obtain a copy of the License at % |
| % % |
| % http://www.imagemagick.org/script/license.php % |
| % % |
| % Unless required by applicable law or agreed to in writing, software % |
| % distributed under the License is distributed on an "AS IS" BASIS, % |
| % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % |
| % See the License for the specific language governing permissions and % |
| % limitations under the License. % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % |
| */ |
| |
| /* |
| Include declarations. |
| */ |
| #include "magick/studio.h" |
| #include "magick/property.h" |
| #include "magick/blob.h" |
| #include "magick/blob-private.h" |
| #include "magick/color-private.h" |
| #include "magick/exception.h" |
| #include "magick/exception-private.h" |
| #include "magick/cache.h" |
| #include "magick/constitute.h" |
| #include "magick/delegate.h" |
| #include "magick/geometry.h" |
| #include "magick/list.h" |
| #include "magick/magick.h" |
| #include "magick/memory_.h" |
| #include "magick/monitor.h" |
| #include "magick/option.h" |
| #include "magick/pixel.h" |
| #include "magick/pixel-private.h" |
| #include "magick/quantum.h" |
| #include "magick/quantum-private.h" |
| #include "magick/resource_.h" |
| #include "magick/semaphore.h" |
| #include "magick/statistic.h" |
| #include "magick/stream.h" |
| #include "magick/string_.h" |
| #include "magick/utility.h" |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % I m p o r t Q u a n t u m P i x e l s % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ImportQuantumPixels() transfers one or more pixel components from a user |
| % supplied buffer into the image pixel cache of an image. The pixels are |
| % expected in network byte order. It returns MagickTrue if the pixels are |
| % successfully transferred, otherwise MagickFalse. |
| % |
| % The format of the ImportQuantumPixels method is: |
| % |
| % size_t ImportQuantumPixels(Image *image,CacheView *image_view, |
| % const QuantumInfo *quantum_info,const QuantumType quantum_type, |
| % const unsigned char *pixels,ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o image_view: the image cache view. |
| % |
| % o quantum_info: the quantum info. |
| % |
| % o quantum_type: Declare which pixel components to transfer (red, green, |
| % blue, opacity, RGB, or RGBA). |
| % |
| % o pixels: The pixel components are transferred from this buffer. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| |
| static inline IndexPacket PushColormapIndex(Image *image, |
| const size_t index,MagickBooleanType *range_exception) |
| { |
| if (index < image->colors) |
| return((IndexPacket) index); |
| *range_exception=MagickTrue; |
| return((IndexPacket) 0); |
| } |
| |
| static inline const unsigned char *PushDoublePixel( |
| const QuantumState *quantum_state,const unsigned char *pixels,double *pixel) |
| { |
| double |
| *p; |
| |
| unsigned char |
| quantum[8]; |
| |
| if (quantum_state->endian != LSBEndian) |
| { |
| quantum[7]=(*pixels++); |
| quantum[6]=(*pixels++); |
| quantum[5]=(*pixels++); |
| quantum[5]=(*pixels++); |
| quantum[3]=(*pixels++); |
| quantum[2]=(*pixels++); |
| quantum[1]=(*pixels++); |
| quantum[0]=(*pixels++); |
| p=(double *) quantum; |
| *pixel=(*p); |
| *pixel-=quantum_state->minimum; |
| *pixel*=quantum_state->scale; |
| return(pixels); |
| } |
| quantum[0]=(*pixels++); |
| quantum[1]=(*pixels++); |
| quantum[2]=(*pixels++); |
| quantum[3]=(*pixels++); |
| quantum[4]=(*pixels++); |
| quantum[5]=(*pixels++); |
| quantum[6]=(*pixels++); |
| quantum[7]=(*pixels++); |
| p=(double *) quantum; |
| *pixel=(*p); |
| *pixel-=quantum_state->minimum; |
| *pixel*=quantum_state->scale; |
| return(pixels); |
| } |
| |
| static inline const unsigned char *PushFloatPixel( |
| const QuantumState *quantum_state,const unsigned char *pixels,float *pixel) |
| { |
| float |
| *p; |
| |
| unsigned char |
| quantum[4]; |
| |
| if (quantum_state->endian != LSBEndian) |
| { |
| quantum[3]=(*pixels++); |
| quantum[2]=(*pixels++); |
| quantum[1]=(*pixels++); |
| quantum[0]=(*pixels++); |
| p=(float *) quantum; |
| *pixel=(*p); |
| *pixel-=quantum_state->minimum; |
| *pixel*=quantum_state->scale; |
| return(pixels); |
| } |
| quantum[0]=(*pixels++); |
| quantum[1]=(*pixels++); |
| quantum[2]=(*pixels++); |
| quantum[3]=(*pixels++); |
| p=(float *) quantum; |
| *pixel=(*p); |
| *pixel-=quantum_state->minimum; |
| *pixel*=quantum_state->scale; |
| return(pixels); |
| } |
| |
| static inline const unsigned char *PushQuantumPixel( |
| QuantumState *quantum_state,const size_t depth, |
| const unsigned char *pixels,unsigned int *quantum) |
| { |
| register ssize_t |
| i; |
| |
| register size_t |
| quantum_bits; |
| |
| *quantum=(QuantumAny) 0; |
| for (i=(ssize_t) depth; i > 0L; ) |
| { |
| if (quantum_state->bits == 0UL) |
| { |
| quantum_state->pixel=(*pixels++); |
| quantum_state->bits=8UL; |
| } |
| quantum_bits=(size_t) i; |
| if (quantum_bits > quantum_state->bits) |
| quantum_bits=quantum_state->bits; |
| i-=(ssize_t) quantum_bits; |
| quantum_state->bits-=quantum_bits; |
| *quantum=(unsigned int) ((*quantum << quantum_bits) | |
| ((quantum_state->pixel >> quantum_state->bits) &~ ((~0UL) << |
| quantum_bits))); |
| } |
| return(pixels); |
| } |
| |
| static inline const unsigned char *PushQuantumLongPixel( |
| QuantumState *quantum_state,const size_t depth, |
| const unsigned char *pixels,unsigned int *quantum) |
| { |
| register ssize_t |
| i; |
| |
| register size_t |
| quantum_bits; |
| |
| *quantum=0UL; |
| for (i=(ssize_t) depth; i > 0; ) |
| { |
| if (quantum_state->bits == 0) |
| { |
| pixels=PushLongPixel(quantum_state->endian,pixels, |
| &quantum_state->pixel); |
| quantum_state->bits=32U; |
| } |
| quantum_bits=(size_t) i; |
| if (quantum_bits > quantum_state->bits) |
| quantum_bits=quantum_state->bits; |
| *quantum|=(((quantum_state->pixel >> (32U-quantum_state->bits)) & |
| quantum_state->mask[quantum_bits]) << (depth-i)); |
| i-=(ssize_t) quantum_bits; |
| quantum_state->bits-=quantum_bits; |
| } |
| return(pixels); |
| } |
| |
| MagickExport size_t ImportQuantumPixels(Image *image,CacheView *image_view, |
| const QuantumInfo *quantum_info,const QuantumType quantum_type, |
| const unsigned char *pixels,ExceptionInfo *exception) |
| { |
| EndianType |
| endian; |
| |
| ssize_t |
| bit; |
| |
| MagickSizeType |
| number_pixels; |
| |
| QuantumAny |
| range; |
| |
| QuantumState |
| quantum_state; |
| |
| register const unsigned char |
| *restrict p; |
| |
| register IndexPacket |
| *restrict indexes; |
| |
| register ssize_t |
| x; |
| |
| register PixelPacket |
| *restrict q; |
| |
| size_t |
| extent; |
| |
| unsigned int |
| pixel; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| assert(quantum_info != (QuantumInfo *) NULL); |
| assert(quantum_info->signature == MagickSignature); |
| if (pixels == (const unsigned char *) NULL) |
| pixels=GetQuantumPixels(quantum_info); |
| x=0; |
| p=pixels; |
| if (image_view == (CacheView *) NULL) |
| { |
| number_pixels=GetImageExtent(image); |
| q=GetAuthenticPixelQueue(image); |
| indexes=GetAuthenticIndexQueue(image); |
| } |
| else |
| { |
| number_pixels=GetCacheViewExtent(image_view); |
| q=GetCacheViewAuthenticPixelQueue(image_view); |
| indexes=GetCacheViewAuthenticIndexQueue(image_view); |
| } |
| InitializeQuantumState(quantum_info,image->endian,&quantum_state); |
| extent=GetQuantumExtent(image,quantum_info,quantum_type); |
| endian=quantum_state.endian; |
| switch (quantum_type) |
| { |
| case IndexQuantum: |
| { |
| MagickBooleanType |
| range_exception; |
| |
| if (image->storage_class != PseudoClass) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(),ImageError, |
| "ColormappedImageRequired","`%s'",image->filename); |
| return(extent); |
| } |
| range_exception=MagickFalse; |
| switch (quantum_info->depth) |
| { |
| case 1: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < ((ssize_t) number_pixels-7); x+=8) |
| { |
| for (bit=0; bit < 8; bit++) |
| { |
| if (quantum_info->min_is_white == MagickFalse) |
| pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? |
| 0x00 : 0x01); |
| else |
| pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? |
| 0x00 : 0x01); |
| indexes[x+bit]=PushColormapIndex(image,pixel,&range_exception); |
| *q=image->colormap[(ssize_t) indexes[x+bit]]; |
| q++; |
| } |
| p++; |
| } |
| for (bit=0; bit < (ssize_t) (number_pixels % 8); bit++) |
| { |
| if (quantum_info->min_is_white == MagickFalse) |
| pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? |
| 0x00 : 0x01); |
| else |
| pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? |
| 0x00 : 0x01); |
| indexes[x+bit]=PushColormapIndex(image,pixel,&range_exception); |
| *q=image->colormap[(ssize_t) indexes[x+bit]]; |
| q++; |
| } |
| break; |
| } |
| case 4: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < ((ssize_t) number_pixels-1); x+=2) |
| { |
| pixel=(unsigned char) ((*p >> 4) & 0xf); |
| indexes[x]=PushColormapIndex(image,pixel,&range_exception); |
| *q=image->colormap[(ssize_t) indexes[x]]; |
| q++; |
| pixel=(unsigned char) ((*p) & 0xf); |
| indexes[x+1]=PushColormapIndex(image,pixel,&range_exception); |
| *q=image->colormap[(ssize_t) indexes[x+1]]; |
| p++; |
| q++; |
| } |
| for (bit=0; bit < (ssize_t) (number_pixels % 2); bit++) |
| { |
| pixel=(unsigned char) ((*p++ >> 4) & 0xf); |
| indexes[x+bit]=PushColormapIndex(image,pixel,&range_exception); |
| *q=image->colormap[(ssize_t) indexes[x+bit]]; |
| q++; |
| } |
| break; |
| } |
| case 8: |
| { |
| unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushCharPixel(p,&pixel); |
| indexes[x]=PushColormapIndex(image,pixel,&range_exception); |
| *q=image->colormap[(ssize_t) indexes[x]]; |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 16: |
| { |
| unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| indexes[x]=PushColormapIndex(image,ClampToQuantum( |
| (MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)), |
| &range_exception); |
| *q=image->colormap[(ssize_t) indexes[x]]; |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| indexes[x]=PushColormapIndex(image,pixel,&range_exception); |
| *q=image->colormap[(ssize_t) indexes[x]]; |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 32: |
| { |
| unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| float |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| indexes[x]=PushColormapIndex(image,ClampToQuantum(pixel), |
| &range_exception); |
| *q=image->colormap[(ssize_t) indexes[x]]; |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushLongPixel(endian,p,&pixel); |
| indexes[x]=PushColormapIndex(image,pixel,&range_exception); |
| *q=image->colormap[(ssize_t) indexes[x]]; |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| double |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| indexes[x]=PushColormapIndex(image,ClampToQuantum(pixel), |
| &range_exception); |
| *q=image->colormap[(ssize_t) indexes[x]]; |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| indexes[x]=PushColormapIndex(image,pixel,&range_exception); |
| *q=image->colormap[(ssize_t) indexes[x]]; |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| if (range_exception != MagickFalse) |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| CorruptImageError,"InvalidColormapIndex","`%s'",image->filename); |
| break; |
| } |
| case IndexAlphaQuantum: |
| { |
| MagickBooleanType |
| range_exception; |
| |
| if (image->storage_class != PseudoClass) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ImageError,"ColormappedImageRequired","`%s'",image->filename); |
| return(extent); |
| } |
| range_exception=MagickFalse; |
| switch (quantum_info->depth) |
| { |
| case 1: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < ((ssize_t) number_pixels-3); x+=4) |
| { |
| for (bit=0; bit < 8; bit+=2) |
| { |
| if (quantum_info->min_is_white == MagickFalse) |
| pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? |
| 0x00 : 0x01); |
| else |
| pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? |
| 0x00 : 0x01); |
| indexes[x+bit/2]=(IndexPacket) (pixel == 0 ? 0 : 1); |
| q->red=(Quantum) (pixel == 0 ? 0 : QuantumRange); |
| q->green=q->red; |
| q->blue=q->red; |
| q->opacity=(Quantum) (((*p) & (1UL << (unsigned char) (6-bit))) |
| == 0 ? TransparentOpacity : OpaqueOpacity); |
| q++; |
| } |
| } |
| for (bit=0; bit < (ssize_t) (number_pixels % 4); bit+=2) |
| { |
| if (quantum_info->min_is_white == MagickFalse) |
| pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? |
| 0x00 : 0x01); |
| else |
| pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? |
| 0x00 : 0x01); |
| indexes[x+bit/2]=(IndexPacket) (pixel == 0 ? 0 : 1); |
| q->red=(Quantum) (pixel == 0 ? 0 : QuantumRange); |
| q->green=q->red; |
| q->blue=q->red; |
| q->opacity=(Quantum) (((*p) & (1UL << (unsigned char) (6-bit))) == |
| 0 ? TransparentOpacity : OpaqueOpacity); |
| q++; |
| } |
| break; |
| } |
| case 4: |
| { |
| register unsigned char |
| pixel; |
| |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=(unsigned char) ((*p >> 4) & 0xf); |
| indexes[x]=PushColormapIndex(image,pixel,&range_exception); |
| *q=image->colormap[(ssize_t) indexes[x]]; |
| pixel=(unsigned char) ((*p) & 0xf); |
| q->opacity=(Quantum) (QuantumRange-ScaleAnyToQuantum(pixel,range)); |
| p++; |
| q++; |
| } |
| break; |
| } |
| case 8: |
| { |
| unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushCharPixel(p,&pixel); |
| indexes[x]=PushColormapIndex(image,pixel,&range_exception); |
| *q=image->colormap[(ssize_t) indexes[x]]; |
| p=PushCharPixel(p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleCharToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 16: |
| { |
| unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| indexes[x]=PushColormapIndex(image,ClampToQuantum( |
| (MagickRealType) QuantumRange*HalfToSinglePrecision(pixel)), |
| &range_exception); |
| *q=image->colormap[(ssize_t) indexes[x]]; |
| p=PushShortPixel(endian,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ClampToQuantum( |
| (MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| indexes[x]=PushColormapIndex(image,pixel,&range_exception); |
| *q=image->colormap[(ssize_t) indexes[x]]; |
| p=PushShortPixel(endian,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleShortToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 32: |
| { |
| unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| float |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| indexes[x]=PushColormapIndex(image,ClampToQuantum(pixel), |
| &range_exception); |
| *q=image->colormap[(ssize_t) indexes[x]]; |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushLongPixel(endian,p,&pixel); |
| indexes[x]=PushColormapIndex(image,pixel,&range_exception); |
| *q=image->colormap[(ssize_t) indexes[x]]; |
| p=PushLongPixel(endian,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleLongToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| double |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| indexes[x]=PushColormapIndex(image,ClampToQuantum(pixel), |
| &range_exception); |
| *q=image->colormap[(ssize_t) indexes[x]]; |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| indexes[x]=PushColormapIndex(image,pixel,&range_exception); |
| *q=image->colormap[(ssize_t) indexes[x]]; |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleAnyToQuantum(pixel,range)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| if (range_exception != MagickFalse) |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| CorruptImageError,"InvalidColormapIndex","`%s'",image->filename); |
| break; |
| } |
| case GrayQuantum: |
| { |
| switch (quantum_info->depth) |
| { |
| case 1: |
| { |
| register Quantum |
| black, |
| white; |
| |
| black=0; |
| white=(Quantum) QuantumRange; |
| if (quantum_info->min_is_white != MagickFalse) |
| { |
| black=(Quantum) QuantumRange; |
| white=0; |
| } |
| for (x=0; x < ((ssize_t) number_pixels-7); x+=8) |
| { |
| for (bit=0; bit < 8; bit++) |
| { |
| q->red=(((*p) & (1 << (7-bit))) == 0 ? black : white); |
| q->green=q->red; |
| q->blue=q->red; |
| q++; |
| } |
| p++; |
| } |
| for (bit=0; bit < (ssize_t) (number_pixels % 8); bit++) |
| { |
| q->red=(((*p) & (1 << (7-bit))) == 0 ? black : white); |
| q->green=q->red; |
| q->blue=q->red; |
| q++; |
| } |
| if (bit != 0) |
| p++; |
| break; |
| } |
| case 4: |
| { |
| register unsigned char |
| pixel; |
| |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < ((ssize_t) number_pixels-1); x+=2) |
| { |
| pixel=(unsigned char) ((*p >> 4) & 0xf); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| q->green=q->red; |
| q->blue=q->red; |
| q++; |
| pixel=(unsigned char) ((*p) & 0xf); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| q->green=q->red; |
| q->blue=q->red; |
| p++; |
| q++; |
| } |
| for (bit=0; bit < (ssize_t) (number_pixels % 2); bit++) |
| { |
| pixel=(unsigned char) (*p++ >> 4); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| q->green=q->red; |
| q->blue=q->red; |
| q++; |
| } |
| break; |
| } |
| case 8: |
| { |
| unsigned char |
| pixel; |
| |
| if (quantum_info->min_is_white != MagickFalse) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushCharPixel(p,&pixel); |
| q->red=(Quantum) (QuantumRange-ScaleCharToQuantum(pixel)); |
| q->green=q->red; |
| q->blue=q->red; |
| SetOpacityPixelComponent(q,OpaqueOpacity); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushCharPixel(p,&pixel); |
| SetRedPixelComponent(q,ScaleCharToQuantum(pixel)); |
| q->green=q->red; |
| q->blue=q->red; |
| SetOpacityPixelComponent(q,OpaqueOpacity); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 10: |
| { |
| range=GetQuantumRange(image->depth); |
| if (quantum_info->pack == MagickFalse) |
| { |
| if (image->endian != LSBEndian) |
| { |
| for (x=0; x < (ssize_t) (number_pixels-2); x+=3) |
| { |
| p=PushLongPixel(endian,p,&pixel); |
| q->red=ScaleAnyToQuantum((pixel >> 2) & 0x3ff,range); |
| q->green=q->red; |
| q->blue=q->red; |
| q++; |
| q->red=ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range); |
| q->green=q->red; |
| q->blue=q->red; |
| q++; |
| q->red=ScaleAnyToQuantum((pixel >> 22) & 0x3ff,range); |
| q->green=q->red; |
| q->blue=q->red; |
| p+=quantum_info->pad; |
| q++; |
| } |
| p=PushLongPixel(endian,p,&pixel); |
| if (x++ < (ssize_t) (number_pixels-1)) |
| { |
| q->red=ScaleAnyToQuantum((pixel >> 2) & 0x3ff,range); |
| q->green=q->red; |
| q->blue=q->red; |
| q++; |
| } |
| if (x++ < (ssize_t) number_pixels) |
| { |
| q->red=ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range); |
| q->green=q->red; |
| q->blue=q->red; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) (number_pixels-2); x+=3) |
| { |
| p=PushLongPixel(endian,p,&pixel); |
| q->red=ScaleAnyToQuantum((pixel >> 22) & 0x3ff,range); |
| q->green=q->red; |
| q->blue=q->red; |
| q++; |
| q->red=ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range); |
| q->green=q->red; |
| q->blue=q->red; |
| q++; |
| q->red=ScaleAnyToQuantum((pixel >> 2) & 0x3ff,range); |
| q->green=q->red; |
| q->blue=q->red; |
| p+=quantum_info->pad; |
| q++; |
| } |
| p=PushLongPixel(endian,p,&pixel); |
| if (x++ < (ssize_t) (number_pixels-1)) |
| { |
| q->red=ScaleAnyToQuantum((pixel >> 22) & 0x3ff,range); |
| q->green=q->red; |
| q->blue=q->red; |
| q++; |
| } |
| if (x++ < (ssize_t) number_pixels) |
| { |
| q->red=ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range); |
| q->green=q->red; |
| q->blue=q->red; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| q->green=q->red; |
| q->blue=q->red; |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 12: |
| { |
| range=GetQuantumRange(image->depth); |
| if (quantum_info->pack == MagickFalse) |
| { |
| unsigned short |
| pixel; |
| |
| for (x=0; x < (ssize_t) (number_pixels-1); x+=2) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| q->red=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range); |
| q->green=q->red; |
| q->blue=q->red; |
| q++; |
| p=PushShortPixel(endian,p,&pixel); |
| q->red=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range); |
| q->green=q->red; |
| q->blue=q->red; |
| p+=quantum_info->pad; |
| q++; |
| } |
| for (bit=0; bit < (ssize_t) (number_pixels % 2); bit++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| q->red=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range); |
| q->green=q->red; |
| q->blue=q->red; |
| p+=quantum_info->pad; |
| q++; |
| } |
| if (bit != 0) |
| p++; |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| q->green=q->red; |
| q->blue=q->red; |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 16: |
| { |
| unsigned short |
| pixel; |
| |
| if (quantum_info->min_is_white != MagickFalse) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| q->red=(Quantum) (QuantumRange-ScaleShortToQuantum(pixel)); |
| q->green=q->red; |
| q->blue=q->red; |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| q->red=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| q->green=q->red; |
| q->blue=q->red; |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| SetRedPixelComponent(q,ScaleShortToQuantum(pixel)); |
| q->green=q->red; |
| q->blue=q->red; |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 32: |
| { |
| unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| float |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->red=ClampToQuantum(pixel); |
| q->green=q->red; |
| q->blue=q->red; |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushLongPixel(endian,p,&pixel); |
| SetRedPixelComponent(q,ScaleLongToQuantum(pixel)); |
| q->green=q->red; |
| q->blue=q->red; |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| double |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->red=ClampToQuantum(pixel); |
| q->green=q->red; |
| q->blue=q->red; |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| q->green=q->red; |
| q->blue=q->red; |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case GrayAlphaQuantum: |
| { |
| switch (quantum_info->depth) |
| { |
| case 1: |
| { |
| register unsigned char |
| pixel; |
| |
| for (x=0; x < ((ssize_t) number_pixels-3); x+=4) |
| { |
| for (bit=0; bit < 8; bit+=2) |
| { |
| pixel=(unsigned char) |
| (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); |
| q->red=(Quantum) (pixel == 0 ? 0 : QuantumRange); |
| q->green=q->red; |
| q->blue=q->red; |
| q->opacity=(Quantum) (((*p) & (1UL << (unsigned char) (6-bit))) |
| == 0 ? TransparentOpacity : OpaqueOpacity); |
| q++; |
| } |
| p++; |
| } |
| for (bit=0; bit < (ssize_t) (number_pixels % 4); bit+=2) |
| { |
| pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); |
| q->red=(Quantum) (pixel == 0 ? 0 : QuantumRange); |
| q->green=q->red; |
| q->blue=q->red; |
| q->opacity=(Quantum) (((*p) & (1UL << (unsigned char) (6-bit))) == 0 |
| ? TransparentOpacity : OpaqueOpacity); |
| q++; |
| } |
| if (bit != 0) |
| p++; |
| break; |
| } |
| case 4: |
| { |
| register unsigned char |
| pixel; |
| |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| pixel=(unsigned char) ((*p >> 4) & 0xf); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| q->green=q->red; |
| q->blue=q->red; |
| pixel=(unsigned char) ((*p) & 0xf); |
| q->opacity=(Quantum) (QuantumRange-ScaleAnyToQuantum(pixel,range)); |
| p++; |
| q++; |
| } |
| break; |
| } |
| case 8: |
| { |
| unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushCharPixel(p,&pixel); |
| SetRedPixelComponent(q,ScaleCharToQuantum(pixel)); |
| q->green=q->red; |
| q->blue=q->red; |
| p=PushCharPixel(p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleCharToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 10: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| q->green=q->red; |
| q->blue=q->red; |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetOpacityPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 12: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| q->green=q->red; |
| q->blue=q->red; |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetOpacityPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 16: |
| { |
| unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| q->red=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| q->green=q->red; |
| q->blue=q->red; |
| p=PushShortPixel(endian,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ClampToQuantum( |
| (MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| SetRedPixelComponent(q,ScaleShortToQuantum(pixel)); |
| q->green=q->red; |
| q->blue=q->red; |
| p=PushShortPixel(endian,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleShortToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 32: |
| { |
| unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| float |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->red=ClampToQuantum(pixel); |
| q->green=q->red; |
| q->blue=q->red; |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushLongPixel(endian,p,&pixel); |
| SetRedPixelComponent(q,ScaleLongToQuantum(pixel)); |
| q->green=q->red; |
| q->blue=q->red; |
| p=PushLongPixel(endian,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleLongToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| double |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->red=ClampToQuantum(pixel); |
| q->green=q->red; |
| q->blue=q->red; |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| q->green=q->red; |
| q->blue=q->red; |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleAnyToQuantum(pixel,range)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case RedQuantum: |
| case CyanQuantum: |
| { |
| switch (quantum_info->depth) |
| { |
| case 8: |
| { |
| unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushCharPixel(p,&pixel); |
| SetRedPixelComponent(q,ScaleCharToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 16: |
| { |
| unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| q->red=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| SetRedPixelComponent(q,ScaleShortToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 32: |
| { |
| unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| float |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->red=ClampToQuantum(pixel); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushLongPixel(endian,p,&pixel); |
| SetRedPixelComponent(q,ScaleLongToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| double |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->red=ClampToQuantum(pixel); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case GreenQuantum: |
| case MagentaQuantum: |
| { |
| switch (quantum_info->depth) |
| { |
| case 8: |
| { |
| unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushCharPixel(p,&pixel); |
| SetGreenPixelComponent(q,ScaleCharToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 16: |
| { |
| unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| q->green=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| SetGreenPixelComponent(q,ScaleShortToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 32: |
| { |
| unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| float |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->green=ClampToQuantum(pixel); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushLongPixel(endian,p,&pixel); |
| SetGreenPixelComponent(q,ScaleLongToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| double |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->green=ClampToQuantum(pixel); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case BlueQuantum: |
| case YellowQuantum: |
| { |
| switch (quantum_info->depth) |
| { |
| case 8: |
| { |
| unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushCharPixel(p,&pixel); |
| SetBluePixelComponent(q,ScaleCharToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 16: |
| { |
| unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| q->blue=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| SetBluePixelComponent(q,ScaleShortToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 32: |
| { |
| unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| float |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->blue=ClampToQuantum(pixel); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushLongPixel(endian,p,&pixel); |
| SetBluePixelComponent(q,ScaleLongToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| double |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->blue=ClampToQuantum(pixel); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case AlphaQuantum: |
| { |
| switch (quantum_info->depth) |
| { |
| case 8: |
| { |
| unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushCharPixel(p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleCharToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 16: |
| { |
| unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ClampToQuantum( |
| (MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleShortToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 32: |
| { |
| unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| float |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushLongPixel(endian,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleLongToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| double |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleAnyToQuantum(pixel,range)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case BlackQuantum: |
| { |
| if (image->colorspace != CMYKColorspace) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(),ImageError, |
| "ColorSeparatedImageRequired","`%s'",image->filename); |
| return(extent); |
| } |
| switch (quantum_info->depth) |
| { |
| case 8: |
| { |
| unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushCharPixel(p,&pixel); |
| indexes[x]=ScaleCharToQuantum(pixel); |
| p+=quantum_info->pad; |
| } |
| break; |
| } |
| case 16: |
| { |
| unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| indexes[x]=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| p+=quantum_info->pad; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| indexes[x]=ScaleShortToQuantum(pixel); |
| p+=quantum_info->pad; |
| } |
| break; |
| } |
| case 32: |
| { |
| unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| float |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| indexes[x]=ClampToQuantum(pixel); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushLongPixel(endian,p,&pixel); |
| indexes[x]=ScaleLongToQuantum(pixel); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| double |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| indexes[x]=ClampToQuantum(pixel); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| indexes[x]=ScaleAnyToQuantum(pixel,range); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case RGBQuantum: |
| case CbYCrQuantum: |
| { |
| switch (quantum_info->depth) |
| { |
| case 8: |
| { |
| unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushCharPixel(p,&pixel); |
| SetRedPixelComponent(q,ScaleCharToQuantum(pixel)); |
| p=PushCharPixel(p,&pixel); |
| SetGreenPixelComponent(q,ScaleCharToQuantum(pixel)); |
| p=PushCharPixel(p,&pixel); |
| SetBluePixelComponent(q,ScaleCharToQuantum(pixel)); |
| SetOpacityPixelComponent(q,OpaqueOpacity); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 10: |
| { |
| range=GetQuantumRange(image->depth); |
| if (quantum_info->pack == MagickFalse) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushLongPixel(endian,p,&pixel); |
| q->red=ScaleAnyToQuantum((pixel >> 22) & 0x3ff,range); |
| q->green=ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range); |
| q->blue=ScaleAnyToQuantum((pixel >> 2) & 0x3ff,range); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| if (quantum_info->quantum == 32U) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); |
| SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); |
| SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| q++; |
| } |
| break; |
| } |
| case 12: |
| { |
| range=GetQuantumRange(image->depth); |
| if (quantum_info->pack == MagickFalse) |
| { |
| unsigned short |
| pixel; |
| |
| for (x=0; x < (ssize_t) (3*number_pixels-1); x+=2) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| switch (x % 3) |
| { |
| default: |
| case 0: |
| { |
| q->red=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range); |
| break; |
| } |
| case 1: |
| { |
| q->green=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range); |
| break; |
| } |
| case 2: |
| { |
| q->blue=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range); |
| q++; |
| break; |
| } |
| } |
| p=PushShortPixel(endian,p,&pixel); |
| switch ((x+1) % 3) |
| { |
| default: |
| case 0: |
| { |
| q->red=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range); |
| break; |
| } |
| case 1: |
| { |
| q->green=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range); |
| break; |
| } |
| case 2: |
| { |
| q->blue=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range); |
| q++; |
| break; |
| } |
| } |
| p+=quantum_info->pad; |
| } |
| for (bit=0; bit < (ssize_t) (3*number_pixels % 2); bit++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| switch ((x+bit) % 3) |
| { |
| default: |
| case 0: |
| { |
| q->red=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range); |
| break; |
| } |
| case 1: |
| { |
| q->green=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range); |
| break; |
| } |
| case 2: |
| { |
| q->blue=ScaleAnyToQuantum((QuantumAny) (pixel >> 4),range); |
| q++; |
| break; |
| } |
| } |
| p+=quantum_info->pad; |
| } |
| if (bit != 0) |
| p++; |
| break; |
| } |
| if (quantum_info->quantum == 32U) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); |
| SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumLongPixel(&quantum_state,image->depth,p,&pixel); |
| SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| q++; |
| } |
| break; |
| } |
| case 16: |
| { |
| unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| q->red=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| q->green=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| q->blue=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| SetRedPixelComponent(q,ScaleShortToQuantum(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| SetGreenPixelComponent(q,ScaleShortToQuantum(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| SetBluePixelComponent(q,ScaleShortToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 32: |
| { |
| unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| float |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->red=ClampToQuantum(pixel); |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->green=ClampToQuantum(pixel); |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->blue=ClampToQuantum(pixel); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushLongPixel(endian,p,&pixel); |
| SetRedPixelComponent(q,ScaleLongToQuantum(pixel)); |
| p=PushLongPixel(endian,p,&pixel); |
| SetGreenPixelComponent(q,ScaleLongToQuantum(pixel)); |
| p=PushLongPixel(endian,p,&pixel); |
| SetBluePixelComponent(q,ScaleLongToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| double |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->red=ClampToQuantum(pixel); |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->green=ClampToQuantum(pixel); |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->blue=ClampToQuantum(pixel); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| q++; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case RGBAQuantum: |
| case RGBOQuantum: |
| case CbYCrAQuantum: |
| { |
| switch (quantum_info->depth) |
| { |
| case 8: |
| { |
| unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushCharPixel(p,&pixel); |
| SetRedPixelComponent(q,ScaleCharToQuantum(pixel)); |
| p=PushCharPixel(p,&pixel); |
| SetGreenPixelComponent(q,ScaleCharToQuantum(pixel)); |
| p=PushCharPixel(p,&pixel); |
| SetBluePixelComponent(q,ScaleCharToQuantum(pixel)); |
| p=PushCharPixel(p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleCharToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 10: |
| { |
| pixel=0; |
| if (quantum_info->pack == MagickFalse) |
| { |
| ssize_t |
| n; |
| |
| register ssize_t |
| i; |
| |
| size_t |
| quantum; |
| |
| n=0; |
| quantum=0; |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| for (i=0; i < 4; i++) |
| { |
| switch (n % 3) |
| { |
| case 0: |
| { |
| p=PushLongPixel(endian,p,&pixel); |
| quantum=(size_t) (ScaleShortToQuantum( |
| (unsigned short) (((pixel >> 22) & 0x3ff) << 6))); |
| break; |
| } |
| case 1: |
| { |
| quantum=(size_t) (ScaleShortToQuantum( |
| (unsigned short) (((pixel >> 12) & 0x3ff) << 6))); |
| break; |
| } |
| case 2: |
| { |
| quantum=(size_t) (ScaleShortToQuantum( |
| (unsigned short) (((pixel >> 2) & 0x3ff) << 6))); |
| break; |
| } |
| } |
| switch (i) |
| { |
| case 0: q->red=(Quantum) (quantum); break; |
| case 1: q->green=(Quantum) (quantum); break; |
| case 2: q->blue=(Quantum) (quantum); break; |
| case 3: q->opacity=(Quantum) (QuantumRange-quantum); break; |
| } |
| n++; |
| } |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| q->red=ScaleShortToQuantum((unsigned short) (pixel << 6)); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| q->green=ScaleShortToQuantum((unsigned short) (pixel << 6)); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| q->blue=ScaleShortToQuantum((unsigned short) (pixel << 6)); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleShortToQuantum( |
| (unsigned short) (pixel << 6))); |
| q++; |
| } |
| break; |
| } |
| case 16: |
| { |
| unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| q->red=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| q->green=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| q->blue=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ClampToQuantum( |
| (MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| SetRedPixelComponent(q,ScaleShortToQuantum(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| SetGreenPixelComponent(q,ScaleShortToQuantum(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| SetBluePixelComponent(q,ScaleShortToQuantum(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleShortToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 32: |
| { |
| unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| float |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->red=ClampToQuantum(pixel); |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->green=ClampToQuantum(pixel); |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->blue=ClampToQuantum(pixel); |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushLongPixel(endian,p,&pixel); |
| SetRedPixelComponent(q,ScaleLongToQuantum(pixel)); |
| p=PushLongPixel(endian,p,&pixel); |
| SetGreenPixelComponent(q,ScaleLongToQuantum(pixel)); |
| p=PushLongPixel(endian,p,&pixel); |
| SetBluePixelComponent(q,ScaleLongToQuantum(pixel)); |
| p=PushLongPixel(endian,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleLongToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| double |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->red=ClampToQuantum(pixel); |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->green=ClampToQuantum(pixel); |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->blue=ClampToQuantum(pixel); |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleAnyToQuantum(pixel,range)); |
| q++; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case CMYKQuantum: |
| { |
| if (image->colorspace != CMYKColorspace) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(),ImageError, |
| "ColorSeparatedImageRequired","`%s'",image->filename); |
| return(extent); |
| } |
| switch (quantum_info->depth) |
| { |
| case 8: |
| { |
| unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushCharPixel(p,&pixel); |
| SetRedPixelComponent(q,ScaleCharToQuantum(pixel)); |
| p=PushCharPixel(p,&pixel); |
| SetGreenPixelComponent(q,ScaleCharToQuantum(pixel)); |
| p=PushCharPixel(p,&pixel); |
| SetBluePixelComponent(q,ScaleCharToQuantum(pixel)); |
| p=PushCharPixel(p,&pixel); |
| indexes[x]=ScaleCharToQuantum(pixel); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 16: |
| { |
| unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| q->red=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| q->green=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| q->blue=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| indexes[x]=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| SetRedPixelComponent(q,ScaleShortToQuantum(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| SetGreenPixelComponent(q,ScaleShortToQuantum(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| SetBluePixelComponent(q,ScaleShortToQuantum(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| indexes[x]=ScaleShortToQuantum(pixel); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 32: |
| { |
| unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| float |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->red=ClampToQuantum(pixel); |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->green=ClampToQuantum(pixel); |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->blue=ClampToQuantum(pixel); |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| indexes[x]=(IndexPacket) ClampToQuantum(pixel); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushLongPixel(endian,p,&pixel); |
| SetRedPixelComponent(q,ScaleLongToQuantum(pixel)); |
| p=PushLongPixel(endian,p,&pixel); |
| SetGreenPixelComponent(q,ScaleLongToQuantum(pixel)); |
| p=PushLongPixel(endian,p,&pixel); |
| SetBluePixelComponent(q,ScaleLongToQuantum(pixel)); |
| p=PushLongPixel(endian,p,&pixel); |
| indexes[x]=ScaleLongToQuantum(pixel); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| double |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->red=ClampToQuantum(pixel); |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->green=ClampToQuantum(pixel); |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->blue=ClampToQuantum(pixel); |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| indexes[x]=(IndexPacket) ClampToQuantum(pixel); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| indexes[x]=ScaleAnyToQuantum(pixel,range); |
| q++; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case CMYKAQuantum: |
| case CMYKOQuantum: |
| { |
| if (image->colorspace != CMYKColorspace) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(),ImageError, |
| "ColorSeparatedImageRequired","`%s'",image->filename); |
| return(extent); |
| } |
| switch (quantum_info->depth) |
| { |
| case 8: |
| { |
| unsigned char |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushCharPixel(p,&pixel); |
| SetRedPixelComponent(q,ScaleCharToQuantum(pixel)); |
| p=PushCharPixel(p,&pixel); |
| SetGreenPixelComponent(q,ScaleCharToQuantum(pixel)); |
| p=PushCharPixel(p,&pixel); |
| SetBluePixelComponent(q,ScaleCharToQuantum(pixel)); |
| p=PushCharPixel(p,&pixel); |
| indexes[x]=ScaleCharToQuantum(pixel); |
| p=PushCharPixel(p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleCharToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 16: |
| { |
| unsigned short |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| q->red=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| q->green=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| q->blue=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| indexes[x]=ClampToQuantum((MagickRealType) QuantumRange* |
| HalfToSinglePrecision(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ClampToQuantum( |
| (MagickRealType) QuantumRange*HalfToSinglePrecision(pixel))); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushShortPixel(endian,p,&pixel); |
| SetRedPixelComponent(q,ScaleShortToQuantum(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| SetGreenPixelComponent(q,ScaleShortToQuantum(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| SetBluePixelComponent(q,ScaleShortToQuantum(pixel)); |
| p=PushShortPixel(endian,p,&pixel); |
| indexes[x]=ScaleShortToQuantum(pixel); |
| p=PushShortPixel(endian,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleShortToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 32: |
| { |
| unsigned int |
| pixel; |
| |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| float |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->red=ClampToQuantum(pixel); |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->green=ClampToQuantum(pixel); |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->blue=ClampToQuantum(pixel); |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| indexes[x]=(IndexPacket) ClampToQuantum(pixel); |
| p=PushFloatPixel(&quantum_state,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushLongPixel(endian,p,&pixel); |
| SetRedPixelComponent(q,ScaleLongToQuantum(pixel)); |
| p=PushLongPixel(endian,p,&pixel); |
| SetGreenPixelComponent(q,ScaleLongToQuantum(pixel)); |
| p=PushLongPixel(endian,p,&pixel); |
| SetBluePixelComponent(q,ScaleLongToQuantum(pixel)); |
| p=PushLongPixel(endian,p,&pixel); |
| indexes[x]=ScaleLongToQuantum(pixel); |
| p=PushLongPixel(endian,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleLongToQuantum(pixel)); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| case 64: |
| { |
| if (quantum_info->format == FloatingPointQuantumFormat) |
| { |
| double |
| pixel; |
| |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->red=ClampToQuantum(pixel); |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->green=ClampToQuantum(pixel); |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->blue=ClampToQuantum(pixel); |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| indexes[x]=(IndexPacket) ClampToQuantum(pixel); |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ClampToQuantum(pixel)); |
| p=PushDoublePixel(&quantum_state,p,&pixel); |
| p+=quantum_info->pad; |
| q++; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetBluePixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| indexes[x]=ScaleAnyToQuantum(pixel,range); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| q->opacity=(Quantum) (QuantumRange-ScaleAnyToQuantum(pixel,range)); |
| q++; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| case CbYCrYQuantum: |
| { |
| switch (quantum_info->depth) |
| { |
| case 10: |
| { |
| Quantum |
| cbcr[4]; |
| |
| pixel=0; |
| if (quantum_info->pack == MagickFalse) |
| { |
| ssize_t |
| n; |
| |
| register ssize_t |
| i; |
| |
| size_t |
| quantum; |
| |
| n=0; |
| quantum=0; |
| for (x=0; x < (ssize_t) number_pixels; x+=2) |
| { |
| for (i=0; i < 4; i++) |
| { |
| switch (n % 3) |
| { |
| case 0: |
| { |
| p=PushLongPixel(endian,p,&pixel); |
| quantum=(size_t) (ScaleShortToQuantum( |
| (unsigned short) (((pixel >> 22) & 0x3ff) << 6))); |
| break; |
| } |
| case 1: |
| { |
| quantum=(size_t) (ScaleShortToQuantum( |
| (unsigned short) (((pixel >> 12) & 0x3ff) << 6))); |
| break; |
| } |
| case 2: |
| { |
| quantum=(size_t) (ScaleShortToQuantum( |
| (unsigned short) (((pixel >> 2) & 0x3ff) << 6))); |
| break; |
| } |
| } |
| cbcr[i]=(Quantum) (quantum); |
| n++; |
| } |
| p+=quantum_info->pad; |
| q->red=cbcr[1]; |
| q->green=cbcr[0]; |
| q->blue=cbcr[2]; |
| q++; |
| q->red=cbcr[3]; |
| q->green=cbcr[0]; |
| q->blue=cbcr[2]; |
| q++; |
| } |
| break; |
| } |
| } |
| default: |
| { |
| range=GetQuantumRange(image->depth); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetRedPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| p=PushQuantumPixel(&quantum_state,image->depth,p,&pixel); |
| SetGreenPixelComponent(q,ScaleAnyToQuantum(pixel,range)); |
| q++; |
| } |
| break; |
| } |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| if ((quantum_type == CbYCrQuantum) || (quantum_type == CbYCrAQuantum)) |
| { |
| Quantum |
| quantum; |
| |
| register PixelPacket |
| *restrict q; |
| |
| q=GetAuthenticPixelQueue(image); |
| if (image_view != (CacheView *) NULL) |
| q=GetCacheViewAuthenticPixelQueue(image_view); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| quantum=q->red; |
| q->red=q->green; |
| q->green=quantum; |
| q++; |
| } |
| } |
| if ((quantum_type == RGBOQuantum) || (quantum_type == CMYKOQuantum)) |
| { |
| register PixelPacket |
| *restrict q; |
| |
| q=GetAuthenticPixelQueue(image); |
| if (image_view != (CacheView *) NULL) |
| q=GetCacheViewAuthenticPixelQueue(image_view); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| q->opacity=(Quantum) GetAlphaPixelComponent(q); |
| q++; |
| } |
| } |
| if (quantum_info->alpha_type == DisassociatedQuantumAlpha) |
| { |
| MagickRealType |
| alpha; |
| |
| register PixelPacket |
| *restrict q; |
| |
| /* |
| Disassociate alpha. |
| */ |
| q=GetAuthenticPixelQueue(image); |
| if (image_view != (CacheView *) NULL) |
| q=GetCacheViewAuthenticPixelQueue(image_view); |
| for (x=0; x < (ssize_t) number_pixels; x++) |
| { |
| alpha=QuantumScale*((MagickRealType) QuantumRange-q->opacity); |
| alpha=1.0/(fabs(alpha) <= MagickEpsilon ? 1.0 : alpha); |
| q->red=ClampToQuantum(alpha*q->red); |
| q->green=ClampToQuantum(alpha*q->green); |
| q->blue=ClampToQuantum(alpha*q->blue); |
| q++; |
| } |
| } |
| return(extent); |
| } |