| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % DDDD IIIII SSSSS TTTTT OOO RRRR TTTTT % |
| % D D I SS T O O R R T % |
| % D D I SSS T O O RRRR T % |
| % D D I SS T O O R R T % |
| % DDDD IIIII SSSSS T OOO R R T % |
| % % |
| % % |
| % MagickCore Image Distortion Methods % |
| % % |
| % Software Design % |
| % John Cristy % |
| % Anthony Thyssen % |
| % June 2007 % |
| % % |
| % % |
| % Copyright 1999-2010 ImageMagick Studio LLC, a non-profit organization % |
| % dedicated to making software imaging solutions freely available. % |
| % % |
| % You may not use this file except in compliance with the License. You may % |
| % obtain a copy of the License at % |
| % % |
| % http://www.imagemagick.org/script/license.php % |
| % % |
| % Unless required by applicable law or agreed to in writing, software % |
| % distributed under the License is distributed on an "AS IS" BASIS, % |
| % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % |
| % See the License for the specific language governing permissions and % |
| % limitations under the License. % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % |
| */ |
| |
| /* |
| Include declarations. |
| */ |
| #include "magick/studio.h" |
| #include "magick/artifact.h" |
| #include "magick/cache.h" |
| #include "magick/cache-view.h" |
| #include "magick/colorspace-private.h" |
| #include "magick/composite-private.h" |
| #include "magick/distort.h" |
| #include "magick/exception.h" |
| #include "magick/exception-private.h" |
| #include "magick/gem.h" |
| #include "magick/hashmap.h" |
| #include "magick/image.h" |
| #include "magick/list.h" |
| #include "magick/matrix.h" |
| #include "magick/memory_.h" |
| #include "magick/monitor-private.h" |
| #include "magick/pixel.h" |
| #include "magick/pixel-private.h" |
| #include "magick/resample.h" |
| #include "magick/resample-private.h" |
| #include "magick/registry.h" |
| #include "magick/semaphore.h" |
| #include "magick/string_.h" |
| #include "magick/string-private.h" |
| #include "magick/thread-private.h" |
| #include "magick/token.h" |
| |
| /* |
| Numerous internal routines for image distortions. |
| */ |
| static inline double MagickMin(const double x,const double y) |
| { |
| return( x < y ? x : y); |
| } |
| static inline double MagickMax(const double x,const double y) |
| { |
| return( x > y ? x : y); |
| } |
| |
| static inline void AffineArgsToCoefficients(double *affine) |
| { |
| /* map external sx,ry,rx,sy,tx,ty to internal c0,c2,c4,c1,c3,c5 */ |
| double tmp[4]; /* note indexes 0 and 5 remain unchanged */ |
| tmp[0]=affine[1]; tmp[1]=affine[2]; tmp[2]=affine[3]; tmp[3]=affine[4]; |
| affine[3]=tmp[0]; affine[1]=tmp[1]; affine[4]=tmp[2]; affine[2]=tmp[3]; |
| } |
| |
| static inline void CoefficientsToAffineArgs(double *coeff) |
| { |
| /* map internal c0,c1,c2,c3,c4,c5 to external sx,ry,rx,sy,tx,ty */ |
| double tmp[4]; /* note indexes 0 and 5 remain unchanged */ |
| tmp[0]=coeff[3]; tmp[1]=coeff[1]; tmp[2]=coeff[4]; tmp[3]=coeff[2]; |
| coeff[1]=tmp[0]; coeff[2]=tmp[1]; coeff[3]=tmp[2]; coeff[4]=tmp[3]; |
| } |
| static void InvertAffineCoefficients(const double *coeff,double *inverse) |
| { |
| /* From "Digital Image Warping" by George Wolberg, page 50 */ |
| double determinant; |
| |
| determinant=1.0/(coeff[0]*coeff[4]-coeff[1]*coeff[3]); |
| inverse[0]=determinant*coeff[4]; |
| inverse[1]=determinant*(-coeff[1]); |
| inverse[2]=determinant*(coeff[1]*coeff[5]-coeff[2]*coeff[4]); |
| inverse[3]=determinant*(-coeff[3]); |
| inverse[4]=determinant*coeff[0]; |
| inverse[5]=determinant*(coeff[2]*coeff[3]-coeff[0]*coeff[5]); |
| } |
| |
| static void InvertPerspectiveCoefficients(const double *coeff, |
| double *inverse) |
| { |
| /* From "Digital Image Warping" by George Wolberg, page 53 */ |
| double determinant; |
| |
| determinant=1.0/(coeff[0]*coeff[4]-coeff[3]*coeff[1]); |
| inverse[0]=determinant*(coeff[4]-coeff[7]*coeff[5]); |
| inverse[1]=determinant*(coeff[7]*coeff[2]-coeff[1]); |
| inverse[2]=determinant*(coeff[1]*coeff[5]-coeff[4]*coeff[2]); |
| inverse[3]=determinant*(coeff[6]*coeff[5]-coeff[3]); |
| inverse[4]=determinant*(coeff[0]-coeff[6]*coeff[2]); |
| inverse[5]=determinant*(coeff[3]*coeff[2]-coeff[0]*coeff[5]); |
| inverse[6]=determinant*(coeff[3]*coeff[7]-coeff[6]*coeff[4]); |
| inverse[7]=determinant*(coeff[6]*coeff[1]-coeff[0]*coeff[7]); |
| } |
| |
| static inline double MagickRound(double x) |
| { |
| /* round the fraction to nearest integer */ |
| if (x >= 0.0) |
| return((double) ((long) (x+0.5))); |
| return((double) ((long) (x-0.5))); |
| } |
| |
| /* |
| * Polynomial Term Defining Functions |
| * |
| * Order must either be an integer, or 1.5 to produce |
| * the 2 number_valuesal polyminal function... |
| * affine 1 (3) u = c0 + c1*x + c2*y |
| * bilinear 1.5 (4) u = '' + c3*x*y |
| * quadratic 2 (6) u = '' + c4*x*x + c5*y*y |
| * cubic 3 (10) u = '' + c6*x^3 + c7*x*x*y + c8*x*y*y + c9*y^3 |
| * quartic 4 (15) u = '' + c10*x^4 + ... + c14*y^4 |
| * quintic 5 (21) u = '' + c15*x^5 + ... + c20*y^5 |
| * number in parenthesis minimum number of points needed. |
| * Anything beyond quintic, has not been implemented until |
| * a more automated way of determined terms is found. |
| |
| * Note the slight re-ordering of the terms for a quadratic polynomial |
| * which is to allow the use of a bi-linear (order=1.5) polynomial. |
| * All the later polynomials are ordered simply from x^N to y^N |
| */ |
| static unsigned long poly_number_terms(double order) |
| { |
| /* Return the number of terms for a 2d polynomial */ |
| if ( order < 1 || order > 5 || |
| ( order != floor(order) && (order-1.5) > MagickEpsilon) ) |
| return 0; /* invalid polynomial order */ |
| return((unsigned long) floor((order+1)*(order+2)/2)); |
| } |
| |
| static double poly_basis_fn(long n, double x, double y) |
| { |
| /* Return the result for this polynomial term */ |
| switch(n) { |
| case 0: return( 1.0 ); /* constant */ |
| case 1: return( x ); |
| case 2: return( y ); /* affine order = 1 terms = 3 */ |
| case 3: return( x*y ); /* bilinear order = 1.5 terms = 4 */ |
| case 4: return( x*x ); |
| case 5: return( y*y ); /* quadratic order = 2 terms = 6 */ |
| case 6: return( x*x*x ); |
| case 7: return( x*x*y ); |
| case 8: return( x*y*y ); |
| case 9: return( y*y*y ); /* cubic order = 3 terms = 10 */ |
| case 10: return( x*x*x*x ); |
| case 11: return( x*x*x*y ); |
| case 12: return( x*x*y*y ); |
| case 13: return( x*y*y*y ); |
| case 14: return( y*y*y*y ); /* quartic order = 4 terms = 15 */ |
| case 15: return( x*x*x*x*x ); |
| case 16: return( x*x*x*x*y ); |
| case 17: return( x*x*x*y*y ); |
| case 18: return( x*x*y*y*y ); |
| case 19: return( x*y*y*y*y ); |
| case 20: return( y*y*y*y*y ); /* quintic order = 5 terms = 21 */ |
| } |
| return( 0 ); /* should never happen */ |
| } |
| static const char *poly_basis_str(long n) |
| { |
| /* return the result for this polynomial term */ |
| switch(n) { |
| case 0: return(""); /* constant */ |
| case 1: return("*ii"); |
| case 2: return("*jj"); /* affiine order = 1 terms = 3 */ |
| case 3: return("*ii*jj"); /* biiliinear order = 1.5 terms = 4 */ |
| case 4: return("*ii*ii"); |
| case 5: return("*jj*jj"); /* quadratiic order = 2 terms = 6 */ |
| case 6: return("*ii*ii*ii"); |
| case 7: return("*ii*ii*jj"); |
| case 8: return("*ii*jj*jj"); |
| case 9: return("*jj*jj*jj"); /* cubiic order = 3 terms = 10 */ |
| case 10: return("*ii*ii*ii*ii"); |
| case 11: return("*ii*ii*ii*jj"); |
| case 12: return("*ii*ii*jj*jj"); |
| case 13: return("*ii*jj*jj*jj"); |
| case 14: return("*jj*jj*jj*jj"); /* quartiic order = 4 terms = 15 */ |
| case 15: return("*ii*ii*ii*ii*ii"); |
| case 16: return("*ii*ii*ii*ii*jj"); |
| case 17: return("*ii*ii*ii*jj*jj"); |
| case 18: return("*ii*ii*jj*jj*jj"); |
| case 19: return("*ii*jj*jj*jj*jj"); |
| case 20: return("*jj*jj*jj*jj*jj"); /* quiintiic order = 5 terms = 21 */ |
| } |
| return( "UNKNOWN" ); /* should never happen */ |
| } |
| static double poly_basis_dx(long n, double x, double y) |
| { |
| /* polynomial term for x derivative */ |
| switch(n) { |
| case 0: return( 0.0 ); /* constant */ |
| case 1: return( 1.0 ); |
| case 2: return( 0.0 ); /* affine order = 1 terms = 3 */ |
| case 3: return( y ); /* bilinear order = 1.5 terms = 4 */ |
| case 4: return( x ); |
| case 5: return( 0.0 ); /* quadratic order = 2 terms = 6 */ |
| case 6: return( x*x ); |
| case 7: return( x*y ); |
| case 8: return( y*y ); |
| case 9: return( 0.0 ); /* cubic order = 3 terms = 10 */ |
| case 10: return( x*x*x ); |
| case 11: return( x*x*y ); |
| case 12: return( x*y*y ); |
| case 13: return( y*y*y ); |
| case 14: return( 0.0 ); /* quartic order = 4 terms = 15 */ |
| case 15: return( x*x*x*x ); |
| case 16: return( x*x*x*y ); |
| case 17: return( x*x*y*y ); |
| case 18: return( x*y*y*y ); |
| case 19: return( y*y*y*y ); |
| case 20: return( 0.0 ); /* quintic order = 5 terms = 21 */ |
| } |
| return( 0.0 ); /* should never happen */ |
| } |
| static double poly_basis_dy(long n, double x, double y) |
| { |
| /* polynomial term for y derivative */ |
| switch(n) { |
| case 0: return( 0.0 ); /* constant */ |
| case 1: return( 0.0 ); |
| case 2: return( 1.0 ); /* affine order = 1 terms = 3 */ |
| case 3: return( x ); /* bilinear order = 1.5 terms = 4 */ |
| case 4: return( 0.0 ); |
| case 5: return( y ); /* quadratic order = 2 terms = 6 */ |
| default: return( poly_basis_dx(n-1,x,y) ); /* weird but true */ |
| } |
| /* NOTE: the only reason that last is not true for 'quadtratic' |
| is due to the re-arrangement of terms to allow for 'bilinear' |
| */ |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + G e n e r a t e C o e f f i c i e n t s % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % GenerateCoefficients() takes user provided input arguments and generates |
| % the coefficients, needed to apply the specific distortion for either |
| % distorting images (generally using control points) or generating a color |
| % gradient from sparsely separated color points. |
| % |
| % The format of the GenerateCoefficients() method is: |
| % |
| % Image *GenerateCoefficients(const Image *image,DistortImageMethod method, |
| % const unsigned long number_arguments,const double *arguments, |
| % unsigned long number_values, ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image to be distorted. |
| % |
| % o method: the method of image distortion/ sparse gradient |
| % |
| % o number_arguments: the number of arguments given. |
| % |
| % o arguments: the arguments for this distortion method. |
| % |
| % o number_values: the style and format of given control points, (caller type) |
| % 0: 2 dimensional mapping of control points (Distort) |
| % Format: u,v,x,y where u,v is the 'source' of the |
| % the color to be plotted, for DistortImage() |
| % N: Interpolation of control points with N values (usally r,g,b) |
| % Format: x,y,r,g,b mapping x,y to color values r,g,b |
| % IN future, varible number of values may be given (1 to N) |
| % |
| % o exception: return any errors or warnings in this structure |
| % |
| % Note that the returned array of double values must be freed by the |
| % calling method using RelinquishMagickMemory(). This however may change in |
| % the future to require a more 'method' specific method. |
| % |
| % Because of this this method should not be classed as stable or used |
| % outside other MagickCore library methods. |
| */ |
| |
| static double *GenerateCoefficients(const Image *image, |
| DistortImageMethod *method,const unsigned long number_arguments, |
| const double *arguments,unsigned long number_values,ExceptionInfo *exception) |
| { |
| double |
| *coeff; |
| |
| register unsigned long |
| i; |
| |
| unsigned long |
| number_coeff, /* number of coefficients to return (array size) */ |
| cp_size, /* number floating point numbers per control point */ |
| cp_x,cp_y, /* the x,y indexes for control point */ |
| cp_values; /* index of values for this control point */ |
| /* number_values Number of values given per control point */ |
| |
| if ( number_values == 0 ) { |
| /* Image distortion using control points (or other distortion) |
| That is generate a mapping so that x,y->u,v given u,v,x,y |
| */ |
| number_values = 2; /* special case: two values of u,v */ |
| cp_values = 0; /* the values i,j are BEFORE the destination CP x,y */ |
| cp_x = 2; /* location of x,y in input control values */ |
| cp_y = 3; |
| /* NOTE: cp_values, also used for later 'reverse map distort' tests */ |
| } |
| else { |
| cp_x = 0; /* location of x,y in input control values */ |
| cp_y = 1; |
| cp_values = 2; /* and the other values are after x,y */ |
| /* Typically in this case the values are R,G,B color values */ |
| } |
| cp_size = number_values+2; /* each CP defintion involves this many numbers */ |
| |
| /* If not enough control point pairs are found for specific distortions |
| fall back to Affine distortion (allowing 0 to 3 point pairs) |
| */ |
| if ( number_arguments < 4*cp_size && |
| ( *method == BilinearForwardDistortion |
| || *method == BilinearReverseDistortion |
| || *method == PerspectiveDistortion |
| ) ) |
| *method = AffineDistortion; |
| |
| number_coeff=0; |
| switch (*method) { |
| case AffineDistortion: |
| /* also BarycentricColorInterpolate: */ |
| number_coeff=3*number_values; |
| break; |
| case PolynomialDistortion: |
| /* number of coefficents depend on the given polynomal 'order' */ |
| if ( number_arguments <= 1 && (number_arguments-1)%cp_size != 0) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument","%s : '%s'","Polynomial", |
| "Invalid number of args: order [CPs]..."); |
| return((double *) NULL); |
| } |
| i = poly_number_terms(arguments[0]); |
| number_coeff = 2 + i*number_values; |
| if ( i == 0 ) { |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument","%s : '%s'","Polynomial", |
| "Invalid order, should be interger 1 to 5, or 1.5"); |
| return((double *) NULL); |
| } |
| if ( number_arguments < 1+i*cp_size ) { |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument", "%s : 'require at least %ld CPs'", |
| "Polynomial", i); |
| return((double *) NULL); |
| } |
| break; |
| case BilinearReverseDistortion: |
| number_coeff=4*number_values; |
| break; |
| /* |
| The rest are constants as they are only used for image distorts |
| */ |
| case BilinearForwardDistortion: |
| number_coeff=10; /* 2*4 coeff plus 2 constants */ |
| cp_x = 0; /* Reverse src/dest coords for forward mapping */ |
| cp_y = 1; |
| cp_values = 2; |
| break; |
| #if 0 |
| case QuadraterialDistortion: |
| number_coeff=19; /* BilinearForward + BilinearReverse */ |
| #endif |
| break; |
| case ShepardsDistortion: |
| case VoronoiColorInterpolate: |
| number_coeff=1; /* not used, but provide some type of return */ |
| break; |
| case ArcDistortion: |
| number_coeff=5; |
| break; |
| case ScaleRotateTranslateDistortion: |
| case AffineProjectionDistortion: |
| number_coeff=6; |
| break; |
| case PolarDistortion: |
| case DePolarDistortion: |
| number_coeff=8; |
| break; |
| case PerspectiveDistortion: |
| case PerspectiveProjectionDistortion: |
| number_coeff=9; |
| break; |
| case BarrelDistortion: |
| case BarrelInverseDistortion: |
| number_coeff=10; |
| break; |
| case UndefinedDistortion: |
| default: |
| assert(! "Unknown Method Given"); /* just fail assertion */ |
| } |
| |
| /* allocate the array of coefficients needed */ |
| coeff = (double *) AcquireQuantumMemory(number_coeff,sizeof(*coeff)); |
| if (coeff == (double *) NULL) { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed", |
| "%s", "GenerateCoefficients"); |
| return((double *) NULL); |
| } |
| |
| /* zero out coeffiecents array */ |
| for (i=0; i < number_coeff; i++) |
| coeff[i] = 0.0; |
| |
| switch (*method) |
| { |
| case AffineDistortion: |
| { |
| /* Affine Distortion |
| v = c0*x + c1*y + c2 |
| for each 'value' given |
| |
| Input Arguments are sets of control points... |
| For Distort Images u,v, x,y ... |
| For Sparse Gradients x,y, r,g,b ... |
| */ |
| if ( number_arguments%cp_size != 0 || |
| number_arguments < cp_size ) { |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument", "%s : 'require at least %ld CPs'", |
| "Affine", 1L); |
| coeff=(double *) RelinquishMagickMemory(coeff); |
| return((double *) NULL); |
| } |
| /* handle special cases of not enough arguments */ |
| if ( number_arguments == cp_size ) { |
| /* Only 1 CP Set Given */ |
| if ( cp_values == 0 ) { |
| /* image distortion - translate the image */ |
| coeff[0] = 1.0; |
| coeff[2] = arguments[0] - arguments[2]; |
| coeff[4] = 1.0; |
| coeff[5] = arguments[1] - arguments[3]; |
| } |
| else { |
| /* sparse gradient - use the values directly */ |
| for (i=0; i<number_values; i++) |
| coeff[i*3+2] = arguments[cp_values+i]; |
| } |
| } |
| else { |
| /* 2 or more points (usally 3) given. |
| Solve a least squares simultanious equation for coefficients. |
| */ |
| double |
| **matrix, |
| **vectors, |
| terms[3]; |
| |
| MagickBooleanType |
| status; |
| |
| /* create matrix, and a fake vectors matrix */ |
| matrix = AcquireMagickMatrix(3UL,3UL); |
| vectors = (double **) AcquireQuantumMemory(number_values,sizeof(*vectors)); |
| if (matrix == (double **) NULL || vectors == (double **) NULL) |
| { |
| matrix = RelinquishMagickMatrix(matrix, 3UL); |
| vectors = (double **) RelinquishMagickMemory(vectors); |
| coeff = (double *) RelinquishMagickMemory(coeff); |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed", |
| "%s", "DistortCoefficients"); |
| return((double *) NULL); |
| } |
| /* fake a number_values x3 vectors matrix from coefficients array */ |
| for (i=0; i < number_values; i++) |
| vectors[i] = &(coeff[i*3]); |
| /* Add given control point pairs for least squares solving */ |
| for (i=0; i < number_arguments; i+=cp_size) { |
| terms[0] = arguments[i+cp_x]; /* x */ |
| terms[1] = arguments[i+cp_y]; /* y */ |
| terms[2] = 1; /* 1 */ |
| LeastSquaresAddTerms(matrix,vectors,terms, |
| &(arguments[i+cp_values]),3UL,number_values); |
| } |
| if ( number_arguments == 2*cp_size ) { |
| /* Only two pairs were given, but we need 3 to solve the affine. |
| Fake extra coordinates by rotating p1 around p0 by 90 degrees. |
| x2 = x0 - (y1-y0) y2 = y0 + (x1-x0) |
| */ |
| terms[0] = arguments[cp_x] |
| - ( arguments[cp_size+cp_y] - arguments[cp_y] ); /* x2 */ |
| terms[1] = arguments[cp_y] + |
| + ( arguments[cp_size+cp_x] - arguments[cp_x] ); /* y2 */ |
| terms[2] = 1; /* 1 */ |
| if ( cp_values == 0 ) { |
| /* Image Distortion - rotate the u,v coordients too */ |
| double |
| uv2[2]; |
| uv2[0] = arguments[0] - arguments[5] + arguments[1]; /* u2 */ |
| uv2[1] = arguments[1] + arguments[4] - arguments[0]; /* v2 */ |
| LeastSquaresAddTerms(matrix,vectors,terms,uv2,3UL,2UL); |
| } |
| else { |
| /* Sparse Gradient - use values of p0 for linear gradient */ |
| LeastSquaresAddTerms(matrix,vectors,terms, |
| &(arguments[cp_values]),3UL,number_values); |
| } |
| } |
| /* Solve for LeastSquares Coefficients */ |
| status=GaussJordanElimination(matrix,vectors,3UL,number_values); |
| matrix = RelinquishMagickMatrix(matrix, 3UL); |
| vectors = (double **) RelinquishMagickMemory(vectors); |
| if ( status == MagickFalse ) { |
| coeff = (double *) RelinquishMagickMemory(coeff); |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument","%s : '%s'","Affine", |
| "Unsolvable Matrix"); |
| return((double *) NULL); |
| } |
| } |
| return(coeff); |
| } |
| case AffineProjectionDistortion: |
| { |
| /* |
| Arguments: Affine Matrix (forward mapping) |
| Arguments sx, rx, ry, sy, tx, ty |
| Where u = sx*x + ry*y + tx |
| v = rx*x + sy*y + ty |
| |
| Returns coefficients (in there inverse form) ordered as... |
| sx ry tx rx sy ty |
| |
| AffineProjection Distortion Notes... |
| + Will only work with a 2 number_values for Image Distortion |
| + Can not be used for generating a sparse gradient (interpolation) |
| */ |
| double inverse[8]; |
| if (number_arguments != 6) { |
| coeff = (double *) RelinquishMagickMemory(coeff); |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument","%s : '%s'","AffineProjection", |
| "Needs 6 coeff values"); |
| return((double *) NULL); |
| } |
| /* FUTURE: trap test for sx*sy-rx*ry == 0 (determinate = 0, no inverse) */ |
| for(i=0; i<6UL; i++ ) |
| inverse[i] = arguments[i]; |
| AffineArgsToCoefficients(inverse); /* map into coefficents */ |
| InvertAffineCoefficients(inverse, coeff); /* invert */ |
| *method = AffineDistortion; |
| |
| return(coeff); |
| } |
| case ScaleRotateTranslateDistortion: |
| { |
| /* Scale, Rotate and Translate Distortion |
| An alturnative Affine Distortion |
| Argument options, by number of arguments given: |
| 7: x,y, sx,sy, a, nx,ny |
| 6: x,y, s, a, nx,ny |
| 5: x,y, sx,sy, a |
| 4: x,y, s, a |
| 3: x,y, a |
| 2: s, a |
| 1: a |
| Where actions are (in order of application) |
| x,y 'center' of transforms (default = image center) |
| sx,sy scale image by this amount (default = 1) |
| a angle of rotation (argument required) |
| nx,ny move 'center' here (default = x,y or no movement) |
| And convert to affine mapping coefficients |
| |
| ScaleRotateTranslate Distortion Notes... |
| + Does not use a set of CPs in any normal way |
| + Will only work with a 2 number_valuesal Image Distortion |
| + Can not be used for generating a sparse gradient (interpolation) |
| */ |
| double |
| cosine, sine, |
| x,y,sx,sy,a,nx,ny; |
| |
| /* set default center, and default scale */ |
| x = nx = (double)(image->columns)/2.0 + (double)image->page.x; |
| y = ny = (double)(image->rows)/2.0 + (double)image->page.y; |
| sx = sy = 1.0; |
| switch ( number_arguments ) { |
| case 0: |
| coeff = (double *) RelinquishMagickMemory(coeff); |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument","%s : '%s'", "ScaleTranslateRotate", |
| "Needs at least 1 argument"); |
| return((double *) NULL); |
| case 1: |
| a = arguments[0]; |
| break; |
| case 2: |
| sx = sy = arguments[0]; |
| a = arguments[1]; |
| break; |
| default: |
| x = nx = arguments[0]; |
| y = ny = arguments[1]; |
| switch ( number_arguments ) { |
| case 3: |
| a = arguments[2]; |
| break; |
| case 4: |
| sx = sy = arguments[2]; |
| a = arguments[3]; |
| break; |
| case 5: |
| sx = arguments[2]; |
| sy = arguments[3]; |
| a = arguments[4]; |
| break; |
| case 6: |
| sx = sy = arguments[2]; |
| a = arguments[3]; |
| nx = arguments[4]; |
| ny = arguments[5]; |
| break; |
| case 7: |
| sx = arguments[2]; |
| sy = arguments[3]; |
| a = arguments[4]; |
| nx = arguments[5]; |
| ny = arguments[6]; |
| break; |
| default: |
| coeff = (double *) RelinquishMagickMemory(coeff); |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument","%s : '%s'", "ScaleTranslateRotate", |
| "Too Many Arguments (7 or less)"); |
| return((double *) NULL); |
| } |
| break; |
| } |
| /* Trap if sx or sy == 0 -- image is scaled out of existance! */ |
| if ( fabs(sx) < MagickEpsilon || fabs(sy) < MagickEpsilon ) { |
| coeff = (double *) RelinquishMagickMemory(coeff); |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument","%s : '%s'", "ScaleTranslateRotate", |
| "Zero Scale Given"); |
| return((double *) NULL); |
| } |
| /* Save the given arguments as an affine distortion */ |
| a=DegreesToRadians(a); cosine=cos(a); sine=sin(a); |
| |
| *method = AffineDistortion; |
| coeff[0]=cosine/sx; |
| coeff[1]=sine/sx; |
| coeff[2]=x-nx*coeff[0]-ny*coeff[1]; |
| coeff[3]=(-sine)/sy; |
| coeff[4]=cosine/sy; |
| coeff[5]=y-nx*coeff[3]-ny*coeff[4]; |
| return(coeff); |
| } |
| case PerspectiveDistortion: |
| { /* |
| Perspective Distortion (a ratio of affine distortions) |
| |
| p(x,y) c0*x + c1*y + c2 |
| u = ------ = ------------------ |
| r(x,y) c6*x + c7*y + 1 |
| |
| q(x,y) c3*x + c4*y + c5 |
| v = ------ = ------------------ |
| r(x,y) c6*x + c7*y + 1 |
| |
| c8 = Sign of 'r', or the denominator affine, for the actual image. |
| This determines what part of the distorted image is 'ground' |
| side of the horizon, the other part is 'sky' or invalid. |
| Valid values are +1.0 or -1.0 only. |
| |
| Input Arguments are sets of control points... |
| For Distort Images u,v, x,y ... |
| For Sparse Gradients x,y, r,g,b ... |
| |
| Perspective Distortion Notes... |
| + Can be thought of as ratio of 3 affine transformations |
| + Not separatable: r() or c6 and c7 are used by both equations |
| + All 8 coefficients must be determined simultaniously |
| + Will only work with a 2 number_valuesal Image Distortion |
| + Can not be used for generating a sparse gradient (interpolation) |
| + It is not linear, but is simple to generate an inverse |
| + All lines within an image remain lines. |
| + but distances between points may vary. |
| */ |
| double |
| **matrix, |
| *vectors[1], |
| terms[8]; |
| |
| unsigned long |
| cp_u = cp_values, |
| cp_v = cp_values+1; |
| |
| MagickBooleanType |
| status; |
| |
| if ( number_arguments%cp_size != 0 || |
| number_arguments < cp_size*4 ) { |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument", "%s : 'require at least %ld CPs'", |
| "Perspective", 4L); |
| coeff=(double *) RelinquishMagickMemory(coeff); |
| return((double *) NULL); |
| } |
| /* fake 1x8 vectors matrix directly using the coefficients array */ |
| vectors[0] = &(coeff[0]); |
| /* 8x8 least-squares matrix (zeroed) */ |
| matrix = AcquireMagickMatrix(8UL,8UL); |
| if (matrix == (double **) NULL) { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed", |
| "%s", "DistortCoefficients"); |
| return((double *) NULL); |
| } |
| /* Add control points for least squares solving */ |
| for (i=0; i < number_arguments; i+=4) { |
| terms[0]=arguments[i+cp_x]; /* c0*x */ |
| terms[1]=arguments[i+cp_y]; /* c1*y */ |
| terms[2]=1.0; /* c2*1 */ |
| terms[3]=0.0; |
| terms[4]=0.0; |
| terms[5]=0.0; |
| terms[6]=-terms[0]*arguments[i+cp_u]; /* 1/(c6*x) */ |
| terms[7]=-terms[1]*arguments[i+cp_u]; /* 1/(c7*y) */ |
| LeastSquaresAddTerms(matrix,vectors,terms,&(arguments[i+cp_u]), |
| 8UL,1UL); |
| |
| terms[0]=0.0; |
| terms[1]=0.0; |
| terms[2]=0.0; |
| terms[3]=arguments[i+cp_x]; /* c3*x */ |
| terms[4]=arguments[i+cp_y]; /* c4*y */ |
| terms[5]=1.0; /* c5*1 */ |
| terms[6]=-terms[3]*arguments[i+cp_v]; /* 1/(c6*x) */ |
| terms[7]=-terms[4]*arguments[i+cp_v]; /* 1/(c7*y) */ |
| LeastSquaresAddTerms(matrix,vectors,terms,&(arguments[i+cp_v]), |
| 8UL,1UL); |
| } |
| /* Solve for LeastSquares Coefficients */ |
| status=GaussJordanElimination(matrix,vectors,8UL,1UL); |
| matrix = RelinquishMagickMatrix(matrix, 8UL); |
| if ( status == MagickFalse ) { |
| coeff = (double *) RelinquishMagickMemory(coeff); |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument","%s : '%s'","Perspective", |
| "Unsolvable Matrix"); |
| return((double *) NULL); |
| } |
| /* |
| Calculate 9'th coefficient! The ground-sky determination. |
| What is sign of the 'ground' in r() denominator affine function? |
| Just use any valid image coordinate (first control point) in |
| destination for determination of what part of view is 'ground'. |
| */ |
| coeff[8] = coeff[6]*arguments[cp_x] |
| + coeff[7]*arguments[cp_y] + 1.0; |
| coeff[8] = (coeff[8] < 0.0) ? -1.0 : +1.0; |
| |
| return(coeff); |
| } |
| case PerspectiveProjectionDistortion: |
| { |
| /* |
| Arguments: Perspective Coefficents (forward mapping) |
| */ |
| if (number_arguments != 8) { |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument","%s : '%s'","PerspectiveProjection", |
| "Needs 8 coefficient values"); |
| return((double *) NULL); |
| } |
| /* FUTURE: trap test c0*c4-c3*c1 == 0 (determinate = 0, no inverse) */ |
| InvertPerspectiveCoefficients(arguments, coeff); |
| /* |
| Calculate 9'th coefficient! The ground-sky determination. |
| What is sign of the 'ground' in r() denominator affine function? |
| Just use any valid image cocodinate in destination for determination. |
| For a forward mapped perspective the images 0,0 coord will map to |
| c2,c5 in the distorted image, so set the sign of denominator of that. |
| */ |
| coeff[8] = coeff[6]*arguments[2] |
| + coeff[7]*arguments[5] + 1.0; |
| coeff[8] = (coeff[8] < 0.0) ? -1.0 : +1.0; |
| *method = PerspectiveDistortion; |
| |
| return(coeff); |
| } |
| case BilinearForwardDistortion: |
| case BilinearReverseDistortion: |
| { |
| /* Bilinear Distortion (Forward mapping) |
| v = c0*x + c1*y + c2*x*y + c3; |
| for each 'value' given |
| |
| This is actually a simple polynomial Distortion! The difference |
| however is when we need to reverse the above equation to generate a |
| BilinearForwardDistortion (see below). |
| |
| Input Arguments are sets of control points... |
| For Distort Images u,v, x,y ... |
| For Sparse Gradients x,y, r,g,b ... |
| |
| */ |
| double |
| **matrix, |
| **vectors, |
| terms[4]; |
| |
| MagickBooleanType |
| status; |
| |
| /* check the number of arguments */ |
| if ( number_arguments%cp_size != 0 || |
| number_arguments < cp_size*4 ) { |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument", "%s : 'require at least %ld CPs'", |
| *method == BilinearForwardDistortion ? "BilinearForward" : |
| "BilinearReverse", 4L); |
| coeff=(double *) RelinquishMagickMemory(coeff); |
| return((double *) NULL); |
| } |
| /* create matrix, and a fake vectors matrix */ |
| matrix = AcquireMagickMatrix(4UL,4UL); |
| vectors = (double **) AcquireQuantumMemory(number_values,sizeof(*vectors)); |
| if (matrix == (double **) NULL || vectors == (double **) NULL) |
| { |
| matrix = RelinquishMagickMatrix(matrix, 4UL); |
| vectors = (double **) RelinquishMagickMemory(vectors); |
| coeff = (double *) RelinquishMagickMemory(coeff); |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed", |
| "%s", "DistortCoefficients"); |
| return((double *) NULL); |
| } |
| /* fake a number_values x4 vectors matrix from coefficients array */ |
| for (i=0; i < number_values; i++) |
| vectors[i] = &(coeff[i*4]); |
| /* Add given control point pairs for least squares solving */ |
| for (i=0; i < number_arguments; i+=cp_size) { |
| terms[0] = arguments[i+cp_x]; /* x */ |
| terms[1] = arguments[i+cp_y]; /* y */ |
| terms[2] = terms[0]*terms[1]; /* x*y */ |
| terms[3] = 1; /* 1 */ |
| LeastSquaresAddTerms(matrix,vectors,terms, |
| &(arguments[i+cp_values]),4UL,number_values); |
| } |
| /* Solve for LeastSquares Coefficients */ |
| status=GaussJordanElimination(matrix,vectors,4UL,number_values); |
| matrix = RelinquishMagickMatrix(matrix, 4UL); |
| vectors = (double **) RelinquishMagickMemory(vectors); |
| if ( status == MagickFalse ) { |
| coeff = (double *) RelinquishMagickMemory(coeff); |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument","%s : '%s'", |
| *method == BilinearForwardDistortion ? |
| "BilinearForward" : "BilinearReverse", |
| "Unsolvable Matrix"); |
| return((double *) NULL); |
| } |
| if ( *method == BilinearForwardDistortion ) { |
| /* Bilinear Forward Mapped Distortion |
| |
| The above least-squares solved for coefficents but in the forward |
| direction, due to changes to indexing constants. |
| |
| i = c0*x + c1*y + c2*x*y + c3; |
| j = c4*x + c5*y + c6*x*y + c7; |
| |
| where u,v are in the destination image, NOT the source. |
| |
| Reverse Pixel mapping however needs to use reverse of these |
| functions. It required a full page of algbra to work out the |
| reversed mapping formula, but resolves down to the following... |
| |
| c8 = c0*c5-c1*c4; |
| c9 = 2*(c2*c5-c1*c6); // '2*a' in the quadratic formula |
| |
| i = i - c3; j = j - c7; |
| b = c6*i - c2*j + c8; // So that a*y^2 + b*y + c == 0 |
| c = c4*i - c0*j; // y = ( -b +- sqrt(bb - 4ac) ) / (2*a) |
| |
| r = b*b - c9*(c+c); |
| if ( c9 != 0 ) |
| y = ( -b + sqrt(r) ) / c9; |
| else |
| y = -c/b; |
| |
| x = ( i - c1*y) / ( c1 - c2*y ); |
| |
| NB: if 'r' is negative there is no solution! |
| NB: the sign of the sqrt() should be negative if image becomes |
| flipped or flopped, or crosses over itself. |
| NB: techniqually coefficient c5 is not needed, anymore, |
| but kept for completness. |
| |
| See Anthony Thyssen <A.Thyssen@griffith.edu.au> |
| or Fred Weinhaus <fmw@alink.net> for more details. |
| |
| */ |
| coeff[8] = coeff[0]*coeff[5] - coeff[1]*coeff[4]; |
| coeff[9] = 2*(coeff[2]*coeff[5] - coeff[1]*coeff[6]); |
| } |
| return(coeff); |
| } |
| #if 0 |
| case QuadrilateralDistortion: |
| { |
| /* Map a Quadrilateral to a unit square using BilinearReverse |
| Then map that unit square back to the final Quadrilateral |
| using BilinearForward. |
| |
| Input Arguments are sets of control points... |
| For Distort Images u,v, x,y ... |
| For Sparse Gradients x,y, r,g,b ... |
| |
| */ |
| /* UNDER CONSTRUCTION */ |
| return(coeff); |
| } |
| #endif |
| |
| case PolynomialDistortion: |
| { |
| /* Polynomial Distortion |
| |
| First two coefficents are used to hole global polynomal information |
| c0 = Order of the polynimial being created |
| c1 = number_of_terms in one polynomial equation |
| |
| Rest of the coefficients map to the equations.... |
| v = c0 + c1*x + c2*y + c3*x*y + c4*x^2 + c5*y^2 + c6*x^3 + ... |
| for each 'value' (number_values of them) given. |
| As such total coefficients = 2 + number_terms * number_values |
| |
| Input Arguments are sets of control points... |
| For Distort Images order [u,v, x,y] ... |
| For Sparse Gradients order [x,y, r,g,b] ... |
| |
| Polynomial Distortion Notes... |
| + UNDER DEVELOPMENT -- Do not expect this to remain as is. |
| + Currently polynomial is a reversed mapped distortion. |
| + Order 1.5 is fudged to map into a bilinear distortion. |
| though it is not the same order as that distortion. |
| */ |
| double |
| **matrix, |
| **vectors, |
| *terms; |
| |
| unsigned long |
| nterms; /* number of polynomial terms per number_values */ |
| |
| register long |
| j; |
| |
| MagickBooleanType |
| status; |
| |
| /* first two coefficients hold polynomial order information */ |
| coeff[0] = arguments[0]; |
| coeff[1] = (double) poly_number_terms(arguments[0]); |
| nterms = (unsigned long) coeff[1]; |
| |
| /* create matrix, a fake vectors matrix, and least sqs terms */ |
| matrix = AcquireMagickMatrix(nterms,nterms); |
| vectors = (double **) AcquireQuantumMemory(number_values,sizeof(*vectors)); |
| terms = (double *) AcquireQuantumMemory(nterms, sizeof(*terms)); |
| if (matrix == (double **) NULL || |
| vectors == (double **) NULL || |
| terms == (double *) NULL ) |
| { |
| matrix = RelinquishMagickMatrix(matrix, nterms); |
| vectors = (double **) RelinquishMagickMemory(vectors); |
| terms = (double *) RelinquishMagickMemory(terms); |
| coeff = (double *) RelinquishMagickMemory(coeff); |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed", |
| "%s", "DistortCoefficients"); |
| return((double *) NULL); |
| } |
| /* fake a number_values x3 vectors matrix from coefficients array */ |
| for (i=0; i < number_values; i++) |
| vectors[i] = &(coeff[2+i*nterms]); |
| /* Add given control point pairs for least squares solving */ |
| for (i=1; i < number_arguments; i+=cp_size) { /* NB: start = 1 not 0 */ |
| for (j=0; j < (long) nterms; j++) |
| terms[j] = poly_basis_fn(j,arguments[i+cp_x],arguments[i+cp_y]); |
| LeastSquaresAddTerms(matrix,vectors,terms, |
| &(arguments[i+cp_values]),nterms,number_values); |
| } |
| terms = (double *) RelinquishMagickMemory(terms); |
| /* Solve for LeastSquares Coefficients */ |
| status=GaussJordanElimination(matrix,vectors,nterms,number_values); |
| matrix = RelinquishMagickMatrix(matrix, nterms); |
| vectors = (double **) RelinquishMagickMemory(vectors); |
| if ( status == MagickFalse ) { |
| coeff = (double *) RelinquishMagickMemory(coeff); |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument","%s : '%s'","Polynomial", |
| "Unsolvable Matrix"); |
| return((double *) NULL); |
| } |
| return(coeff); |
| } |
| case ArcDistortion: |
| { |
| /* Arc Distortion |
| Args: arc_width rotate top_edge_radius bottom_edge_radius |
| All but first argument are optional |
| arc_width The angle over which to arc the image side-to-side |
| rotate Angle to rotate image from vertical center |
| top_radius Set top edge of source image at this radius |
| bottom_radius Set bootom edge to this radius (radial scaling) |
| |
| By default, if the radii arguments are nor provided the image radius |
| is calculated so the horizontal center-line is fits the given arc |
| without scaling. |
| |
| The output image size is ALWAYS adjusted to contain the whole image, |
| and an offset is given to position image relative to the 0,0 point of |
| the origin, allowing users to use relative positioning onto larger |
| background (via -flatten). |
| |
| The arguments are converted to these coefficients |
| c0: angle for center of source image |
| c1: angle scale for mapping to source image |
| c2: radius for top of source image |
| c3: radius scale for mapping source image |
| c4: centerline of arc within source image |
| |
| Note the coefficients use a center angle, so asymptotic join is |
| furthest from both sides of the source image. This also means that |
| for arc angles greater than 360 the sides of the image will be |
| trimmed equally. |
| |
| Arc Distortion Notes... |
| + Does not use a set of CPs |
| + Will only work with Image Distortion |
| + Can not be used for generating a sparse gradient (interpolation) |
| */ |
| if ( number_arguments >= 1 && arguments[0] < MagickEpsilon ) { |
| coeff = (double *) RelinquishMagickMemory(coeff); |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument","%s : '%s'", "Arc", |
| "Arc Angle Too Small"); |
| return((double *) NULL); |
| } |
| if ( number_arguments >= 3 && arguments[2] < MagickEpsilon ) { |
| coeff = (double *) RelinquishMagickMemory(coeff); |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument","%s : '%s'", "Arc", |
| "Outer Radius Too Small"); |
| return((double *) NULL); |
| } |
| coeff[0] = -MagickPI2; /* -90, place at top! */ |
| if ( number_arguments >= 1 ) |
| coeff[1] = DegreesToRadians(arguments[0]); |
| else |
| coeff[1] = MagickPI2; /* zero arguments - center is at top */ |
| if ( number_arguments >= 2 ) |
| coeff[0] += DegreesToRadians(arguments[1]); |
| coeff[0] /= Magick2PI; /* normalize radians */ |
| coeff[0] -= MagickRound(coeff[0]); |
| coeff[0] *= Magick2PI; /* de-normalize back to radians */ |
| coeff[3] = (double)image->rows-1; |
| coeff[2] = (double)image->columns/coeff[1] + coeff[3]/2.0; |
| if ( number_arguments >= 3 ) { |
| if ( number_arguments >= 4 ) |
| coeff[3] = arguments[2] - arguments[3]; |
| else |
| coeff[3] *= arguments[2]/coeff[2]; |
| coeff[2] = arguments[2]; |
| } |
| coeff[4] = ((double)image->columns-1.0)/2.0; |
| |
| return(coeff); |
| } |
| case PolarDistortion: |
| case DePolarDistortion: |
| { |
| /* (De)Polar Distortion (same set of arguments) |
| Args: Rmax, Rmin, Xcenter,Ycenter, Afrom,Ato |
| DePolar can also have the extra arguments of Width, Height |
| |
| Coefficients 0 to 5 is the sanatized version first 6 input args |
| Coefficient 6 is the angle to coord ratio and visa-versa |
| Coefficient 7 is the radius to coord ratio and visa-versa |
| |
| WARNING: It is posible for Radius max<min and/or Angle from>to |
| */ |
| if ( number_arguments == 3 |
| || ( number_arguments > 6 && *method == PolarDistortion ) |
| || number_arguments > 8 ) { |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument", "%s : number of arguments", |
| *method == PolarDistortion ? "Polar" : "DePolar"); |
| coeff=(double *) RelinquishMagickMemory(coeff); |
| return((double *) NULL); |
| } |
| /* Rmax - if 0 calculate appropriate value */ |
| if ( number_arguments >= 1 ) |
| coeff[0] = arguments[0]; |
| else |
| coeff[0] = 0.0; |
| /* Rmin - usally 0 */ |
| coeff[1] = number_arguments >= 2 ? arguments[1] : 0.0; |
| /* Center X,Y */ |
| if ( number_arguments >= 4 ) { |
| coeff[2] = arguments[2]; |
| coeff[3] = arguments[3]; |
| } |
| else { /* center of actual image */ |
| coeff[2] = (double)(image->columns)/2.0+image->page.x; |
| coeff[3] = (double)(image->rows)/2.0+image->page.y; |
| } |
| /* Angle from,to - about polar center 0 is downward */ |
| coeff[4] = -MagickPI; |
| if ( number_arguments >= 5 ) |
| coeff[4] = DegreesToRadians(arguments[4]); |
| coeff[5] = coeff[4]; |
| if ( number_arguments >= 6 ) |
| coeff[5] = DegreesToRadians(arguments[5]); |
| if ( fabs(coeff[4]-coeff[5]) < MagickEpsilon ) |
| coeff[5] += Magick2PI; /* same angle is a full circle */ |
| /* if radius 0 or negative, its a special value... */ |
| if ( coeff[0] < MagickEpsilon ) { |
| /* Use closest edge if radius == 0 */ |
| if ( fabs(coeff[0]) < MagickEpsilon ) { |
| coeff[0]=MagickMin(fabs(coeff[2]-image->page.x), |
| fabs(coeff[3]-image->page.y)); |
| coeff[0]=MagickMin(coeff[0], |
| fabs(coeff[2]-image->page.x-image->columns)); |
| coeff[0]=MagickMin(coeff[0], |
| fabs(coeff[3]-image->page.y-image->rows)); |
| } |
| /* furthest diagonal if radius == -1 */ |
| if ( fabs(-1.0-coeff[0]) < MagickEpsilon ) { |
| double rx,ry; |
| rx = coeff[2]-image->page.x; |
| ry = coeff[3]-image->page.y; |
| coeff[0] = rx*rx+ry*ry; |
| ry = coeff[3]-image->page.y-image->rows; |
| coeff[0] = MagickMax(coeff[0],rx*rx+ry*ry); |
| rx = coeff[2]-image->page.x-image->columns; |
| coeff[0] = MagickMax(coeff[0],rx*rx+ry*ry); |
| ry = coeff[3]-image->page.y; |
| coeff[0] = MagickMax(coeff[0],rx*rx+ry*ry); |
| coeff[0] = sqrt(coeff[0]); |
| } |
| } |
| /* IF Rmax <= 0 or Rmin < 0 OR Rmax < Rmin, THEN error */ |
| if ( coeff[0] < MagickEpsilon || coeff[1] < -MagickEpsilon |
| || (coeff[0]-coeff[1]) < MagickEpsilon ) { |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument", "%s : Invalid Radius", |
| *method == PolarDistortion ? "Polar" : "DePolar"); |
| coeff=(double *) RelinquishMagickMemory(coeff); |
| return((double *) NULL); |
| } |
| /* converstion ratios */ |
| if ( *method == PolarDistortion ) { |
| coeff[6]=(double) image->columns/(coeff[5]-coeff[4]); |
| coeff[7]=(double) image->rows/(coeff[0]-coeff[1]); |
| } |
| else { /* *method == DePolarDistortion */ |
| coeff[6]=(coeff[5]-coeff[4])/image->columns; |
| coeff[7]=(coeff[0]-coeff[1])/image->rows; |
| } |
| return(coeff); |
| } |
| case BarrelDistortion: |
| case BarrelInverseDistortion: |
| { |
| /* Barrel Distortion |
| Rs=(A*Rd^3 + B*Rd^2 + C*Rd + D)*Rd |
| BarrelInv Distortion |
| Rs=Rd/(A*Rd^3 + B*Rd^2 + C*Rd + D) |
| |
| Where Rd is the normalized radius from corner to middle of image |
| Input Arguments are one of the following forms... |
| A,B,C |
| A,B,C,D |
| A,B,C X,Y |
| A,B,C,D X,Y |
| Ax,Bx,Cx,Dx Ay,By,Cy,Dy |
| Ax,Bx,Cx,Dx Ay,By,Cy,Dy X,Y |
| |
| Returns 10 coefficent values, which are de-normalized (pixel scale) |
| Ax, Bx, Cx, Dx, Ay, By, Cy, Dy, Xc, Yc |
| */ |
| /* Radius de-normalization scaling factor */ |
| double |
| rscale = 2.0/MagickMin((double) image->columns,(double) image->rows); |
| |
| if ( number_arguments != 4 && number_arguments != 6 && |
| number_arguments != 8 && number_arguments != 10 ) { |
| coeff=(double *) RelinquishMagickMemory(coeff); |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument", "%s : '%s'", "Barrel(Inv)", |
| "number of arguments" ); |
| return((double *) NULL); |
| } |
| /* A,B,C,D coefficients */ |
| coeff[0] = arguments[0]; |
| coeff[1] = arguments[1]; |
| coeff[2] = arguments[2]; |
| if ( number_arguments == 3 || number_arguments == 5 ) |
| coeff[3] = 1 - arguments[0] - arguments[1] - arguments[2]; |
| else |
| coeff[3] = arguments[3]; |
| /* de-normalize the X coefficients */ |
| coeff[0] *= pow(rscale,3.0); |
| coeff[1] *= rscale*rscale; |
| coeff[2] *= rscale; |
| /* Y coefficients: as given OR as X coefficients */ |
| if ( number_arguments >= 8 ) { |
| coeff[4] = arguments[4] * pow(rscale,3.0); |
| coeff[5] = arguments[5] * rscale*rscale; |
| coeff[6] = arguments[6] * rscale; |
| coeff[7] = arguments[7]; |
| } |
| else { |
| coeff[4] = coeff[0]; |
| coeff[5] = coeff[1]; |
| coeff[6] = coeff[2]; |
| coeff[7] = coeff[3]; |
| } |
| /* X,Y Center of Distortion */ |
| coeff[8] = ((double)image->columns-1)/2.0 + image->page.x; |
| coeff[9] = ((double)image->rows-1)/2.0 + image->page.y; |
| if ( number_arguments == 5 ) { |
| coeff[8] = arguments[3]; |
| coeff[9] = arguments[4]; |
| } |
| if ( number_arguments == 6 ) { |
| coeff[8] = arguments[4]; |
| coeff[9] = arguments[5]; |
| } |
| if ( number_arguments == 10 ) { |
| coeff[8] = arguments[8]; |
| coeff[9] = arguments[9]; |
| } |
| return(coeff); |
| } |
| case ShepardsDistortion: |
| case VoronoiColorInterpolate: |
| { |
| /* Shepards Distortion input arguments are the coefficents! |
| Just check the number of arguments is valid! |
| Args: u1,v1, x1,y1, ... |
| OR : u1,v1, r1,g1,c1, ... |
| */ |
| if ( number_arguments%cp_size != 0 || |
| number_arguments < cp_size ) { |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument", "%s : 'require at least %ld CPs'", |
| "Shepards", 1UL); |
| coeff=(double *) RelinquishMagickMemory(coeff); |
| return((double *) NULL); |
| } |
| return(coeff); |
| } |
| default: |
| break; |
| } |
| /* you should never reach this point */ |
| assert(! "No Method Handler"); /* just fail assertion */ |
| return((double *) NULL); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % D i s t o r t I m a g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % DistortImage() distorts an image using various distortion methods, by |
| % mapping color lookups of the source image to a new destination image |
| % usally of the same size as the source image, unless 'bestfit' is set to |
| % true. |
| % |
| % If 'bestfit' is enabled, and distortion allows it, the destination image is |
| % adjusted to ensure the whole source 'image' will just fit within the final |
| % destination image, which will be sized and offset accordingly. Also in |
| % many cases the virtual offset of the source image will be taken into |
| % account in the mapping. |
| % |
| % If the '-verbose' control option has been set print to standard error the |
| % equicelent '-fx' formula with coefficients for the function, if practical. |
| % |
| % The format of the DistortImage() method is: |
| % |
| % Image *DistortImage(const Image *image,const DistortImageMethod method, |
| % const unsigned long number_arguments,const double *arguments, |
| % MagickBooleanType bestfit, ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image to be distorted. |
| % |
| % o method: the method of image distortion. |
| % |
| % ArcDistortion always ignores source image offset, and always |
| % 'bestfit' the destination image with the top left corner offset |
| % relative to the polar mapping center. |
| % |
| % Affine, Perspective, and Bilinear, do least squares fitting of the |
| % distrotion when more than the minimum number of control point pairs |
| % are provided. |
| % |
| % Perspective, and Bilinear, fall back to a Affine distortion when less |
| % than 4 control point pairs are provided. While Affine distortions |
| % let you use any number of control point pairs, that is Zero pairs is |
| % a No-Op (viewport only) distortion, one pair is a translation and |
| % two pairs of control points do a scale-rotate-translate, without any |
| % shearing. |
| % |
| % o number_arguments: the number of arguments given. |
| % |
| % o arguments: an array of floating point arguments for this method. |
| % |
| % o bestfit: Attempt to 'bestfit' the size of the resulting image. |
| % This also forces the resulting image to be a 'layered' virtual |
| % canvas image. Can be overridden using 'distort:viewport' setting. |
| % |
| % o exception: return any errors or warnings in this structure |
| % |
| % Extra Controls from Image meta-data (artifacts)... |
| % |
| % o "verbose" |
| % Output to stderr alternatives, internal coefficents, and FX |
| % equivelents for the distortion operation (if feasible). |
| % This forms an extra check of the distortion method, and allows users |
| % access to the internal constants IM calculates for the distortion. |
| % |
| % o "distort:viewport" |
| % Directly set the output image canvas area and offest to use for the |
| % resulting image, rather than use the original images canvas, or a |
| % calculated 'bestfit' canvas. |
| % |
| % o "distort:scale" |
| % Scale the size of the output canvas by this amount to provide a |
| % method of Zooming, and for super-sampling the results. |
| % |
| % Other settings that can effect results include |
| % |
| % o 'interpolate' For source image lookups (scale enlargements) |
| % |
| % o 'filter' Set filter to use for area-resampling (scale shrinking). |
| % Set to 'point' to turn off and use 'interpolate' lookup |
| % instead |
| % |
| */ |
| MagickExport Image *DistortImage(const Image *image,DistortImageMethod method, |
| const unsigned long number_arguments,const double *arguments, |
| MagickBooleanType bestfit,ExceptionInfo *exception) |
| { |
| #define DistortImageTag "Distort/Image" |
| |
| double |
| *coeff, |
| output_scaling; |
| |
| Image |
| *distort_image; |
| |
| RectangleInfo |
| geometry; /* geometry of the distorted space viewport */ |
| |
| MagickBooleanType |
| viewport_given; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickSignature); |
| |
| /* |
| Convert input arguments (usally as control points for reverse mapping) |
| into mapping coefficients to apply the distortion. |
| |
| Note that some distortions are mapped to other distortions, |
| and as such do not require specific code after this point. |
| */ |
| coeff = GenerateCoefficients(image, &method, number_arguments, |
| arguments, 0, exception); |
| if ( coeff == (double *) NULL ) |
| return((Image *) NULL); |
| |
| /* |
| Determine the size and offset for a 'bestfit' destination. |
| Usally the four corners of the source image is enough. |
| */ |
| |
| /* default output image bounds, when no 'bestfit' is requested */ |
| geometry.width=image->columns; |
| geometry.height=image->rows; |
| geometry.x=0; |
| geometry.y=0; |
| |
| if ( method == ArcDistortion ) { |
| /* always use the 'best fit' viewport */ |
| bestfit = MagickTrue; |
| } |
| |
| /* Work out the 'best fit', (required for ArcDistortion) */ |
| if ( bestfit ) { |
| PointInfo |
| s,d,min,max; |
| |
| s.x=s.y=min.x=max.x=min.y=max.y=0.0; /* keep compiler happy */ |
| |
| /* defines to figure out the bounds of the distorted image */ |
| #define InitalBounds(p) \ |
| { \ |
| /* printf("%lg,%lg -> %lg,%lg\n", s.x,s.y, d.x,d.y); */ \ |
| min.x = max.x = p.x; \ |
| min.y = max.y = p.y; \ |
| } |
| #define ExpandBounds(p) \ |
| { \ |
| /* printf("%lg,%lg -> %lg,%lg\n", s.x,s.y, d.x,d.y); */ \ |
| min.x = MagickMin(min.x,p.x); \ |
| max.x = MagickMax(max.x,p.x); \ |
| min.y = MagickMin(min.y,p.y); \ |
| max.y = MagickMax(max.y,p.y); \ |
| } |
| |
| switch (method) |
| { |
| case AffineDistortion: |
| { double inverse[6]; |
| InvertAffineCoefficients(coeff, inverse); |
| s.x = (double) image->page.x; |
| s.y = (double) image->page.y; |
| d.x = inverse[0]*s.x+inverse[1]*s.y+inverse[2]; |
| d.y = inverse[3]*s.x+inverse[4]*s.y+inverse[5]; |
| InitalBounds(d); |
| s.x = (double) image->page.x+image->columns; |
| s.y = (double) image->page.y; |
| d.x = inverse[0]*s.x+inverse[1]*s.y+inverse[2]; |
| d.y = inverse[3]*s.x+inverse[4]*s.y+inverse[5]; |
| ExpandBounds(d); |
| s.x = (double) image->page.x; |
| s.y = (double) image->page.y+image->rows; |
| d.x = inverse[0]*s.x+inverse[1]*s.y+inverse[2]; |
| d.y = inverse[3]*s.x+inverse[4]*s.y+inverse[5]; |
| ExpandBounds(d); |
| s.x = (double) image->page.x+image->columns; |
| s.y = (double) image->page.y+image->rows; |
| d.x = inverse[0]*s.x+inverse[1]*s.y+inverse[2]; |
| d.y = inverse[3]*s.x+inverse[4]*s.y+inverse[5]; |
| ExpandBounds(d); |
| break; |
| } |
| case PerspectiveDistortion: |
| { double inverse[8], scale; |
| InvertPerspectiveCoefficients(coeff, inverse); |
| s.x = (double) image->page.x; |
| s.y = (double) image->page.y; |
| scale=inverse[6]*s.x+inverse[7]*s.y+1.0; |
| scale=1.0/( (fabs(scale) <= MagickEpsilon) ? 1.0 : scale ); |
| d.x = scale*(inverse[0]*s.x+inverse[1]*s.y+inverse[2]); |
| d.y = scale*(inverse[3]*s.x+inverse[4]*s.y+inverse[5]); |
| InitalBounds(d); |
| s.x = (double) image->page.x+image->columns; |
| s.y = (double) image->page.y; |
| scale=inverse[6]*s.x+inverse[7]*s.y+1.0; |
| scale=1.0/( (fabs(scale) <= MagickEpsilon) ? 1.0 : scale ); |
| d.x = scale*(inverse[0]*s.x+inverse[1]*s.y+inverse[2]); |
| d.y = scale*(inverse[3]*s.x+inverse[4]*s.y+inverse[5]); |
| ExpandBounds(d); |
| s.x = (double) image->page.x; |
| s.y = (double) image->page.y+image->rows; |
| scale=inverse[6]*s.x+inverse[7]*s.y+1.0; |
| scale=1.0/( (fabs(scale) <= MagickEpsilon) ? 1.0 : scale ); |
| d.x = scale*(inverse[0]*s.x+inverse[1]*s.y+inverse[2]); |
| d.y = scale*(inverse[3]*s.x+inverse[4]*s.y+inverse[5]); |
| ExpandBounds(d); |
| s.x = (double) image->page.x+image->columns; |
| s.y = (double) image->page.y+image->rows; |
| scale=inverse[6]*s.x+inverse[7]*s.y+1.0; |
| scale=1.0/( (fabs(scale) <= MagickEpsilon) ? 1.0 : scale ); |
| d.x = scale*(inverse[0]*s.x+inverse[1]*s.y+inverse[2]); |
| d.y = scale*(inverse[3]*s.x+inverse[4]*s.y+inverse[5]); |
| ExpandBounds(d); |
| break; |
| } |
| case ArcDistortion: |
| { double a, ca, sa; |
| /* Forward Map Corners */ |
| a = coeff[0]-coeff[1]/2; ca = cos(a); sa = sin(a); |
| d.x = coeff[2]*ca; |
| d.y = coeff[2]*sa; |
| InitalBounds(d); |
| d.x = (coeff[2]-coeff[3])*ca; |
| d.y = (coeff[2]-coeff[3])*sa; |
| ExpandBounds(d); |
| a = coeff[0]+coeff[1]/2; ca = cos(a); sa = sin(a); |
| d.x = coeff[2]*ca; |
| d.y = coeff[2]*sa; |
| ExpandBounds(d); |
| d.x = (coeff[2]-coeff[3])*ca; |
| d.y = (coeff[2]-coeff[3])*sa; |
| ExpandBounds(d); |
| /* Orthogonal points along top of arc */ |
| for( a=ceil((coeff[0]-coeff[1]/2.0)/MagickPI2)*MagickPI2; |
| a<(coeff[0]+coeff[1]/2.0); a+=MagickPI2 ) { |
| ca = cos(a); sa = sin(a); |
| d.x = coeff[2]*ca; |
| d.y = coeff[2]*sa; |
| ExpandBounds(d); |
| } |
| /* |
| Convert the angle_to_width and radius_to_height |
| to appropriate scaling factors, to allow faster processing |
| in the mapping function. |
| */ |
| coeff[1] = Magick2PI*image->columns/coeff[1]; |
| coeff[3] = (double)image->rows/coeff[3]; |
| break; |
| } |
| case PolarDistortion: |
| { |
| if (number_arguments < 2) |
| coeff[2] = coeff[3] = 0.0; |
| min.x = coeff[2]-coeff[0]; |
| max.x = coeff[2]+coeff[0]; |
| min.y = coeff[3]-coeff[0]; |
| max.y = coeff[3]+coeff[0]; |
| /* should be about 1.0 if Rmin = 0 */ |
| coeff[7]=(double) geometry.height/(coeff[0]-coeff[1]); |
| break; |
| } |
| case DePolarDistortion: |
| { |
| /* direct calculation as it needs to tile correctly |
| * for reversibility in a DePolar-Polar cycle */ |
| geometry.x = geometry.y = 0; |
| geometry.height = (unsigned long) ceil(coeff[0]-coeff[1]); |
| geometry.width = (unsigned long) |
| ceil((coeff[0]-coeff[1])*(coeff[5]-coeff[4])*0.5); |
| break; |
| } |
| case ShepardsDistortion: |
| case BilinearForwardDistortion: |
| case BilinearReverseDistortion: |
| #if 0 |
| case QuadrilateralDistortion: |
| #endif |
| case PolynomialDistortion: |
| case BarrelDistortion: |
| case BarrelInverseDistortion: |
| default: |
| /* no bestfit available for this distortion */ |
| bestfit = MagickFalse; |
| break; |
| } |
| /* Set the output image geometry to calculated 'bestfit' |
| Do not do this for DePolar which needs to be exact for tiling |
| */ |
| if ( bestfit && method != DePolarDistortion ) { |
| geometry.x = (long) floor(min.x-0.5); |
| geometry.y = (long) floor(min.y-0.5); |
| geometry.width=(unsigned long) ceil(max.x-geometry.x+0.5); |
| geometry.height=(unsigned long) ceil(max.y-geometry.y+0.5); |
| } |
| /* now that we have a new size lets fit distortion to it exactly */ |
| if ( method == DePolarDistortion ) { |
| coeff[6]=(coeff[5]-coeff[4])/geometry.width; /* changed width */ |
| coeff[7]=(coeff[0]-coeff[1])/geometry.height; /* should be about 1.0 */ |
| } |
| } |
| |
| /* The user provided a 'viewport' expert option which may |
| overrides some parts of the current output image geometry. |
| For ArcDistortion, this also overrides its default 'bestfit' setting. |
| */ |
| { const char *artifact=GetImageArtifact(image,"distort:viewport"); |
| viewport_given = MagickFalse; |
| if ( artifact != (const char *) NULL ) { |
| (void) ParseAbsoluteGeometry(artifact,&geometry); |
| viewport_given = MagickTrue; |
| } |
| } |
| |
| /* Verbose output */ |
| if ( GetImageArtifact(image,"verbose") != (const char *) NULL ) { |
| register long |
| i; |
| char image_gen[MaxTextExtent]; |
| const char *lookup; |
| |
| /* Set destination image size and virtual offset */ |
| if ( bestfit || viewport_given ) { |
| (void) FormatMagickString(image_gen, MaxTextExtent," -size %lux%lu " |
| "-page %+ld%+ld xc: +insert \\\n",geometry.width,geometry.height, |
| geometry.x,geometry.y); |
| lookup="v.p{ xx-v.page.x-.5, yy-v.page.x-.5 }"; |
| } |
| else { |
| image_gen[0] = '\0'; /* no destination to generate */ |
| lookup = "p{ xx-page.x-.5, yy-page.x-.5 }"; /* simplify lookup */ |
| } |
| |
| switch (method) { |
| case AffineDistortion: |
| { |
| double *inverse; |
| |
| inverse = (double *) AcquireQuantumMemory(6,sizeof(*inverse)); |
| if (inverse == (double *) NULL) { |
| coeff = (double *) RelinquishMagickMemory(coeff); |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed", |
| "%s", "DistortImages"); |
| return((Image *) NULL); |
| } |
| InvertAffineCoefficients(coeff, inverse); |
| CoefficientsToAffineArgs(inverse); |
| fprintf(stderr, "Affine Projection:\n"); |
| fprintf(stderr, " -distort AffineProjection \\\n '"); |
| for (i=0; i<5; i++) |
| fprintf(stderr, "%lf,", inverse[i]); |
| fprintf(stderr, "%lf'\n", inverse[5]); |
| inverse = (double *) RelinquishMagickMemory(inverse); |
| |
| fprintf(stderr, "Affine Distort, FX Equivelent:\n"); |
| fprintf(stderr, "%s", image_gen); |
| fprintf(stderr, " -fx 'ii=i+page.x+0.5; jj=j+page.y+0.5;\n"); |
| fprintf(stderr, " xx=%+lf*ii %+lf*jj %+lf;\n", |
| coeff[0], coeff[1], coeff[2]); |
| fprintf(stderr, " yy=%+lf*ii %+lf*jj %+lf;\n", |
| coeff[3], coeff[4], coeff[5]); |
| fprintf(stderr, " %s'\n", lookup); |
| |
| break; |
| } |
| |
| case PerspectiveDistortion: |
| { |
| double *inverse; |
| |
| inverse = (double *) AcquireQuantumMemory(8,sizeof(*inverse)); |
| if (inverse == (double *) NULL) { |
| coeff = (double *) RelinquishMagickMemory(coeff); |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed", |
| "%s", "DistortCoefficients"); |
| return((Image *) NULL); |
| } |
| InvertPerspectiveCoefficients(coeff, inverse); |
| fprintf(stderr, "Perspective Projection:\n"); |
| fprintf(stderr, " -distort PerspectiveProjection \\\n '"); |
| for (i=0; i<4; i++) |
| fprintf(stderr, "%lf, ", inverse[i]); |
| fprintf(stderr, "\n "); |
| for (; i<7; i++) |
| fprintf(stderr, "%lf, ", inverse[i]); |
| fprintf(stderr, "%lf'\n", inverse[7]); |
| inverse = (double *) RelinquishMagickMemory(inverse); |
| |
| fprintf(stderr, "Perspective Distort, FX Equivelent:\n"); |
| fprintf(stderr, "%s", image_gen); |
| fprintf(stderr, " -fx 'ii=i+page.x+0.5; jj=j+page.y+0.5;\n"); |
| fprintf(stderr, " rr=%+lf*ii %+lf*jj + 1;\n", |
| coeff[6], coeff[7]); |
| fprintf(stderr, " xx=(%+lf*ii %+lf*jj %+lf)/rr;\n", |
| coeff[0], coeff[1], coeff[2]); |
| fprintf(stderr, " yy=(%+lf*ii %+lf*jj %+lf)/rr;\n", |
| coeff[3], coeff[4], coeff[5]); |
| fprintf(stderr, " rr%s0 ? %s : blue'\n", |
| coeff[8] < 0 ? "<" : ">", lookup); |
| break; |
| } |
| |
| case BilinearForwardDistortion: |
| fprintf(stderr, "BilinearForward Mapping Equations:\n"); |
| fprintf(stderr, "%s", image_gen); |
| fprintf(stderr, " i = %+lf*x %+lf*y %+lf*x*y %+lf;\n", |
| coeff[0], coeff[1], coeff[2], coeff[3]); |
| fprintf(stderr, " j = %+lf*x %+lf*y %+lf*x*y %+lf;\n", |
| coeff[4], coeff[5], coeff[6], coeff[7]); |
| #if 0 |
| /* for debugging */ |
| fprintf(stderr, " c8 = %+lf c9 = 2*a = %+lf;\n", |
| coeff[8], coeff[9]); |
| #endif |
| fprintf(stderr, "BilinearForward Distort, FX Equivelent:\n"); |
| fprintf(stderr, "%s", image_gen); |
| fprintf(stderr, " -fx 'ii=i+page.x%+lf; jj=j+page.y%+lf;\n", |
| 0.5-coeff[3], 0.5-coeff[7]); |
| fprintf(stderr, " bb=%lf*ii %+lf*jj %+lf;\n", |
| coeff[6], -coeff[2], coeff[8]); |
| /* Handle Special degenerate (non-quadratic) or trapezoidal case */ |
| if ( coeff[9] != 0 ) { |
| fprintf(stderr, " rt=bb*bb %+lf*(%lf*ii%+lf*jj);\n", |
| -2*coeff[9], coeff[4], -coeff[0]); |
| fprintf(stderr, " yy=( -bb + sqrt(rt) ) / %lf;\n", |
| coeff[9]); |
| } else |
| fprintf(stderr, " yy=(%lf*ii%+lf*jj)/bb;\n", |
| -coeff[4], coeff[0]); |
| fprintf(stderr, " xx=(ii %+lf*yy)/(%lf %+lf*yy);\n", |
| -coeff[1], coeff[0], coeff[2]); |
| if ( coeff[9] != 0 ) |
| fprintf(stderr, " (rt < 0 ) ? red : %s'\n", lookup); |
| else |
| fprintf(stderr, " %s'\n", lookup); |
| break; |
| |
| case BilinearReverseDistortion: |
| #if 0 |
| fprintf(stderr, "Polynomial Projection Distort:\n"); |
| fprintf(stderr, " -distort PolynomialProjection \\\n"); |
| fprintf(stderr, " '1.5, %lf, %lf, %lf, %lf,\n", |
| coeff[3], coeff[0], coeff[1], coeff[2]); |
| fprintf(stderr, " %lf, %lf, %lf, %lf'\n", |
| coeff[7], coeff[4], coeff[5], coeff[6]); |
| #endif |
| fprintf(stderr, "BilinearReverse Distort, FX Equivelent:\n"); |
| fprintf(stderr, "%s", image_gen); |
| fprintf(stderr, " -fx 'ii=i+page.x+0.5; jj=j+page.y+0.5;\n"); |
| fprintf(stderr, " xx=%+lf*ii %+lf*jj %+lf*ii*jj %+lf;\n", |
| coeff[0], coeff[1], coeff[2], coeff[3]); |
| fprintf(stderr, " yy=%+lf*ii %+lf*jj %+lf*ii*jj %+lf;\n", |
| coeff[4], coeff[5], coeff[6], coeff[7]); |
| fprintf(stderr, " %s'\n", lookup); |
| break; |
| |
| case PolynomialDistortion: |
| { |
| unsigned long nterms = (unsigned long) coeff[1]; |
| fprintf(stderr, "Polynomial (order %lg, terms %lu), FX Equivelent\n", |
| coeff[0], nterms); |
| fprintf(stderr, "%s", image_gen); |
| fprintf(stderr, " -fx 'ii=i+page.x+0.5; jj=j+page.y+0.5;\n"); |
| fprintf(stderr, " xx ="); |
| for (i=0; i<(long) nterms; i++) { |
| if ( i != 0 && i%4 == 0 ) fprintf(stderr, "\n "); |
| fprintf(stderr, " %+lf%s", coeff[2+i], |
| poly_basis_str(i)); |
| } |
| fprintf(stderr, ";\n yy ="); |
| for (i=0; i<(long) nterms; i++) { |
| if ( i != 0 && i%4 == 0 ) fprintf(stderr, "\n "); |
| fprintf(stderr, " %+lf%s", coeff[2+i+nterms], |
| poly_basis_str(i)); |
| } |
| fprintf(stderr, ";\n %s'\n", lookup); |
| break; |
| } |
| case ArcDistortion: |
| { |
| fprintf(stderr, "Arc Distort, Internal Coefficients:\n"); |
| for ( i=0; i<5; i++ ) |
| fprintf(stderr, " c%ld = %+lf\n", i, coeff[i]); |
| fprintf(stderr, "Arc Distort, FX Equivelent:\n"); |
| fprintf(stderr, "%s", image_gen); |
| fprintf(stderr, " -fx 'ii=i+page.x; jj=j+page.y;\n"); |
| fprintf(stderr, " xx=(atan2(jj,ii)%+lf)/(2*pi);\n", |
| -coeff[0]); |
| fprintf(stderr, " xx=xx-round(xx);\n"); |
| fprintf(stderr, " xx=xx*%lf %+lf;\n", |
| coeff[1], coeff[4]); |
| fprintf(stderr, " yy=(%lf - hypot(ii,jj)) * %lf;\n", |
| coeff[2], coeff[3]); |
| fprintf(stderr, " v.p{xx-.5,yy-.5}'\n"); |
| break; |
| } |
| case PolarDistortion: |
| { |
| fprintf(stderr, "Polar Distort, Internal Coefficents\n"); |
| for ( i=0; i<8; i++ ) |
| fprintf(stderr, " c%ld = %+lf\n", i, coeff[i]); |
| fprintf(stderr, "Polar Distort, FX Equivelent:\n"); |
| fprintf(stderr, "%s", image_gen); |
| fprintf(stderr, " -fx 'ii=i+page.x%+lf; jj=j+page.y%+lf;\n", |
| -coeff[2], -coeff[3]); |
| fprintf(stderr, " xx=(atan2(ii,jj)%+lf)/(2*pi);\n", |
| -(coeff[4]+coeff[5])/2 ); |
| fprintf(stderr, " xx=xx-round(xx);\n"); |
| fprintf(stderr, " xx=xx*2*pi*%lf + v.w/2;\n", |
| coeff[6] ); |
| fprintf(stderr, " yy=(hypot(ii,jj)%+lf)*%lf;\n", |
| -coeff[1], coeff[7] ); |
| fprintf(stderr, " v.p{xx-.5,yy-.5}'\n"); |
| break; |
| } |
| case DePolarDistortion: |
| { |
| fprintf(stderr, "DePolar Distort, Internal Coefficents\n"); |
| for ( i=0; i<8; i++ ) |
| fprintf(stderr, " c%ld = %+lf\n", i, coeff[i]); |
| fprintf(stderr, "DePolar Distort, FX Equivelent:\n"); |
| fprintf(stderr, "%s", image_gen); |
| fprintf(stderr, " -fx 'aa=(i+.5)*%lf %+lf;\n", coeff[6], -coeff[4] ); |
| fprintf(stderr, " rr=(j+.5)*%lf %+lf;\n", coeff[7], +coeff[1] ); |
| fprintf(stderr, " xx=rr*sin(aa) %+lf;\n", coeff[2] ); |
| fprintf(stderr, " yy=rr*cos(aa) %+lf;\n", coeff[3] ); |
| fprintf(stderr, " v.p{xx-.5,yy-.5}'\n"); |
| break; |
| } |
| case BarrelDistortion: |
| case BarrelInverseDistortion: |
| { double xc,yc; |
| xc = ((double)image->columns-1.0)/2.0 + image->page.x; |
| yc = ((double)image->rows-1.0)/2.0 + image->page.y; |
| fprintf(stderr, "Barrel%s Distort, FX Equivelent:\n", |
| method == BarrelDistortion ? "" : "Inv"); |
| fprintf(stderr, "%s", image_gen); |
| if ( fabs(coeff[8]-xc) < 0.1 && fabs(coeff[9]-yc) < 0.1 ) |
| fprintf(stderr, " -fx 'xc=(w-1)/2; yc=(h-1)/2;\n"); |
| else |
| fprintf(stderr, " -fx 'xc=%lf; yc=%lf;\n", |
| coeff[8], coeff[9]); |
| fprintf(stderr, |
| " ii=i-xc; jj=j-yc; rr=hypot(ii,jj);\n"); |
| fprintf(stderr, " ii=ii%s(%lf*rr*rr*rr %+lf*rr*rr %+lf*rr %+lf);\n", |
| method == BarrelDistortion ? "*" : "/", |
| coeff[0],coeff[1],coeff[2],coeff[3]); |
| fprintf(stderr, " jj=jj%s(%lf*rr*rr*rr %+lf*rr*rr %+lf*rr %+lf);\n", |
| method == BarrelDistortion ? "*" : "/", |
| coeff[4],coeff[5],coeff[6],coeff[7]); |
| fprintf(stderr, " v.p{fx*ii+xc,fy*jj+yc}'\n"); |
| } |
| default: |
| break; |
| } |
| } |
| |
| /* The user provided a 'scale' expert option will scale the |
| output image size, by the factor given allowing for super-sampling |
| of the distorted image space. Any scaling factors must naturally |
| be halved as a result. |
| */ |
| { const char *artifact; |
| artifact=GetImageArtifact(image,"distort:scale"); |
| output_scaling = 1.0; |
| if (artifact != (const char *) NULL) { |
| output_scaling = fabs(StringToDouble(artifact)); |
| geometry.width *= output_scaling; |
| geometry.height *= output_scaling; |
| geometry.x *= output_scaling; |
| geometry.y *= output_scaling; |
| if ( output_scaling < 0.1 ) { |
| coeff = (double *) RelinquishMagickMemory(coeff); |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "InvalidArgument","%s", "-set option:distort:scale" ); |
| return((Image *) NULL); |
| } |
| output_scaling = 1/output_scaling; |
| } |
| } |
| #define ScaleFilter(F,A,B,C,D) \ |
| ScaleResampleFilter( (F), \ |
| output_scaling*(A), output_scaling*(B), \ |
| output_scaling*(C), output_scaling*(D) ) |
| |
| /* |
| Initialize the distort image attributes. |
| */ |
| distort_image=CloneImage(image,geometry.width,geometry.height,MagickTrue, |
| exception); |
| if (distort_image == (Image *) NULL) |
| return((Image *) NULL); |
| if (SetImageStorageClass(distort_image,DirectClass) == MagickFalse) |
| { /* if image is ColorMapped - change it to DirectClass */ |
| InheritException(exception,&distort_image->exception); |
| distort_image=DestroyImage(distort_image); |
| return((Image *) NULL); |
| } |
| distort_image->page.x=geometry.x; |
| distort_image->page.y=geometry.y; |
| if (distort_image->background_color.opacity != OpaqueOpacity) |
| distort_image->matte=MagickTrue; |
| |
| { /* ----- MAIN CODE ----- |
| Sample the source image to each pixel in the distort image. |
| */ |
| long |
| j, |
| progress, |
| status; |
| |
| MagickPixelPacket |
| zero; |
| |
| ResampleFilter |
| **restrict resample_filter; |
| |
| CacheView |
| *distort_view; |
| |
| status=MagickTrue; |
| progress=0; |
| GetMagickPixelPacket(distort_image,&zero); |
| resample_filter=AcquireResampleFilterThreadSet(image, |
| UndefinedVirtualPixelMethod,MagickFalse,exception); |
| distort_view=AcquireCacheView(distort_image); |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel for schedule(dynamic,4) shared(progress,status) |
| #endif |
| for (j=0; j < (long) distort_image->rows; j++) |
| { |
| double |
| validity; /* how mathematically valid is this the mapping */ |
| |
| MagickBooleanType |
| sync; |
| |
| MagickPixelPacket |
| pixel, /* pixel color to assign to distorted image */ |
| invalid; /* the color to assign when distort result is invalid */ |
| |
| PointInfo |
| d, |
| s; /* transform destination image x,y to source image x,y */ |
| |
| register IndexPacket |
| *restrict indexes; |
| |
| register long |
| i, |
| id; |
| |
| register PixelPacket |
| *restrict q; |
| |
| q=QueueCacheViewAuthenticPixels(distort_view,0,j,distort_image->columns,1, |
| exception); |
| if (q == (PixelPacket *) NULL) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| indexes=GetCacheViewAuthenticIndexQueue(distort_view); |
| pixel=zero; |
| |
| /* Define constant scaling vectors for Affine Distortions |
| Other methods are either variable, or use interpolated lookup |
| */ |
| id=GetOpenMPThreadId(); |
| switch (method) |
| { |
| case AffineDistortion: |
| ScaleFilter( resample_filter[id], |
| coeff[0], coeff[1], |
| coeff[3], coeff[4] ); |
| break; |
| default: |
| break; |
| } |
| |
| /* Initialize default pixel validity |
| * negative: pixel is invalid output 'matte_color' |
| * 0.0 to 1.0: antialiased, mix with resample output |
| * 1.0 or greater: use resampled output. |
| */ |
| validity = 1.0; |
| |
| GetMagickPixelPacket(distort_image,&invalid); |
| SetMagickPixelPacket(distort_image,&distort_image->matte_color, |
| (IndexPacket *) NULL, &invalid); |
| if (distort_image->colorspace == CMYKColorspace) |
| ConvertRGBToCMYK(&invalid); /* what about other color spaces? */ |
| |
| for (i=0; i < (long) distort_image->columns; i++) |
| { |
| /* map pixel coordinate to distortion space coordinate */ |
| d.x = (double) (geometry.x+i+0.5)*output_scaling; |
| d.y = (double) (geometry.y+j+0.5)*output_scaling; |
| s = d; /* default is a no-op mapping */ |
| switch (method) |
| { |
| case AffineDistortion: |
| { |
| s.x=coeff[0]*d.x+coeff[1]*d.y+coeff[2]; |
| s.y=coeff[3]*d.x+coeff[4]*d.y+coeff[5]; |
| /* Affine partial derivitives are constant -- set above */ |
| break; |
| } |
| case PerspectiveDistortion: |
| { |
| double |
| p,q,r,abs_r,abs_c6,abs_c7,scale; |
| /* perspective is a ratio of affines */ |
| p=coeff[0]*d.x+coeff[1]*d.y+coeff[2]; |
| q=coeff[3]*d.x+coeff[4]*d.y+coeff[5]; |
| r=coeff[6]*d.x+coeff[7]*d.y+1.0; |
| /* Pixel Validity -- is it a 'sky' or 'ground' pixel */ |
| validity = (r*coeff[8] < 0.0) ? 0.0 : 1.0; |
| /* Determine horizon anti-alias blending */ |
| abs_r = fabs(r)*2; |
| abs_c6 = fabs(coeff[6]); |
| abs_c7 = fabs(coeff[7]); |
| if ( abs_c6 > abs_c7 ) { |
| if ( abs_r < abs_c6 ) |
| validity = 0.5 - coeff[8]*r/coeff[6]; |
| } |
| else if ( abs_r < abs_c7 ) |
| validity = 0.5 - coeff[8]*r/coeff[7]; |
| /* Perspective Sampling Point (if valid) */ |
| if ( validity > 0.0 ) { |
| /* divide by r affine, for perspective scaling */ |
| scale = 1.0/r; |
| s.x = p*scale; |
| s.y = q*scale; |
| /* Perspective Partial Derivatives or Scaling Vectors */ |
| scale *= scale; |
| ScaleFilter( resample_filter[id], |
| (r*coeff[0] - p*coeff[6])*scale, |
| (r*coeff[1] - p*coeff[7])*scale, |
| (r*coeff[3] - q*coeff[6])*scale, |
| (r*coeff[4] - q*coeff[7])*scale ); |
| } |
| break; |
| } |
| case BilinearReverseDistortion: |
| { |
| /* Reversed Mapped is just a simple polynomial */ |
| s.x=coeff[0]*d.x+coeff[1]*d.y+coeff[2]*d.x*d.y+coeff[3]; |
| s.y=coeff[4]*d.x+coeff[5]*d.y |
| +coeff[6]*d.x*d.y+coeff[7]; |
| /* Bilinear partial derivitives of scaling vectors */ |
| ScaleFilter( resample_filter[id], |
| coeff[0] + coeff[2]*d.y, |
| coeff[1] + coeff[2]*d.x, |
| coeff[4] + coeff[6]*d.y, |
| coeff[5] + coeff[6]*d.x ); |
| break; |
| } |
| case BilinearForwardDistortion: |
| { |
| /* Forward mapped needs reversed polynomial equations |
| * which unfortunatally requires a square root! */ |
| double b,c; |
| d.x -= coeff[3]; d.y -= coeff[7]; |
| b = coeff[6]*d.x - coeff[2]*d.y + coeff[8]; |
| c = coeff[4]*d.x - coeff[0]*d.y; |
| |
| validity = 1.0; |
| /* Handle Special degenerate (non-quadratic) case */ |
| if ( fabs(coeff[9]) < MagickEpsilon ) |
| s.y = -c/b; |
| else { |
| c = b*b - 2*coeff[9]*c; |
| if ( c < 0.0 ) |
| validity = 0.0; |
| else |
| s.y = ( -b + sqrt(c) )/coeff[9]; |
| } |
| if ( validity > 0.0 ) |
| s.x = ( d.x - coeff[1]*s.y) / ( coeff[0] + coeff[2]*s.y ); |
| |
| /* NOTE: the sign of the square root should be -ve for parts |
| where the source image becomes 'flipped' or 'mirrored'. |
| FUTURE: Horizon handling |
| FUTURE: Scaling factors or Deritives (how?) |
| */ |
| break; |
| } |
| #if 0 |
| case QuadrilateralDistortion: |
| /* Bilinear mapping of any Quadrilateral to any Quadrilateral */ |
| /* UNDER DEVELOPMENT */ |
| break; |
| #endif |
| case PolynomialDistortion: |
| { |
| /* multi-ordered polynomial */ |
| register long |
| k; |
| long |
| nterms=(long)coeff[1]; |
| |
| PointInfo |
| du,dv; /* the du,dv vectors from unit dx,dy -- derivatives */ |
| |
| s.x=s.y=du.x=du.y=dv.x=dv.y=0.0; |
| for(k=0; k < nterms; k++) { |
| s.x += poly_basis_fn(k,d.x,d.y)*coeff[2+k]; |
| du.x += poly_basis_dx(k,d.x,d.y)*coeff[2+k]; |
| du.y += poly_basis_dy(k,d.x,d.y)*coeff[2+k]; |
| s.y += poly_basis_fn(k,d.x,d.y)*coeff[2+k+nterms]; |
| dv.x += poly_basis_dx(k,d.x,d.y)*coeff[2+k+nterms]; |
| dv.y += poly_basis_dy(k,d.x,d.y)*coeff[2+k+nterms]; |
| } |
| ScaleFilter( resample_filter[id], du.x,du.y,dv.x,dv.y ); |
| break; |
| } |
| case ArcDistortion: |
| { |
| /* what is the angle and radius in the destination image */ |
| s.x = (atan2(d.y,d.x) - coeff[0])/Magick2PI; |
| s.x -= MagickRound(s.x); /* angle */ |
| s.y = hypot(d.x,d.y); /* radius */ |
| |
| /* Arc Distortion Partial Scaling Vectors |
| Are derived by mapping the perpendicular unit vectors |
| dR and dA*R*2PI rather than trying to map dx and dy |
| The results is a very simple orthogonal aligned ellipse. |
| */ |
| if ( s.y > MagickEpsilon ) |
| ScaleFilter( resample_filter[id], |
| coeff[1]/(Magick2PI*s.y), 0, 0, coeff[3] ); |
| else |
| ScaleFilter( resample_filter[id], |
| distort_image->columns*2, 0, 0, coeff[3] ); |
| |
| /* now scale the angle and radius for source image lookup point */ |
| s.x = s.x*coeff[1] + coeff[4] + image->page.x +0.5; |
| s.y = (coeff[2] - s.y) * coeff[3] + image->page.y; |
| break; |
| } |
| case PolarDistortion: |
| { /* Rect/Cartesain/Cylinder to Polar View */ |
| d.x -= coeff[2]; |
| d.y -= coeff[3]; |
| s.x = atan2(d.x,d.y) - (coeff[4]+coeff[5])/2; |
| s.x /= Magick2PI; |
| s.x -= MagickRound(s.x); |
| s.x *= Magick2PI; /* angle - relative to centerline */ |
| s.y = hypot(d.x,d.y); /* radius */ |
| |
| /* Polar Scaling vectors are based on mapping dR and dA vectors |
| This results in very simple orthogonal scaling vectors |
| */ |
| if ( s.y > MagickEpsilon ) |
| ScaleFilter( resample_filter[id], |
| coeff[6]/(Magick2PI*s.y), 0, 0, coeff[7] ); |
| else |
| ScaleFilter( resample_filter[id], |
| distort_image->columns*2, 0, 0, coeff[7] ); |
| |
| /* now finish mapping radius/angle to source x,y coords */ |
| s.x = s.x*coeff[6] + (double)image->columns/2.0 + image->page.x; |
| s.y = (s.y-coeff[1])*coeff[7] + image->page.y; |
| break; |
| } |
| case DePolarDistortion: |
| { /* Polar to Cylindical */ |
| /* ignore all destination virtual offsets */ |
| d.x = ((double)i+0.5)*output_scaling*coeff[6]-coeff[4]; |
| d.y = ((double)j+0.5)*output_scaling*coeff[7]+coeff[1]; |
| s.x = d.y*sin(d.x) + coeff[2]; |
| s.y = d.y*cos(d.x) + coeff[3]; |
| /* derivatives are usless - better to use SuperSampling */ |
| break; |
| } |
| case BarrelDistortion: |
| case BarrelInverseDistortion: |
| { |
| double r,fx,fy,gx,gy; |
| /* Radial Polynomial Distortion (de-normalized) */ |
| d.x -= coeff[8]; |
| d.y -= coeff[9]; |
| r = sqrt(d.x*d.x+d.y*d.y); |
| if ( r > MagickEpsilon ) { |
| fx = ((coeff[0]*r + coeff[1])*r + coeff[2])*r + coeff[3]; |
| fy = ((coeff[4]*r + coeff[5])*r + coeff[6])*r + coeff[7]; |
| gx = ((3*coeff[0]*r + 2*coeff[1])*r + coeff[2])/r; |
| gy = ((3*coeff[4]*r + 2*coeff[5])*r + coeff[6])/r; |
| /* adjust functions and scaling for 'inverse' form */ |
| if ( method == BarrelInverseDistortion ) { |
| fx = 1/fx; fy = 1/fy; |
| gx *= -fx*fx; gy *= -fy*fy; |
| } |
| /* Set source pixel and EWA derivative vectors */ |
| s.x = d.x*fx + coeff[8]; |
| s.y = d.y*fy + coeff[9]; |
| ScaleFilter( resample_filter[id], |
| gx*d.x*d.x + fx, gx*d.x*d.y, |
| gy*d.x*d.y, gy*d.y*d.y + fy ); |
| } |
| else { /* Special handling to avoid divide by zero when r=0 */ |
| s.x=s.y=0.0; |
| if ( method == BarrelDistortion ) |
| ScaleFilter( resample_filter[id], |
| coeff[3], 0, 0, coeff[7] ); |
| else /* method == BarrelInverseDistortion */ |
| /* FUTURE, trap for D==0 causing division by zero */ |
| ScaleFilter( resample_filter[id], |
| 1.0/coeff[3], 0, 0, 1.0/coeff[7] ); |
| } |
| break; |
| } |
| case ShepardsDistortion: |
| { /* Shepards Method, or Inverse Weighted Distance for |
| displacement around the destination image control points |
| The input arguments are the coefficents to the function. |
| This is more of a 'displacement' function rather than an |
| absolute distortion function. |
| */ |
| unsigned long |
| i; |
| double |
| denominator; |
| |
| denominator = s.x = s.y = 0; |
| for(i=0; i<number_arguments; i+=4) { |
| double weight = |
| ((double)d.x-arguments[i+2])*((double)d.x-arguments[i+2]) |
| + ((double)d.y-arguments[i+3])*((double)d.y-arguments[i+3]); |
| if ( weight != 0 ) |
| weight = 1/weight; |
| else |
| weight = 1; |
| |
| s.x += (arguments[ i ]-arguments[i+2])*weight; |
| s.y += (arguments[i+1]-arguments[i+3])*weight; |
| denominator += weight; |
| } |
| s.x /= denominator; |
| s.y /= denominator; |
| s.x += d.x; |
| s.y += d.y; |
| |
| /* We can not determine derivatives using shepards method |
| only color interpolatation, not area-resampling */ |
| break; |
| } |
| default: |
| break; /* use the default no-op given above */ |
| } |
| /* map virtual canvas location back to real image coordinate */ |
| if ( bestfit && method != ArcDistortion ) { |
| s.x -= image->page.x; |
| s.y -= image->page.y; |
| } |
| s.x -= 0.5; |
| s.y -= 0.5; |
| |
| if ( validity <= 0.0 ) { |
| /* result of distortion is an invalid pixel - don't resample */ |
| SetPixelPacket(distort_image,&invalid,q,indexes); |
| } |
| else { |
| /* resample the source image to find its correct color */ |
| (void) ResamplePixelColor(resample_filter[id],s.x,s.y,&pixel); |
| /* if validity between 0.0 and 1.0 mix result with invalid pixel */ |
| if ( validity < 1.0 ) { |
| /* Do a blend of sample color and invalid pixel */ |
| /* should this be a 'Blend', or an 'Over' compose */ |
| MagickPixelCompositeBlend(&pixel,validity,&invalid,(1.0-validity), |
| &pixel); |
| } |
| SetPixelPacket(distort_image,&pixel,q,indexes); |
| } |
| q++; |
| indexes++; |
| } |
| sync=SyncCacheViewAuthenticPixels(distort_view,exception); |
| if (sync == MagickFalse) |
| status=MagickFalse; |
| if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp critical (MagickCore_DistortImage) |
| #endif |
| proceed=SetImageProgress(image,DistortImageTag,progress++, |
| image->rows); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| #if 0 |
| fprintf(stderr, "\n"); |
| #endif |
| } |
| distort_view=DestroyCacheView(distort_view); |
| resample_filter=DestroyResampleFilterThreadSet(resample_filter); |
| |
| if (status == MagickFalse) |
| distort_image=DestroyImage(distort_image); |
| } |
| |
| /* Arc does not return an offset unless 'bestfit' is in effect |
| And the user has not provided an overriding 'viewport'. |
| */ |
| if ( method == ArcDistortion && !bestfit && !viewport_given ) { |
| distort_image->page.x = 0; |
| distort_image->page.y = 0; |
| } |
| coeff = (double *) RelinquishMagickMemory(coeff); |
| return(distort_image); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % S p a r s e C o l o r I m a g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % SparseColorImage(), given a set of coordinates, interpolates the colors |
| % found at those coordinates, across the whole image, using various methods. |
| % |
| % The format of the SparseColorImage() method is: |
| % |
| % Image *SparseColorImage(const Image *image,const ChannelType channel, |
| % const SparseColorMethod method,const unsigned long number_arguments, |
| % const double *arguments,ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image to be filled in. |
| % |
| % o channel: Specify which color values (in RGBKA sequence) are being set. |
| % This also determines the number of color_values in above. |
| % |
| % o method: the method to fill in the gradient between the control points. |
| % |
| % The methods used for SparseColor() are often simular to methods |
| % used for DistortImage(), and even share the same code for determination |
| % of the function coefficents, though with more dimensions (or resulting |
| % values). |
| % |
| % o number_arguments: the number of arguments given. |
| % |
| % o arguments: array of floating point arguments for this method-- |
| % x,y,color_values-- with color_values given as normalized values. |
| % |
| % o exception: return any errors or warnings in this structure |
| % |
| */ |
| MagickExport Image *SparseColorImage(const Image *image, |
| const ChannelType channel,const SparseColorMethod method, |
| const unsigned long number_arguments,const double *arguments, |
| ExceptionInfo *exception) |
| { |
| #define SparseColorTag "Distort/SparseColor" |
| |
| DistortImageMethod |
| distort_method; |
| |
| double |
| *coeff; |
| |
| Image |
| *sparse_image; |
| |
| MagickPixelPacket |
| zero; |
| |
| unsigned long |
| number_colors; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickSignature); |
| |
| /* Determine number of color values needed per control point */ |
| number_colors=0; |
| if ( channel & RedChannel ) number_colors++; |
| if ( channel & GreenChannel ) number_colors++; |
| if ( channel & BlueChannel ) number_colors++; |
| if ( channel & IndexChannel ) number_colors++; |
| if ( channel & OpacityChannel ) number_colors++; |
| |
| /* |
| Convert input arguments into mapping coefficients to apply the distortion. |
| Note some Methods may fall back to other simpler methods. |
| */ |
| distort_method=(DistortImageMethod) method; |
| coeff = GenerateCoefficients(image, &distort_method, number_arguments, |
| arguments, number_colors, exception); |
| if ( coeff == (double *) NULL ) |
| return((Image *) NULL); |
| |
| /* Verbose output */ |
| if ( GetImageArtifact(image,"verbose") != (const char *) NULL ) { |
| |
| switch (method) { |
| case BarycentricColorInterpolate: |
| { |
| register long x=0; |
| fprintf(stderr, "Barycentric Sparse Color:\n"); |
| if ( channel & RedChannel ) |
| fprintf(stderr, " -channel R -fx '%+lf*i %+lf*j %+lf' \\\n", |
| coeff[x], coeff[x+1], coeff[x+2]),x+=3; |
| if ( channel & GreenChannel ) |
| fprintf(stderr, " -channel G -fx '%+lf*i %+lf*j %+lf' \\\n", |
| coeff[x], coeff[x+1], coeff[x+2]),x+=3; |
| if ( channel & BlueChannel ) |
| fprintf(stderr, " -channel B -fx '%+lf*i %+lf*j %+lf' \\\n", |
| coeff[x], coeff[x+1], coeff[x+2]),x+=3; |
| if ( channel & IndexChannel ) |
| fprintf(stderr, " -channel K -fx '%+lf*i %+lf*j %+lf' \\\n", |
| coeff[x], coeff[x+1], coeff[x+2]),x+=3; |
| if ( channel & OpacityChannel ) |
| fprintf(stderr, " -channel A -fx '%+lf*i %+lf*j %+lf' \\\n", |
| coeff[x], coeff[x+1], coeff[x+2]),x+=3; |
| break; |
| } |
| case BilinearColorInterpolate: |
| { |
| register long x=0; |
| fprintf(stderr, "Bilinear Sparse Color\n"); |
| if ( channel & RedChannel ) |
| fprintf(stderr, " -channel R -fx '%+lf*i %+lf*j %+lf*i*j %+lf;\n", |
| coeff[ x ], coeff[x+1], |
| coeff[x+2], coeff[x+3]),x+=4; |
| if ( channel & GreenChannel ) |
| fprintf(stderr, " -channel G -fx '%+lf*i %+lf*j %+lf*i*j %+lf;\n", |
| coeff[ x ], coeff[x+1], |
| coeff[x+2], coeff[x+3]),x+=4; |
| if ( channel & BlueChannel ) |
| fprintf(stderr, " -channel B -fx '%+lf*i %+lf*j %+lf*i*j %+lf;\n", |
| coeff[ x ], coeff[x+1], |
| coeff[x+2], coeff[x+3]),x+=4; |
| if ( channel & IndexChannel ) |
| fprintf(stderr, " -channel K -fx '%+lf*i %+lf*j %+lf*i*j %+lf;\n", |
| coeff[ x ], coeff[x+1], |
| coeff[x+2], coeff[x+3]),x+=4; |
| if ( channel & OpacityChannel ) |
| fprintf(stderr, " -channel A -fx '%+lf*i %+lf*j %+lf*i*j %+lf;\n", |
| coeff[ x ], coeff[x+1], |
| coeff[x+2], coeff[x+3]),x+=4; |
| break; |
| } |
| default: |
| /* unknown, or which are too complex for FX alturnatives */ |
| break; |
| } |
| } |
| |
| /* Generate new image for generated interpolated gradient. |
| * ASIDE: Actually we could have just replaced the colors of the original |
| * image, but IM core policy, is if storage class could change then clone |
| * the image. |
| */ |
| |
| sparse_image=CloneImage(image,image->columns,image->rows,MagickTrue, |
| exception); |
| if (sparse_image == (Image *) NULL) |
| return((Image *) NULL); |
| if (SetImageStorageClass(sparse_image,DirectClass) == MagickFalse) |
| { /* if image is ColorMapped - change it to DirectClass */ |
| InheritException(exception,&image->exception); |
| sparse_image=DestroyImage(sparse_image); |
| return((Image *) NULL); |
| } |
| { /* ----- MAIN CODE ----- */ |
| long |
| j, |
| progress; |
| |
| MagickBooleanType |
| status; |
| |
| CacheView |
| *sparse_view; |
| |
| status=MagickTrue; |
| progress=0; |
| GetMagickPixelPacket(sparse_image,&zero); |
| sparse_view=AcquireCacheView(sparse_image); |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel for schedule(dynamic,4) shared(progress,status) |
| #endif |
| for (j=0; j < (long) sparse_image->rows; j++) |
| { |
| MagickBooleanType |
| sync; |
| |
| MagickPixelPacket |
| pixel; /* pixel to assign to distorted image */ |
| |
| register IndexPacket |
| *restrict indexes; |
| |
| register long |
| i; |
| |
| register PixelPacket |
| *restrict q; |
| |
| q=QueueCacheViewAuthenticPixels(sparse_view,0,j,sparse_image->columns, |
| 1,exception); |
| if (q == (PixelPacket *) NULL) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| /* FUTURE: get pixel from source image - so channel can replace parts */ |
| indexes=GetCacheViewAuthenticIndexQueue(sparse_view); |
| pixel=zero; |
| for (i=0; i < (long) sparse_image->columns; i++) |
| { |
| switch (method) |
| { |
| case BarycentricColorInterpolate: |
| { |
| register long x=0; |
| if ( channel & RedChannel ) |
| pixel.red = coeff[x]*i +coeff[x+1]*j |
| +coeff[x+2], x+=3; |
| if ( channel & GreenChannel ) |
| pixel.green = coeff[x]*i +coeff[x+1]*j |
| +coeff[x+2], x+=3; |
| if ( channel & BlueChannel ) |
| pixel.blue = coeff[x]*i +coeff[x+1]*j |
| +coeff[x+2], x+=3; |
| if ( channel & IndexChannel ) |
| pixel.index = coeff[x]*i +coeff[x+1]*j |
| +coeff[x+2], x+=3; |
| if ( channel & OpacityChannel ) |
| pixel.opacity = coeff[x]*i +coeff[x+1]*j |
| +coeff[x+2], x+=3; |
| break; |
| } |
| case BilinearColorInterpolate: |
| { |
| register long x=0; |
| if ( channel & RedChannel ) |
| pixel.red = coeff[x]*i + coeff[x+1]*j + |
| coeff[x+2]*i*j + coeff[x+3], x+=4; |
| if ( channel & GreenChannel ) |
| pixel.green = coeff[x]*i + coeff[x+1]*j + |
| coeff[x+2]*i*j + coeff[x+3], x+=4; |
| if ( channel & BlueChannel ) |
| pixel.blue = coeff[x]*i + coeff[x+1]*j + |
| coeff[x+2]*i*j + coeff[x+3], x+=4; |
| if ( channel & IndexChannel ) |
| pixel.index = coeff[x]*i + coeff[x+1]*j + |
| coeff[x+2]*i*j + coeff[x+3], x+=4; |
| if ( channel & OpacityChannel ) |
| pixel.opacity = coeff[x]*i + coeff[x+1]*j + |
| coeff[x+2]*i*j + coeff[x+3], x+=4; |
| break; |
| } |
| case ShepardsColorInterpolate: |
| { /* Shepards Method,uses its own input arguments as coefficients. |
| */ |
| unsigned long |
| k; |
| double |
| denominator; |
| |
| if ( channel & RedChannel ) pixel.red = 0.0; |
| if ( channel & GreenChannel ) pixel.green = 0.0; |
| if ( channel & BlueChannel ) pixel.blue = 0.0; |
| if ( channel & IndexChannel ) pixel.index = 0.0; |
| if ( channel & OpacityChannel ) pixel.opacity = 0.0; |
| denominator = 0.0; |
| for(k=0; k<number_arguments; k+=2+number_colors) { |
| register long x=(long) k+2; |
| double weight = |
| ((double)i-arguments[ k ])*((double)i-arguments[ k ]) |
| + ((double)j-arguments[k+1])*((double)j-arguments[k+1]); |
| if ( weight != 0 ) |
| weight = 1/weight; |
| else |
| weight = 1; |
| if ( channel & RedChannel ) |
| pixel.red += arguments[x++]*weight; |
| if ( channel & GreenChannel ) |
| pixel.green += arguments[x++]*weight; |
| if ( channel & BlueChannel ) |
| pixel.blue += arguments[x++]*weight; |
| if ( channel & IndexChannel ) |
| pixel.index += arguments[x++]*weight; |
| if ( channel & OpacityChannel ) |
| pixel.opacity += arguments[x++]*weight; |
| denominator += weight; |
| } |
| if ( channel & RedChannel ) pixel.red /= denominator; |
| if ( channel & GreenChannel ) pixel.green /= denominator; |
| if ( channel & BlueChannel ) pixel.blue /= denominator; |
| if ( channel & IndexChannel ) pixel.index /= denominator; |
| if ( channel & OpacityChannel ) pixel.opacity /= denominator; |
| break; |
| } |
| case VoronoiColorInterpolate: |
| default: |
| { /* Just use the closest control point you can find! */ |
| unsigned long |
| k; |
| double |
| minimum = MagickHuge; |
| |
| for(k=0; k<number_arguments; k+=2+number_colors) { |
| double distance = |
| ((double)i-arguments[ k ])*((double)i-arguments[ k ]) |
| + ((double)j-arguments[k+1])*((double)j-arguments[k+1]); |
| if ( distance < minimum ) { |
| register long x=(long) k+2; |
| if ( channel & RedChannel ) pixel.red = arguments[x++]; |
| if ( channel & GreenChannel ) pixel.green = arguments[x++]; |
| if ( channel & BlueChannel ) pixel.blue = arguments[x++]; |
| if ( channel & IndexChannel ) pixel.index = arguments[x++]; |
| if ( channel & OpacityChannel ) pixel.opacity = arguments[x++]; |
| minimum = distance; |
| } |
| } |
| break; |
| } |
| } |
| /* set the color directly back into the source image */ |
| if ( channel & RedChannel ) pixel.red *= QuantumRange; |
| if ( channel & GreenChannel ) pixel.green *= QuantumRange; |
| if ( channel & BlueChannel ) pixel.blue *= QuantumRange; |
| if ( channel & IndexChannel ) pixel.index *= QuantumRange; |
| if ( channel & OpacityChannel ) pixel.opacity *= QuantumRange; |
| SetPixelPacket(sparse_image,&pixel,q,indexes); |
| q++; |
| indexes++; |
| } |
| sync=SyncCacheViewAuthenticPixels(sparse_view,exception); |
| if (sync == MagickFalse) |
| status=MagickFalse; |
| if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp critical (MagickCore_SparseColorImage) |
| #endif |
| proceed=SetImageProgress(image,SparseColorTag,progress++,image->rows); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| } |
| sparse_view=DestroyCacheView(sparse_view); |
| if (status == MagickFalse) |
| sparse_image=DestroyImage(sparse_image); |
| } |
| coeff = (double *) RelinquishMagickMemory(coeff); |
| return(sparse_image); |
| } |