| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % M M OOO RRRR PPPP H H OOO L OOO GGGG Y Y % |
| % MM MM O O R R P P H H O O L O O G Y Y % |
| % M M M O O RRRR PPPP HHHHH O O L O O G GGG Y % |
| % M M O O R R P H H O O L O O G G Y % |
| % M M OOO R R P H H OOO LLLLL OOO GGG Y % |
| % % |
| % % |
| % MagickCore Morphology Methods % |
| % % |
| % Software Design % |
| % Anthony Thyssen % |
| % January 2010 % |
| % % |
| % % |
| % Copyright 1999-2010 ImageMagick Studio LLC, a non-profit organization % |
| % dedicated to making software imaging solutions freely available. % |
| % % |
| % You may not use this file except in compliance with the License. You may % |
| % obtain a copy of the License at % |
| % % |
| % http://www.imagemagick.org/script/license.php % |
| % % |
| % Unless required by applicable law or agreed to in writing, software % |
| % distributed under the License is distributed on an "AS IS" BASIS, % |
| % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % |
| % See the License for the specific language governing permissions and % |
| % limitations under the License. % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % Morpology is the the application of various kernals, of any size and even |
| % shape, to a image in various ways (typically binary, but not always). |
| % |
| % Convolution (weighted sum or average) is just one specific type of |
| % morphology. Just one that is very common for image bluring and sharpening |
| % effects. Not only 2D Gaussian blurring, but also 2-pass 1D Blurring. |
| % |
| % This module provides not only a general morphology function, and the ability |
| % to apply more advanced or iterative morphologies, but also functions for the |
| % generation of many different types of kernel arrays from user supplied |
| % arguments. Prehaps even the generation of a kernel from a small image. |
| */ |
| |
| /* |
| Include declarations. |
| */ |
| #include "magick/studio.h" |
| #include "magick/artifact.h" |
| #include "magick/cache-view.h" |
| #include "magick/color-private.h" |
| #include "magick/enhance.h" |
| #include "magick/exception.h" |
| #include "magick/exception-private.h" |
| #include "magick/gem.h" |
| #include "magick/hashmap.h" |
| #include "magick/image.h" |
| #include "magick/image-private.h" |
| #include "magick/list.h" |
| #include "magick/magick.h" |
| #include "magick/memory_.h" |
| #include "magick/monitor-private.h" |
| #include "magick/morphology.h" |
| #include "magick/option.h" |
| #include "magick/pixel-private.h" |
| #include "magick/prepress.h" |
| #include "magick/quantize.h" |
| #include "magick/registry.h" |
| #include "magick/semaphore.h" |
| #include "magick/splay-tree.h" |
| #include "magick/statistic.h" |
| #include "magick/string_.h" |
| #include "magick/string-private.h" |
| #include "magick/token.h" |
| |
| /* |
| The following test is for special floating point numbers of value NaN (not |
| a number), that may be used within a Kernel Definition. NaN's are defined |
| as part of the IEEE standard for floating point number representation. |
| |
| These are used a Kernel value of NaN means that that kernal position is not |
| part of the normal convolution or morphology process, and thus allowing the |
| use of 'shaped' kernels. |
| |
| Special properities two NaN's are never equal, even if they are from the |
| same variable That is the IsNaN() macro is only true if the value is NaN. |
| */ |
| #define IsNan(a) ((a)!=(a)) |
| |
| /* |
| Other global definitions used by module. |
| */ |
| static inline double MagickMin(const double x,const double y) |
| { |
| return( x < y ? x : y); |
| } |
| static inline double MagickMax(const double x,const double y) |
| { |
| return( x > y ? x : y); |
| } |
| #define Minimize(assign,value) assign=MagickMin(assign,value) |
| #define Maximize(assign,value) assign=MagickMax(assign,value) |
| |
| /* Currently these are only internal to this module */ |
| static void |
| RotateKernelInfo(KernelInfo *, double); |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % A c q u i r e K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % AcquireKernelInfo() takes the given string (generally supplied by the |
| % user) and converts it into a Morphology/Convolution Kernel. This allows |
| % users to specify a kernel from a number of pre-defined kernels, or to fully |
| % specify their own kernel for a specific Convolution or Morphology |
| % Operation. |
| % |
| % The kernel so generated can be any rectangular array of floating point |
| % values (doubles) with the 'control point' or 'pixel being affected' |
| % anywhere within that array of values. |
| % |
| % Previously IM was restricted to a square of odd size using the exact |
| % center as origin, this is no longer the case, and any rectangular kernel |
| % with any value being declared the origin. This in turn allows the use of |
| % highly asymmetrical kernels. |
| % |
| % The floating point values in the kernel can also include a special value |
| % known as 'nan' or 'not a number' to indicate that this value is not part |
| % of the kernel array. This allows you to shaped the kernel within its |
| % rectangular area. That is 'nan' values provide a 'mask' for the kernel |
| % shape. However at least one non-nan value must be provided for correct |
| % working of a kernel. |
| % |
| % The returned kernel should be free using the DestroyKernelInfo() when you |
| % are finished with it. |
| % |
| % Input kernel defintion strings can consist of any of three types. |
| % |
| % "name:args" |
| % Select from one of the built in kernels, using the name and |
| % geometry arguments supplied. See AcquireKernelBuiltIn() |
| % |
| % "WxH[+X+Y]:num, num, num ..." |
| % a kernal of size W by H, with W*H floating point numbers following. |
| % the 'center' can be optionally be defined at +X+Y (such that +0+0 |
| % is top left corner). If not defined the pixel in the center, for |
| % odd sizes, or to the immediate top or left of center for even sizes |
| % is automatically selected. |
| % |
| % "num, num, num, num, ..." |
| % list of floating point numbers defining an 'old style' odd sized |
| % square kernel. At least 9 values should be provided for a 3x3 |
| % square kernel, 25 for a 5x5 square kernel, 49 for 7x7, etc. |
| % Values can be space or comma separated. This is not recommended. |
| % |
| % Note that 'name' kernels will start with an alphabetic character while the |
| % new kernel specification has a ':' character in its specification string. |
| % If neither is the case, it is assumed an old style of a simple list of |
| % numbers generating a odd-sized square kernel has been given. |
| % |
| % The format of the AcquireKernal method is: |
| % |
| % KernelInfo *AcquireKernelInfo(const char *kernel_string) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel_string: the Morphology/Convolution kernel wanted. |
| % |
| */ |
| |
| MagickExport KernelInfo *AcquireKernelInfo(const char *kernel_string) |
| { |
| KernelInfo |
| *kernel; |
| |
| char |
| token[MaxTextExtent]; |
| |
| register long |
| i; |
| |
| const char |
| *p; |
| |
| MagickStatusType |
| flags; |
| |
| GeometryInfo |
| args; |
| |
| double |
| nan = sqrt((double)-1.0); /* Special Value : Not A Number */ |
| |
| if (kernel_string == (const char *) NULL) |
| { |
| kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); |
| if (kernel == (KernelInfo *)NULL) |
| return(kernel); |
| (void) ResetMagickMemory(kernel,0,sizeof(*kernel)); |
| kernel->type=UserDefinedKernel; |
| kernel->signature=MagickSignature; |
| return(kernel); |
| } |
| SetGeometryInfo(&args); |
| |
| /* does it start with an alpha - Return a builtin kernel */ |
| GetMagickToken(kernel_string,&p,token); |
| if (isalpha((int) ((unsigned char) *token)) != 0) |
| { |
| long |
| type; |
| |
| type=ParseMagickOption(MagickKernelOptions,MagickFalse,token); |
| if ( type < 0 || type == UserDefinedKernel ) |
| return((KernelInfo *)NULL); |
| |
| while (((isspace((int) ((unsigned char) *p)) != 0) || |
| (*p == ',') || (*p == ':' )) && (*p != '\0')) |
| p++; |
| flags = ParseGeometry(p, &args); |
| |
| /* special handling of missing values in input string */ |
| switch( type ) { |
| case RectangleKernel: |
| if ( (flags & WidthValue) == 0 ) /* if no width then */ |
| args.rho = args.sigma; /* then width = height */ |
| if ( args.rho < 1.0 ) /* if width too small */ |
| args.rho = 3; /* then width = 3 */ |
| if ( args.sigma < 1.0 ) /* if height too small */ |
| args.sigma = args.rho; /* then height = width */ |
| if ( (flags & XValue) == 0 ) /* center offset if not defined */ |
| args.xi = (double)(((long)args.rho-1)/2); |
| if ( (flags & YValue) == 0 ) |
| args.psi = (double)(((long)args.sigma-1)/2); |
| break; |
| case SquareKernel: |
| case DiamondKernel: |
| case DiskKernel: |
| case PlusKernel: |
| if ( (flags & HeightValue) == 0 ) /* if no scale */ |
| args.sigma = 1.0; /* then scale = 1.0 */ |
| break; |
| default: |
| break; |
| } |
| |
| return(AcquireKernelBuiltIn((KernelInfoType)type, &args)); |
| } |
| |
| kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); |
| if (kernel == (KernelInfo *)NULL) |
| return(kernel); |
| (void) ResetMagickMemory(kernel,0,sizeof(*kernel)); |
| kernel->type = UserDefinedKernel; |
| kernel->signature = MagickSignature; |
| |
| /* Has a ':' in argument - New user kernel specification */ |
| p = strchr(kernel_string, ':'); |
| if ( p != (char *) NULL) |
| { |
| /* ParseGeometry() needs the geometry separated! -- Arrgghh */ |
| memcpy(token, kernel_string, (size_t) (p-kernel_string)); |
| token[p-kernel_string] = '\0'; |
| flags = ParseGeometry(token, &args); |
| |
| /* Size handling and checks of geometry settings */ |
| if ( (flags & WidthValue) == 0 ) /* if no width then */ |
| args.rho = args.sigma; /* then width = height */ |
| if ( args.rho < 1.0 ) /* if width too small */ |
| args.rho = 1.0; /* then width = 1 */ |
| if ( args.sigma < 1.0 ) /* if height too small */ |
| args.sigma = args.rho; /* then height = width */ |
| kernel->width = (unsigned long)args.rho; |
| kernel->height = (unsigned long)args.sigma; |
| |
| /* Offset Handling and Checks */ |
| if ( args.xi < 0.0 || args.psi < 0.0 ) |
| return(DestroyKernelInfo(kernel)); |
| kernel->x = ((flags & XValue)!=0) ? (long)args.xi |
| : (long) (kernel->width-1)/2; |
| kernel->y = ((flags & YValue)!=0) ? (long)args.psi |
| : (long) (kernel->height-1)/2; |
| if ( kernel->x >= (long) kernel->width || |
| kernel->y >= (long) kernel->height ) |
| return(DestroyKernelInfo(kernel)); |
| |
| p++; /* advance beyond the ':' */ |
| } |
| else |
| { /* ELSE - Old old kernel specification, forming odd-square kernel */ |
| /* count up number of values given */ |
| p=(const char *) kernel_string; |
| while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\'')) |
| p++; /* ignore "'" chars for convolve filter usage - Cristy */ |
| for (i=0; *p != '\0'; i++) |
| { |
| GetMagickToken(p,&p,token); |
| if (*token == ',') |
| GetMagickToken(p,&p,token); |
| } |
| /* set the size of the kernel - old sized square */ |
| kernel->width = kernel->height= (unsigned long) sqrt((double) i+1.0); |
| kernel->x = kernel->y = (long) (kernel->width-1)/2; |
| p=(const char *) kernel_string; |
| while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\'')) |
| p++; /* ignore "'" chars for convolve filter usage - Cristy */ |
| } |
| |
| /* Read in the kernel values from rest of input string argument */ |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| kernel->minimum = +MagickHuge; |
| kernel->maximum = -MagickHuge; |
| kernel->negative_range = kernel->positive_range = 0.0; |
| for (i=0; (i < (long) (kernel->width*kernel->height)) && (*p != '\0'); i++) |
| { |
| GetMagickToken(p,&p,token); |
| if (*token == ',') |
| GetMagickToken(p,&p,token); |
| if ( LocaleCompare("nan",token) == 0 |
| || LocaleCompare("-",token) == 0 ) { |
| kernel->values[i] = nan; /* do not include this value in kernel */ |
| } |
| else { |
| kernel->values[i] = StringToDouble(token); |
| ( kernel->values[i] < 0) |
| ? ( kernel->negative_range += kernel->values[i] ) |
| : ( kernel->positive_range += kernel->values[i] ); |
| Minimize(kernel->minimum, kernel->values[i]); |
| Maximize(kernel->maximum, kernel->values[i]); |
| } |
| } |
| /* check that we recieved at least one real (non-nan) value! */ |
| if ( kernel->minimum == MagickHuge ) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* This should not be needed for a fully defined kernel |
| * Perhaps an error should be reported instead! |
| * Kept for backward compatibility. |
| */ |
| if ( i < (long) (kernel->width*kernel->height) ) { |
| Minimize(kernel->minimum, kernel->values[i]); |
| Maximize(kernel->maximum, kernel->values[i]); |
| for ( ; i < (long) (kernel->width*kernel->height); i++) |
| kernel->values[i]=0.0; |
| } |
| |
| return(kernel); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % A c q u i r e K e r n e l B u i l t I n % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % AcquireKernelBuiltIn() returned one of the 'named' built-in types of |
| % kernels used for special purposes such as gaussian blurring, skeleton |
| % pruning, and edge distance determination. |
| % |
| % They take a KernelType, and a set of geometry style arguments, which were |
| % typically decoded from a user supplied string, or from a more complex |
| % Morphology Method that was requested. |
| % |
| % The format of the AcquireKernalBuiltIn method is: |
| % |
| % KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type, |
| % const GeometryInfo args) |
| % |
| % A description of each parameter follows: |
| % |
| % o type: the pre-defined type of kernel wanted |
| % |
| % o args: arguments defining or modifying the kernel |
| % |
| % Convolution Kernels |
| % |
| % Gaussian "{radius},{sigma}" |
| % Generate a two-dimentional gaussian kernel, as used by -gaussian |
| % A sigma is required, (with the 'x'), due to historical reasons. |
| % |
| % NOTE: that the 'radius' is optional, but if provided can limit (clip) |
| % the final size of the resulting kernel to a square 2*radius+1 in size. |
| % The radius should be at least 2 times that of the sigma value, or |
| % sever clipping and aliasing may result. If not given or set to 0 the |
| % radius will be determined so as to produce the best minimal error |
| % result, which is usally much larger than is normally needed. |
| % |
| % Blur "{radius},{sigma},{angle}" |
| % As per Gaussian, but generates a 1 dimensional or linear gaussian |
| % blur, at the angle given (current restricted to orthogonal angles). |
| % If a 'radius' is given the kernel is clipped to a width of 2*radius+1. |
| % |
| % NOTE that two such blurs perpendicular to each other is equivelent to |
| % -blur and the previous gaussian, but is often 10 or more times faster. |
| % |
| % Comet "{width},{sigma},{angle}" |
| % Blur in one direction only, mush like how a bright object leaves |
| % a comet like trail. The Kernel is actually half a gaussian curve, |
| % Adding two such blurs in oppiste directions produces a Linear Blur. |
| % |
| % NOTE: that the first argument is the width of the kernel and not the |
| % radius of the kernel. |
| % |
| % # Still to be implemented... |
| % # |
| % # Sharpen "{radius},{sigma} |
| % # Negated Gaussian (center zeroed and re-normalized), |
| % # with a 2 unit positive peak. -- Check On line documentation |
| % # |
| % # Laplacian "{radius},{sigma}" |
| % # Laplacian (a mexican hat like) Function |
| % # |
| % # LOG "{radius},{sigma1},{sigma2} |
| % # Laplacian of Gaussian |
| % # |
| % # DOG "{radius},{sigma1},{sigma2} |
| % # Difference of two Gaussians |
| % # |
| % # Filter2D |
| % # Filter1D |
| % # Set kernel values using a resize filter, and given scale (sigma) |
| % # Cylindrical or Linear. Is this posible with an image? |
| % # |
| % |
| % Boolean Kernels |
| % |
| % Rectangle "{geometry}" |
| % Simply generate a rectangle of 1's with the size given. You can also |
| % specify the location of the 'control point', otherwise the closest |
| % pixel to the center of the rectangle is selected. |
| % |
| % Properly centered and odd sized rectangles work the best. |
| % |
| % Diamond "[{radius}[,{scale}]]" |
| % Generate a diamond shaped kernal with given radius to the points. |
| % Kernel size will again be radius*2+1 square and defaults to radius 1, |
| % generating a 3x3 kernel that is slightly larger than a square. |
| % |
| % Square "[{radius}[,{scale}]]" |
| % Generate a square shaped kernel of size radius*2+1, and defaulting |
| % to a 3x3 (radius 1). |
| % |
| % Note that using a larger radius for the "Square" or the "Diamond" |
| % is also equivelent to iterating the basic morphological method |
| % that many times. However However iterating with the smaller radius 1 |
| % default is actually faster than using a larger kernel radius. |
| % |
| % Disk "[{radius}[,{scale}]] |
| % Generate a binary disk of the radius given, radius may be a float. |
| % Kernel size will be ceil(radius)*2+1 square. |
| % NOTE: Here are some disk shapes of specific interest |
| % "disk:1" => "diamond" or "cross:1" |
| % "disk:1.5" => "square" |
| % "disk:2" => "diamond:2" |
| % "disk:2.5" => a general disk shape of radius 2 |
| % "disk:2.9" => "square:2" |
| % "disk:3.5" => default - octagonal/disk shape of radius 3 |
| % "disk:4.2" => roughly octagonal shape of radius 4 |
| % "disk:4.3" => a general disk shape of radius 4 |
| % After this all the kernel shape becomes more and more circular. |
| % |
| % Because a "disk" is more circular when using a larger radius, using a |
| % larger radius is preferred over iterating the morphological operation. |
| % |
| % Plus "[{radius}[,{scale}]]" |
| % Generate a kernel in the shape of a 'plus' sign. The length of each |
| % arm is also the radius, which defaults to 2. |
| % |
| % This kernel is not a good general morphological kernel, but is used |
| % more for highlighting and marking any single pixels in an image using, |
| % a "Dilate" or "Erode" method as appropriate. |
| % |
| % NOTE: "plus:1" is equivelent to a "Diamond" kernel. |
| % |
| % Note that unlike other kernels iterating a plus does not produce the |
| % same result as using a larger radius for the cross. |
| % |
| % Distance Measuring Kernels |
| % |
| % Chebyshev "[{radius}][x{scale}]" largest x or y distance (default r=1) |
| % Manhatten "[{radius}][x{scale}]" square grid distance (default r=1) |
| % Euclidean "[{radius}][x{scale}]" direct distance (default r=1) |
| % |
| % Different types of distance measuring methods, which are used with the |
| % a 'Distance' morphology method for generating a gradient based on |
| % distance from an edge of a binary shape, though there is a technique |
| % for handling a anti-aliased shape. |
| % |
| % Chebyshev Distance (also known as Tchebychev Distance) is a value of |
| % one to any neighbour, orthogonal or diagonal. One why of thinking of |
| % it is the number of squares a 'King' or 'Queen' in chess needs to |
| % traverse reach any other position on a chess board. It results in a |
| % 'square' like distance function, but one where diagonals are closer |
| % than expected. |
| % |
| % Manhatten Distance (also known as Rectilinear Distance, or the Taxi |
| % Cab metric), is the distance needed when you can only travel in |
| % orthogonal (horizontal or vertical) only. It is the distance a 'Rook' |
| % in chess would travel. It results in a diamond like distances, where |
| % diagonals are further than expected. |
| % |
| % Euclidean Distance is the 'direct' or 'as the crow flys distance. |
| % However by default the kernel size only has a radius of 1, which |
| % limits the distance to 'Knight' like moves, with only orthogonal and |
| % diagonal measurements being correct. As such for the default kernel |
| % you will get octagonal like distance function, which is reasonally |
| % accurate. |
| % |
| % However if you use a larger radius such as "Euclidean:4" you will |
| % get a much smoother distance gradient from the edge of the shape. |
| % Of course a larger kernel is slower to use, and generally not needed. |
| % |
| % To allow the use of fractional distances that you get with diagonals |
| % the actual distance is scaled by a fixed value which the user can |
| % provide. This is not actually nessary for either ""Chebyshev" or |
| % "Manhatten" distance kernels, but is done for all three distance |
| % kernels. If no scale is provided it is set to a value of 100, |
| % allowing for a maximum distance measurement of 655 pixels using a Q16 |
| % version of IM, from any edge. However for small images this can |
| % result in quite a dark gradient. |
| % |
| % See the 'Distance' Morphological Method, for information of how it is |
| % applied. |
| % |
| % # Hit-n-Miss Kernel-Lists -- Still to be implemented |
| % # |
| % # specifically for Pruning, Thinning, Thickening |
| % # |
| */ |
| |
| MagickExport KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type, |
| const GeometryInfo *args) |
| { |
| KernelInfo |
| *kernel; |
| |
| register long |
| i; |
| |
| register long |
| u, |
| v; |
| |
| double |
| nan = sqrt((double)-1.0); /* Special Value : Not A Number */ |
| |
| kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| (void) ResetMagickMemory(kernel,0,sizeof(*kernel)); |
| kernel->minimum = kernel->maximum = 0.0; |
| kernel->negative_range = kernel->positive_range = 0.0; |
| kernel->type = type; |
| kernel->signature = MagickSignature; |
| |
| switch(type) { |
| /* Convolution Kernels */ |
| case GaussianKernel: |
| { double |
| sigma = fabs(args->sigma); |
| |
| sigma = (sigma <= MagickEpsilon) ? 1.0 : sigma; |
| |
| kernel->width = kernel->height = |
| GetOptimalKernelWidth2D(args->rho,sigma); |
| kernel->x = kernel->y = (long) (kernel->width-1)/2; |
| kernel->negative_range = kernel->positive_range = 0.0; |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| sigma = 2.0*sigma*sigma; /* simplify the expression */ |
| for ( i=0, v=-kernel->y; v <= (long)kernel->y; v++) |
| for ( u=-kernel->x; u <= (long)kernel->x; u++, i++) |
| kernel->positive_range += ( |
| kernel->values[i] = |
| exp(-((double)(u*u+v*v))/sigma) |
| /* / (MagickPI*sigma) */ ); |
| kernel->minimum = 0; |
| kernel->maximum = kernel->values[ |
| kernel->y*kernel->width+kernel->x ]; |
| |
| ScaleKernelInfo(kernel, 1.0, NormalizeValue); /* Normalize */ |
| |
| break; |
| } |
| case BlurKernel: |
| { double |
| sigma = fabs(args->sigma); |
| |
| sigma = (sigma <= MagickEpsilon) ? 1.0 : sigma; |
| |
| kernel->width = GetOptimalKernelWidth1D(args->rho,sigma); |
| kernel->x = (long) (kernel->width-1)/2; |
| kernel->height = 1; |
| kernel->y = 0; |
| kernel->negative_range = kernel->positive_range = 0.0; |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| #if 1 |
| #define KernelRank 3 |
| /* Formula derived from GetBlurKernel() in "effect.c" (plus bug fix). |
| ** It generates a gaussian 3 times the width, and compresses it into |
| ** the expected range. This produces a closer normalization of the |
| ** resulting kernel, especially for very low sigma values. |
| ** As such while wierd it is prefered. |
| ** |
| ** I am told this method originally came from Photoshop. |
| */ |
| sigma *= KernelRank; /* simplify expanded curve */ |
| v = (long) (kernel->width*KernelRank-1)/2; /* start/end points to fit range */ |
| (void) ResetMagickMemory(kernel->values,0, (size_t) |
| kernel->width*sizeof(double)); |
| for ( u=-v; u <= v; u++) { |
| kernel->values[(u+v)/KernelRank] += |
| exp(-((double)(u*u))/(2.0*sigma*sigma)) |
| /* / (MagickSQ2PI*sigma/KernelRank) */ ; |
| } |
| for (i=0; i < (long) kernel->width; i++) |
| kernel->positive_range += kernel->values[i]; |
| #else |
| for ( i=0, u=-kernel->x; i < kernel->width; i++, u++) |
| kernel->positive_range += ( |
| kernel->values[i] = |
| exp(-((double)(u*u))/(2.0*sigma*sigma)) |
| /* / (MagickSQ2PI*sigma) */ ); |
| #endif |
| kernel->minimum = 0; |
| kernel->maximum = kernel->values[ kernel->x ]; |
| /* Note that neither methods above generate a normalized kernel, |
| ** though it gets close. The kernel may be 'clipped' by a user defined |
| ** radius, producing a smaller (darker) kernel. Also for very small |
| ** sigma's (> 0.1) the central value becomes larger than one, and thus |
| ** producing a very bright kernel. |
| */ |
| |
| /* Normalize the 1D Gaussian Kernel |
| ** |
| ** Because of this the divisor in the above kernel generator is |
| ** not needed, so is not done above. |
| */ |
| ScaleKernelInfo(kernel, 1.0, NormalizeValue); /* Normalize */ |
| |
| /* rotate the kernel by given angle */ |
| RotateKernelInfo(kernel, args->xi); |
| break; |
| } |
| case CometKernel: |
| { double |
| sigma = fabs(args->sigma); |
| |
| sigma = (sigma <= MagickEpsilon) ? 1.0 : sigma; |
| |
| if ( args->rho < 1.0 ) |
| kernel->width = GetOptimalKernelWidth1D(args->rho,sigma); |
| else |
| kernel->width = (unsigned long)args->rho; |
| kernel->x = kernel->y = 0; |
| kernel->height = 1; |
| kernel->negative_range = kernel->positive_range = 0.0; |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* A comet blur is half a gaussian curve, so that the object is |
| ** blurred in one direction only. This may not be quite the right |
| ** curve so may change in the future. The function must be normalised. |
| */ |
| #if 1 |
| #define KernelRank 3 |
| sigma *= KernelRank; /* simplify expanded curve */ |
| v = (long) kernel->width*KernelRank; /* start/end points to fit range */ |
| (void) ResetMagickMemory(kernel->values,0, (size_t) |
| kernel->width*sizeof(double)); |
| for ( u=0; u < v; u++) { |
| kernel->values[u/KernelRank] += |
| exp(-((double)(u*u))/(2.0*sigma*sigma)) |
| /* / (MagickSQ2PI*sigma/KernelRank) */ ; |
| } |
| for (i=0; i < (long) kernel->width; i++) |
| kernel->positive_range += kernel->values[i]; |
| #else |
| for ( i=0; i < (long) kernel->width; i++) |
| kernel->positive_range += ( |
| kernel->values[i] = |
| exp(-((double)(i*i))/(2.0*sigma*sigma)) |
| /* / (MagickSQ2PI*sigma) */ ); |
| #endif |
| kernel->minimum = 0; |
| kernel->maximum = kernel->values[0]; |
| |
| ScaleKernelInfo(kernel, 1.0, NormalizeValue); /* Normalize */ |
| RotateKernelInfo(kernel, args->xi); /* Rotate by angle */ |
| break; |
| } |
| /* Boolean Kernels */ |
| case RectangleKernel: |
| case SquareKernel: |
| { |
| double scale; |
| if ( type == SquareKernel ) |
| { |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 3; /* default radius = 1 */ |
| else |
| kernel->width = kernel->height = (unsigned long) (2*args->rho+1); |
| kernel->x = kernel->y = (long) (kernel->width-1)/2; |
| scale = args->sigma; |
| } |
| else { |
| /* NOTE: user defaults set in "AcquireKernelInfo()" */ |
| if ( args->rho < 1.0 || args->sigma < 1.0 ) |
| return(DestroyKernelInfo(kernel)); /* invalid args given */ |
| kernel->width = (unsigned long)args->rho; |
| kernel->height = (unsigned long)args->sigma; |
| if ( args->xi < 0.0 || args->xi > (double)kernel->width || |
| args->psi < 0.0 || args->psi > (double)kernel->height ) |
| return(DestroyKernelInfo(kernel)); /* invalid args given */ |
| kernel->x = (long) args->xi; |
| kernel->y = (long) args->psi; |
| scale = 1.0; |
| } |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* set all kernel values to 1.0 */ |
| u=(long) kernel->width*kernel->height; |
| for ( i=0; i < u; i++) |
| kernel->values[i] = scale; |
| kernel->minimum = kernel->maximum = scale; /* a flat shape */ |
| kernel->positive_range = scale*u; |
| break; |
| } |
| case DiamondKernel: |
| { |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 3; /* default radius = 1 */ |
| else |
| kernel->width = kernel->height = ((unsigned long)args->rho)*2+1; |
| kernel->x = kernel->y = (long) (kernel->width-1)/2; |
| |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* set all kernel values within diamond area to scale given */ |
| for ( i=0, v=-kernel->y; v <= (long)kernel->y; v++) |
| for ( u=-kernel->x; u <= (long)kernel->x; u++, i++) |
| if ((labs(u)+labs(v)) <= (long)kernel->x) |
| kernel->positive_range += kernel->values[i] = args->sigma; |
| else |
| kernel->values[i] = nan; |
| kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ |
| break; |
| } |
| case DiskKernel: |
| { |
| long |
| limit; |
| |
| limit = (long)(args->rho*args->rho); |
| if (args->rho < 0.1) /* default radius approx 3.5 */ |
| kernel->width = kernel->height = 7L, limit = 10L; |
| else |
| kernel->width = kernel->height = ((unsigned long)args->rho)*2+1; |
| kernel->x = kernel->y = (long) (kernel->width-1)/2; |
| |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* set all kernel values within disk area to 1.0 */ |
| for ( i=0, v= -kernel->y; v <= (long)kernel->y; v++) |
| for ( u=-kernel->x; u <= (long)kernel->x; u++, i++) |
| if ((u*u+v*v) <= limit) |
| kernel->positive_range += kernel->values[i] = args->sigma; |
| else |
| kernel->values[i] = nan; |
| kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ |
| break; |
| } |
| case PlusKernel: |
| { |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 5; /* default radius 2 */ |
| else |
| kernel->width = kernel->height = ((unsigned long)args->rho)*2+1; |
| kernel->x = kernel->y = (long) (kernel->width-1)/2; |
| |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* set all kernel values along axises to 1.0 */ |
| for ( i=0, v=-kernel->y; v <= (long)kernel->y; v++) |
| for ( u=-kernel->x; u <= (long)kernel->x; u++, i++) |
| kernel->values[i] = (u == 0 || v == 0) ? args->sigma : nan; |
| kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ |
| kernel->positive_range = args->sigma*(kernel->width*2.0 - 1.0); |
| break; |
| } |
| /* Distance Measuring Kernels */ |
| case ChebyshevKernel: |
| { |
| double |
| scale; |
| |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 3; /* default radius = 1 */ |
| else |
| kernel->width = kernel->height = ((unsigned long)args->rho)*2+1; |
| kernel->x = kernel->y = (long) (kernel->width-1)/2; |
| |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| scale = (args->sigma < 1.0) ? 100.0 : args->sigma; |
| for ( i=0, v=-kernel->y; v <= (long)kernel->y; v++) |
| for ( u=-kernel->x; u <= (long)kernel->x; u++, i++) |
| kernel->positive_range += ( kernel->values[i] = |
| scale*((labs(u)>labs(v)) ? labs(u) : labs(v)) ); |
| kernel->maximum = kernel->values[0]; |
| break; |
| } |
| case ManhattenKernel: |
| { |
| double |
| scale; |
| |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 3; /* default radius = 1 */ |
| else |
| kernel->width = kernel->height = ((unsigned long)args->rho)*2+1; |
| kernel->x = kernel->y = (long) (kernel->width-1)/2; |
| |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| scale = (args->sigma < 1.0) ? 100.0 : args->sigma; |
| for ( i=0, v=-kernel->y; v <= (long)kernel->y; v++) |
| for ( u=-kernel->x; u <= (long)kernel->x; u++, i++) |
| kernel->positive_range += ( kernel->values[i] = |
| scale*(labs(u)+labs(v)) ); |
| kernel->maximum = kernel->values[0]; |
| break; |
| } |
| case EuclideanKernel: |
| { |
| double |
| scale; |
| |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 3; /* default radius = 1 */ |
| else |
| kernel->width = kernel->height = ((unsigned long)args->rho)*2+1; |
| kernel->x = kernel->y = (long) (kernel->width-1)/2; |
| |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| scale = (args->sigma < 1.0) ? 100.0 : args->sigma; |
| for ( i=0, v=-kernel->y; v <= (long)kernel->y; v++) |
| for ( u=-kernel->x; u <= (long)kernel->x; u++, i++) |
| kernel->positive_range += ( kernel->values[i] = |
| scale*sqrt((double)(u*u+v*v)) ); |
| kernel->maximum = kernel->values[0]; |
| break; |
| } |
| /* Undefined Kernels */ |
| case LaplacianKernel: |
| case LOGKernel: |
| case DOGKernel: |
| perror("Kernel Type has not been defined yet"); |
| /* FALL THRU */ |
| default: |
| /* Generate a No-Op minimal kernel - 1x1 pixel */ |
| kernel->values=(double *)AcquireQuantumMemory((size_t)1,sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| kernel->width = kernel->height = 1; |
| kernel->x = kernel->x = 0; |
| kernel->type = UndefinedKernel; |
| kernel->maximum = |
| kernel->positive_range = |
| kernel->values[0] = 1.0; /* a flat single-point no-op kernel! */ |
| break; |
| } |
| |
| return(kernel); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % C l o n e K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % CloneKernelInfo() creates a new clone of the given Kernel so that its can |
| % be modified without effecting the original. The cloned kernel should be |
| % destroyed using DestoryKernelInfo() when no longer needed. |
| % |
| % The format of the CloneKernelInfo method is: |
| % |
| % KernelInfo *CloneKernelInfo(const KernelInfo *kernel) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel to be cloned |
| % |
| */ |
| MagickExport KernelInfo *CloneKernelInfo(const KernelInfo *kernel) |
| { |
| register long |
| i; |
| |
| KernelInfo |
| *kernel_info; |
| |
| assert(kernel != (KernelInfo *) NULL); |
| kernel_info=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); |
| if (kernel_info == (KernelInfo *) NULL) |
| return(kernel_info); |
| *kernel_info=(*kernel); /* copy values in structure */ |
| kernel_info->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel_info->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel_info)); |
| for (i=0; i < (long) (kernel->width*kernel->height); i++) |
| kernel_info->values[i]=kernel->values[i]; |
| return(kernel_info); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % D e s t r o y K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % DestroyKernelInfo() frees the memory used by a Convolution/Morphology |
| % kernel. |
| % |
| % The format of the DestroyKernelInfo method is: |
| % |
| % KernelInfo *DestroyKernelInfo(KernelInfo *kernel) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel to be destroyed |
| % |
| */ |
| |
| MagickExport KernelInfo *DestroyKernelInfo(KernelInfo *kernel) |
| { |
| assert(kernel != (KernelInfo *) NULL); |
| |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| kernel->values=(double *)RelinquishMagickMemory(kernel->values); |
| kernel=(KernelInfo *) RelinquishMagickMemory(kernel); |
| return(kernel); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % M o r p h o l o g y I m a g e C h a n n e l % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % MorphologyImageChannel() applies a user supplied kernel to the image |
| % according to the given mophology method. |
| % |
| % The given kernel is assumed to have been pre-scaled appropriatally, usally |
| % by the kernel generator. |
| % |
| % The format of the MorphologyImage method is: |
| % |
| % Image *MorphologyImage(const Image *image,MorphologyMethod method, |
| % const long iterations,KernelInfo *kernel,ExceptionInfo *exception) |
| % Image *MorphologyImageChannel(const Image *image, const ChannelType |
| % channel,MorphologyMethod method,const long iterations, |
| % KernelInfo *kernel,ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o method: the morphology method to be applied. |
| % |
| % o iterations: apply the operation this many times (or no change). |
| % A value of -1 means loop until no change found. |
| % How this is applied may depend on the morphology method. |
| % Typically this is a value of 1. |
| % |
| % o channel: the channel type. |
| % |
| % o kernel: An array of double representing the morphology kernel. |
| % Warning: kernel may be normalized for the Convolve method. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| % |
| % TODO: bias and auto-scale handling of the kernel for convolution |
| % The given kernel is assumed to have been pre-scaled appropriatally, usally |
| % by the kernel generator. |
| % |
| */ |
| |
| |
| /* Internal function |
| * Apply the Low-Level Morphology Method using the given Kernel |
| * Returning the number of pixels that changed. |
| * Two pre-created images must be provided, no image is created. |
| */ |
| static unsigned long MorphologyApply(const Image *image, Image |
| *result_image, const MorphologyMethod method, const ChannelType channel, |
| const KernelInfo *kernel, ExceptionInfo *exception) |
| { |
| #define MorphologyTag "Morphology/Image" |
| |
| long |
| progress, |
| y, offx, offy, |
| changed; |
| |
| MagickBooleanType |
| status; |
| |
| MagickPixelPacket |
| bias; |
| |
| CacheView |
| *p_view, |
| *q_view; |
| |
| /* Only the most basic morphology is actually performed by this routine */ |
| |
| /* |
| Apply Basic Morphology to Image. |
| */ |
| status=MagickTrue; |
| changed=0; |
| progress=0; |
| |
| GetMagickPixelPacket(image,&bias); |
| SetMagickPixelPacketBias(image,&bias); |
| /* Future: handle auto-bias from user, based on kernel input */ |
| |
| p_view=AcquireCacheView(image); |
| q_view=AcquireCacheView(result_image); |
| |
| /* Some methods (including convolve) needs use a reflected kernel. |
| * Adjust 'origin' offsets for this reflected kernel. |
| */ |
| offx = kernel->x; |
| offy = kernel->y; |
| switch(method) { |
| case ErodeMorphology: |
| case ErodeIntensityMorphology: |
| /* kernel is user as is, without reflection */ |
| break; |
| case ConvolveMorphology: |
| case DilateMorphology: |
| case DilateIntensityMorphology: |
| case DistanceMorphology: |
| /* kernel needs to used with reflection */ |
| offx = (long) kernel->width-offx-1; |
| offy = (long) kernel->height-offy-1; |
| break; |
| default: |
| perror("Not a low level Morpholgy Method"); |
| break; |
| } |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel for schedule(dynamic,4) shared(progress,status) |
| #endif |
| for (y=0; y < (long) image->rows; y++) |
| { |
| MagickBooleanType |
| sync; |
| |
| register const PixelPacket |
| *restrict p; |
| |
| register const IndexPacket |
| *restrict p_indexes; |
| |
| register PixelPacket |
| *restrict q; |
| |
| register IndexPacket |
| *restrict q_indexes; |
| |
| register long |
| x; |
| |
| unsigned long |
| r; |
| |
| if (status == MagickFalse) |
| continue; |
| p=GetCacheViewVirtualPixels(p_view, -offx, y-offy, |
| image->columns+kernel->width, kernel->height, exception); |
| q=GetCacheViewAuthenticPixels(q_view,0,y,result_image->columns,1, |
| exception); |
| if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL)) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| p_indexes=GetCacheViewVirtualIndexQueue(p_view); |
| q_indexes=GetCacheViewAuthenticIndexQueue(q_view); |
| r = (image->columns+kernel->width)*offy+offx; /* constant */ |
| |
| for (x=0; x < (long) image->columns; x++) |
| { |
| long |
| v; |
| |
| register long |
| u; |
| |
| register const double |
| *restrict k; |
| |
| register const PixelPacket |
| *restrict k_pixels; |
| |
| register const IndexPacket |
| *restrict k_indexes; |
| |
| MagickPixelPacket |
| result; |
| |
| /* Copy input to ouput image for unused channels |
| * This removes need for 'cloning' a new image every iteration |
| */ |
| *q = p[r]; |
| if (image->colorspace == CMYKColorspace) |
| q_indexes[x] = p_indexes[r]; |
| |
| result.green=(MagickRealType) 0; |
| result.blue=(MagickRealType) 0; |
| result.opacity=(MagickRealType) 0; |
| result.index=(MagickRealType) 0; |
| switch (method) { |
| case ConvolveMorphology: |
| /* Set the user defined bias of the weighted average output |
| ** |
| ** FUTURE: provide some way for internal functions to disable |
| ** user defined bias and scaling effects. |
| */ |
| result=bias; |
| break; |
| case DilateMorphology: |
| result.red = |
| result.green = |
| result.blue = |
| result.opacity = |
| result.index = -MagickHuge; |
| break; |
| case ErodeMorphology: |
| result.red = |
| result.green = |
| result.blue = |
| result.opacity = |
| result.index = +MagickHuge; |
| break; |
| case DilateIntensityMorphology: |
| case ErodeIntensityMorphology: |
| result.red = 0.0; /* flag indicating first match found */ |
| break; |
| default: |
| /* Otherwise just start with the original pixel value */ |
| result.red = (MagickRealType) p[r].red; |
| result.green = (MagickRealType) p[r].green; |
| result.blue = (MagickRealType) p[r].blue; |
| result.opacity = QuantumRange - (MagickRealType) p[r].opacity; |
| if ( image->colorspace == CMYKColorspace) |
| result.index = (MagickRealType) p_indexes[r]; |
| break; |
| } |
| |
| switch ( method ) { |
| case ConvolveMorphology: |
| /* Weighted Average of pixels using reflected kernel |
| ** |
| ** NOTE for correct working of this operation for asymetrical |
| ** kernels, the kernel needs to be applied in its reflected form. |
| ** That is its values needs to be reversed. |
| ** |
| ** Correlation is actually the same as this but without reflecting |
| ** the kernel, and thus 'lower-level' that Convolution. However |
| ** as Convolution is the more common method used, and it does not |
| ** really cost us much in terms of processing to use a reflected |
| ** kernel it is Convolution that is implemented. |
| ** |
| ** Correlation will have its kernel reflected before calling |
| ** this function to do a Convolve. |
| ** |
| ** For more details of Correlation vs Convolution see |
| ** http://www.cs.umd.edu/~djacobs/CMSC426/Convolution.pdf |
| */ |
| if (((channel & OpacityChannel) == 0) || |
| (image->matte == MagickFalse)) |
| { |
| /* Convolution without transparency effects */ |
| k = &kernel->values[ kernel->width*kernel->height-1 ]; |
| k_pixels = p; |
| k_indexes = p_indexes; |
| for (v=0; v < (long) kernel->height; v++) { |
| for (u=0; u < (long) kernel->width; u++, k--) { |
| if ( IsNan(*k) ) continue; |
| result.red += (*k)*k_pixels[u].red; |
| result.green += (*k)*k_pixels[u].green; |
| result.blue += (*k)*k_pixels[u].blue; |
| /* result.opacity += not involved here */ |
| if ( image->colorspace == CMYKColorspace) |
| result.index += (*k)*k_indexes[u]; |
| } |
| k_pixels += image->columns+kernel->width; |
| k_indexes += image->columns+kernel->width; |
| } |
| } |
| else |
| { /* Kernel & Alpha weighted Convolution */ |
| MagickRealType |
| alpha, /* alpha value * kernel weighting */ |
| gamma; /* weighting divisor */ |
| |
| gamma=0.0; |
| k = &kernel->values[ kernel->width*kernel->height-1 ]; |
| k_pixels = p; |
| k_indexes = p_indexes; |
| for (v=0; v < (long) kernel->height; v++) { |
| for (u=0; u < (long) kernel->width; u++, k--) { |
| if ( IsNan(*k) ) continue; |
| alpha=(*k)*(QuantumScale*(QuantumRange- |
| k_pixels[u].opacity)); |
| gamma += alpha; |
| result.red += alpha*k_pixels[u].red; |
| result.green += alpha*k_pixels[u].green; |
| result.blue += alpha*k_pixels[u].blue; |
| result.opacity += (*k)*(QuantumRange-k_pixels[u].opacity); |
| if ( image->colorspace == CMYKColorspace) |
| result.index += alpha*k_indexes[u]; |
| } |
| k_pixels += image->columns+kernel->width; |
| k_indexes += image->columns+kernel->width; |
| } |
| gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma); |
| result.red *= gamma; |
| result.green *= gamma; |
| result.blue *= gamma; |
| result.opacity *= gamma; |
| result.index *= gamma; |
| } |
| break; |
| |
| case ErodeMorphology: |
| /* Minimize Value within kernel neighbourhood |
| ** |
| ** NOTE that the kernel is not reflected for this operation! |
| ** |
| ** NOTE: in normal Greyscale Morphology, the kernel value should |
| ** be added to the real value, this is currently not done, due to |
| ** the nature of the boolean kernels being used. |
| */ |
| k = kernel->values; |
| k_pixels = p; |
| k_indexes = p_indexes; |
| for (v=0; v < (long) kernel->height; v++) { |
| for (u=0; u < (long) kernel->width; u++, k++) { |
| if ( IsNan(*k) || (*k) < 0.5 ) continue; |
| Minimize(result.red, (double) k_pixels[u].red); |
| Minimize(result.green, (double) k_pixels[u].green); |
| Minimize(result.blue, (double) k_pixels[u].blue); |
| Minimize(result.opacity, QuantumRange-(double) k_pixels[u].opacity); |
| if ( image->colorspace == CMYKColorspace) |
| Minimize(result.index, (double) k_indexes[u]); |
| } |
| k_pixels += image->columns+kernel->width; |
| k_indexes += image->columns+kernel->width; |
| } |
| break; |
| |
| case DilateMorphology: |
| /* Maximize Value within kernel neighbourhood |
| ** |
| ** NOTE for correct working of this operation for asymetrical |
| ** kernels, the kernel needs to be applied in its reflected form. |
| ** That is its values needs to be reversed. |
| ** |
| ** NOTE: in normal Greyscale Morphology, the kernel value should |
| ** be added to the real value, this is currently not done, due to |
| ** the nature of the boolean kernels being used. |
| ** |
| */ |
| k = &kernel->values[ kernel->width*kernel->height-1 ]; |
| k_pixels = p; |
| k_indexes = p_indexes; |
| for (v=0; v < (long) kernel->height; v++) { |
| for (u=0; u < (long) kernel->width; u++, k--) { |
| if ( IsNan(*k) || (*k) < 0.5 ) continue; |
| Maximize(result.red, (double) k_pixels[u].red); |
| Maximize(result.green, (double) k_pixels[u].green); |
| Maximize(result.blue, (double) k_pixels[u].blue); |
| Maximize(result.opacity, QuantumRange-(double) k_pixels[u].opacity); |
| if ( image->colorspace == CMYKColorspace) |
| Maximize(result.index, (double) k_indexes[u]); |
| } |
| k_pixels += image->columns+kernel->width; |
| k_indexes += image->columns+kernel->width; |
| } |
| break; |
| |
| case ErodeIntensityMorphology: |
| /* Select Pixel with Minimum Intensity within kernel neighbourhood |
| ** |
| ** WARNING: the intensity test fails for CMYK and does not |
| ** take into account the moderating effect of teh alpha channel |
| ** on the intensity. |
| ** |
| ** NOTE that the kernel is not reflected for this operation! |
| */ |
| k = kernel->values; |
| k_pixels = p; |
| k_indexes = p_indexes; |
| for (v=0; v < (long) kernel->height; v++) { |
| for (u=0; u < (long) kernel->width; u++, k++) { |
| if ( IsNan(*k) || (*k) < 0.5 ) continue; |
| if ( result.red == 0.0 || |
| PixelIntensity(&(k_pixels[u])) < PixelIntensity(q) ) { |
| /* copy the whole pixel - no channel selection */ |
| *q = k_pixels[u]; |
| if ( result.red > 0.0 ) changed++; |
| result.red = 1.0; |
| } |
| } |
| k_pixels += image->columns+kernel->width; |
| k_indexes += image->columns+kernel->width; |
| } |
| break; |
| |
| case DilateIntensityMorphology: |
| /* Select Pixel with Maximum Intensity within kernel neighbourhood |
| ** |
| ** WARNING: the intensity test fails for CMYK and does not |
| ** take into account the moderating effect of teh alpha channel |
| ** on the intensity. |
| ** |
| ** NOTE for correct working of this operation for asymetrical |
| ** kernels, the kernel needs to be applied in its reflected form. |
| ** That is its values needs to be reversed. |
| */ |
| k = &kernel->values[ kernel->width*kernel->height-1 ]; |
| k_pixels = p; |
| k_indexes = p_indexes; |
| for (v=0; v < (long) kernel->height; v++) { |
| for (u=0; u < (long) kernel->width; u++, k--) { |
| if ( IsNan(*k) || (*k) < 0.5 ) continue; /* boolean kernel */ |
| if ( result.red == 0.0 || |
| PixelIntensity(&(k_pixels[u])) > PixelIntensity(q) ) { |
| /* copy the whole pixel - no channel selection */ |
| *q = k_pixels[u]; |
| if ( result.red > 0.0 ) changed++; |
| result.red = 1.0; |
| } |
| } |
| k_pixels += image->columns+kernel->width; |
| k_indexes += image->columns+kernel->width; |
| } |
| break; |
| |
| case DistanceMorphology: |
| /* Add kernel Value and select the minimum value found. |
| ** The result is a iterative distance from edge of image shape. |
| ** |
| ** All Distance Kernels are symetrical, but that may not always |
| ** be the case. For example how about a distance from left edges? |
| ** To work correctly with asymetrical kernels the reflected kernel |
| ** needs to be applied. |
| */ |
| #if 0 |
| /* No need to do distance morphology if original value is zero |
| ** Unfortunatally I have not been able to get this right |
| ** when channel selection also becomes involved. -- Arrgghhh |
| */ |
| if ( ((channel & RedChannel) == 0 && p[r].red == 0) |
| || ((channel & GreenChannel) == 0 && p[r].green == 0) |
| || ((channel & BlueChannel) == 0 && p[r].blue == 0) |
| || ((channel & OpacityChannel) == 0 && p[r].opacity == 0) |
| || (( (channel & IndexChannel) == 0 |
| || image->colorspace != CMYKColorspace |
| ) && p_indexes[x] ==0 ) |
| ) |
| break; |
| #endif |
| k = &kernel->values[ kernel->width*kernel->height-1 ]; |
| k_pixels = p; |
| k_indexes = p_indexes; |
| for (v=0; v < (long) kernel->height; v++) { |
| for (u=0; u < (long) kernel->width; u++, k--) { |
| if ( IsNan(*k) ) continue; |
| Minimize(result.red, (*k)+k_pixels[u].red); |
| Minimize(result.green, (*k)+k_pixels[u].green); |
| Minimize(result.blue, (*k)+k_pixels[u].blue); |
| Minimize(result.opacity, (*k)+QuantumRange-k_pixels[u].opacity); |
| if ( image->colorspace == CMYKColorspace) |
| Minimize(result.index, (*k)+k_indexes[u]); |
| } |
| k_pixels += image->columns+kernel->width; |
| k_indexes += image->columns+kernel->width; |
| } |
| break; |
| |
| case UndefinedMorphology: |
| default: |
| break; /* Do nothing */ |
| } |
| switch ( method ) { |
| case UndefinedMorphology: |
| case DilateIntensityMorphology: |
| case ErodeIntensityMorphology: |
| break; /* full pixel was directly assigned - not a channel method */ |
| default: |
| /* Assign the results */ |
| if ((channel & RedChannel) != 0) |
| q->red = ClampToQuantum(result.red); |
| if ((channel & GreenChannel) != 0) |
| q->green = ClampToQuantum(result.green); |
| if ((channel & BlueChannel) != 0) |
| q->blue = ClampToQuantum(result.blue); |
| if ((channel & OpacityChannel) != 0 |
| && image->matte == MagickTrue ) |
| q->opacity = ClampToQuantum(QuantumRange-result.opacity); |
| if ((channel & IndexChannel) != 0 |
| && image->colorspace == CMYKColorspace) |
| q_indexes[x] = ClampToQuantum(result.index); |
| break; |
| } |
| if ( ( p[r].red != q->red ) |
| || ( p[r].green != q->green ) |
| || ( p[r].blue != q->blue ) |
| || ( p[r].opacity != q->opacity ) |
| || ( image->colorspace == CMYKColorspace && |
| p_indexes[r] != q_indexes[x] ) ) |
| changed++; /* The pixel had some value changed! */ |
| p++; |
| q++; |
| } /* x */ |
| sync=SyncCacheViewAuthenticPixels(q_view,exception); |
| if (sync == MagickFalse) |
| status=MagickFalse; |
| if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp critical (MagickCore_MorphologyImage) |
| #endif |
| proceed=SetImageProgress(image,MorphologyTag,progress++,image->rows); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| } /* y */ |
| result_image->type=image->type; |
| q_view=DestroyCacheView(q_view); |
| p_view=DestroyCacheView(p_view); |
| return(status ? (unsigned long) changed : 0); |
| } |
| |
| |
| MagickExport Image *MorphologyImage(const Image *image, const MorphologyMethod |
| method, const long iterations,const KernelInfo *kernel, ExceptionInfo |
| *exception) |
| { |
| Image |
| *morphology_image; |
| |
| morphology_image=MorphologyImageChannel(image,DefaultChannels,method, |
| iterations,kernel,exception); |
| return(morphology_image); |
| } |
| |
| |
| MagickExport Image *MorphologyImageChannel(const Image *image, |
| const ChannelType channel,const MorphologyMethod method, |
| const long iterations,const KernelInfo *kernel,ExceptionInfo *exception) |
| { |
| long |
| count; |
| |
| Image |
| *new_image, |
| *old_image, |
| *grad_image; |
| |
| const char |
| *artifact; |
| |
| unsigned long |
| changed, |
| limit; |
| |
| KernelInfo |
| *curr_kernel; |
| |
| MorphologyMethod |
| curr_method; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickSignature); |
| assert(kernel != (KernelInfo *) NULL); |
| assert(kernel->signature == MagickSignature); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickSignature); |
| |
| if ( iterations == 0 ) |
| return((Image *)NULL); /* null operation - nothing to do! */ |
| |
| /* kernel must be valid at this point |
| * (except maybe for posible future morphology methods like "Prune" |
| */ |
| assert(kernel != (KernelInfo *)NULL); |
| |
| count = 0; /* interation count */ |
| changed = 1; /* if compound method assume image was changed */ |
| curr_kernel = (KernelInfo *)kernel; /* allow kernel and method */ |
| curr_method = method; /* to be changed as nessary */ |
| |
| limit = (unsigned long) iterations; |
| if ( iterations < 0 ) |
| limit = image->columns > image->rows ? image->columns : image->rows; |
| |
| /* Third-level morphology methods */ |
| grad_image=(Image *) NULL; |
| switch( curr_method ) { |
| case EdgeMorphology: |
| grad_image = MorphologyImageChannel(image, channel, |
| DilateMorphology, iterations, curr_kernel, exception); |
| /* FALL-THRU */ |
| case EdgeInMorphology: |
| curr_method = ErodeMorphology; |
| break; |
| case EdgeOutMorphology: |
| curr_method = DilateMorphology; |
| break; |
| case TopHatMorphology: |
| curr_method = OpenMorphology; |
| break; |
| case BottomHatMorphology: |
| curr_method = CloseMorphology; |
| break; |
| default: |
| break; /* not a third-level method */ |
| } |
| |
| /* Second-level morphology methods */ |
| switch( curr_method ) { |
| case OpenMorphology: |
| /* Open is a Erode then a Dilate without reflection */ |
| new_image = MorphologyImageChannel(image, channel, |
| ErodeMorphology, iterations, curr_kernel, exception); |
| if (new_image == (Image *) NULL) |
| return((Image *) NULL); |
| curr_method = DilateMorphology; |
| break; |
| case OpenIntensityMorphology: |
| new_image = MorphologyImageChannel(image, channel, |
| ErodeIntensityMorphology, iterations, curr_kernel, exception); |
| if (new_image == (Image *) NULL) |
| return((Image *) NULL); |
| curr_method = DilateIntensityMorphology; |
| break; |
| |
| case CloseMorphology: |
| /* Close is a Dilate then Erode using reflected kernel */ |
| /* A reflected kernel is needed for a Close */ |
| if ( curr_kernel == kernel ) |
| curr_kernel = CloneKernelInfo(kernel); |
| RotateKernelInfo(curr_kernel,180); |
| new_image = MorphologyImageChannel(image, channel, |
| DilateMorphology, iterations, curr_kernel, exception); |
| if (new_image == (Image *) NULL) |
| return((Image *) NULL); |
| curr_method = ErodeMorphology; |
| break; |
| case CloseIntensityMorphology: |
| /* A reflected kernel is needed for a Close */ |
| if ( curr_kernel == kernel ) |
| curr_kernel = CloneKernelInfo(kernel); |
| RotateKernelInfo(curr_kernel,180); |
| new_image = MorphologyImageChannel(image, channel, |
| DilateIntensityMorphology, iterations, curr_kernel, exception); |
| if (new_image == (Image *) NULL) |
| return((Image *) NULL); |
| curr_method = ErodeIntensityMorphology; |
| break; |
| |
| case CorrelateMorphology: |
| /* A Correlation is actually a Convolution with a reflected kernel. |
| ** However a Convolution is a weighted sum with a reflected kernel. |
| ** It may seem stange to convert a Correlation into a Convolution |
| ** as the Correleation is the simplier method, but Convolution is |
| ** much more commonly used, and it makes sense to implement it directly |
| ** so as to avoid the need to duplicate the kernel when it is not |
| ** required (which is typically the default). |
| */ |
| if ( curr_kernel == kernel ) |
| curr_kernel = CloneKernelInfo(kernel); |
| RotateKernelInfo(curr_kernel,180); |
| curr_method = ConvolveMorphology; |
| /* FALL-THRU into Correlate (weigthed sum without reflection) */ |
| |
| case ConvolveMorphology: |
| /* Scale or Normalize kernel, according to user wishes |
| ** before using it for the Convolve/Correlate method. |
| ** |
| ** FUTURE: provide some way for internal functions to disable |
| ** user bias and scaling effects. |
| */ |
| artifact = GetImageArtifact(image,"convolve:scale"); |
| if ( artifact != (char *)NULL ) { |
| GeometryFlags |
| flags; |
| GeometryInfo |
| args; |
| |
| if ( curr_kernel == kernel ) |
| curr_kernel = CloneKernelInfo(kernel); |
| |
| args.rho = 1.0; |
| flags = (GeometryFlags) ParseGeometry(artifact, &args); |
| ScaleKernelInfo(curr_kernel, args.rho, flags); |
| } |
| /* FALL-THRU to do the first, and typically the only iteration */ |
| |
| default: |
| /* Do a single iteration using the Low-Level Morphology method! |
| ** This ensures a "new_image" has been generated, but allows us to skip |
| ** the creation of 'old_image' if no more iterations are needed. |
| ** |
| ** The "curr_method" should also be set to a low-level method that is |
| ** understood by the MorphologyApply() internal function. |
| */ |
| new_image=CloneImage(image,0,0,MagickTrue,exception); |
| if (new_image == (Image *) NULL) |
| return((Image *) NULL); |
| if (SetImageStorageClass(new_image,DirectClass) == MagickFalse) |
| { |
| InheritException(exception,&new_image->exception); |
| new_image=DestroyImage(new_image); |
| return((Image *) NULL); |
| } |
| changed = MorphologyApply(image,new_image,curr_method,channel,curr_kernel, |
| exception); |
| count++; |
| if ( GetImageArtifact(image,"verbose") != (const char *) NULL ) |
| fprintf(stderr, "Morphology %s:%ld => Changed %lu\n", |
| MagickOptionToMnemonic(MagickMorphologyOptions, curr_method), |
| count, changed); |
| break; |
| } |
| |
| /* At this point the "curr_method" should not only be set to a low-level |
| ** method that is understood by the MorphologyApply() internal function, |
| ** but "new_image" should now be defined, as the image to apply the |
| ** "curr_method" to. |
| */ |
| |
| /* Repeat the low-level morphology until count or no change reached */ |
| if ( count < (long) limit && changed > 0 ) { |
| old_image = CloneImage(new_image,0,0,MagickTrue,exception); |
| if (old_image == (Image *) NULL) |
| return(DestroyImage(new_image)); |
| if (SetImageStorageClass(old_image,DirectClass) == MagickFalse) |
| { |
| InheritException(exception,&old_image->exception); |
| old_image=DestroyImage(old_image); |
| return(DestroyImage(new_image)); |
| } |
| while( count < (long) limit && changed != 0 ) |
| { |
| Image *tmp = old_image; |
| old_image = new_image; |
| new_image = tmp; |
| changed = MorphologyApply(old_image,new_image,curr_method,channel, |
| curr_kernel, exception); |
| count++; |
| if ( GetImageArtifact(image,"verbose") != (const char *) NULL ) |
| fprintf(stderr, "Morphology %s:%ld => Changed %lu\n", |
| MagickOptionToMnemonic(MagickMorphologyOptions, curr_method), |
| count, changed); |
| } |
| old_image=DestroyImage(old_image); |
| } |
| |
| /* We are finished with kernel - destroy it if we made a clone */ |
| if ( curr_kernel != kernel ) |
| curr_kernel=DestroyKernelInfo(curr_kernel); |
| |
| /* Third-level Subtractive methods post-processing |
| ** |
| ** The removal of any 'Sync' channel flag in the Image Compositon below |
| ** ensures the compose method is applied in a purely mathematical way, only |
| ** the selected channels, without any normal 'alpha blending' normally |
| ** associated with the compose method. |
| ** |
| ** Note "method" here is the 'original' morphological method, and not the |
| ** 'current' morphological method used above to generate "new_image". |
| */ |
| switch( method ) { |
| case EdgeOutMorphology: |
| case EdgeInMorphology: |
| case TopHatMorphology: |
| case BottomHatMorphology: |
| /* Get Difference relative to the original image */ |
| (void) CompositeImageChannel(new_image, (channel & ~SyncChannels), |
| DifferenceCompositeOp, image, 0, 0); |
| break; |
| case EdgeMorphology: |
| /* Difference the Eroded image from the saved Dilated image */ |
| (void) CompositeImageChannel(new_image, (channel & ~SyncChannels), |
| DifferenceCompositeOp, grad_image, 0, 0); |
| grad_image=DestroyImage(grad_image); |
| break; |
| default: |
| break; |
| } |
| |
| return(new_image); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + R o t a t e K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % RotateKernelInfo() rotates the kernel by the angle given. Currently it is |
| % restricted to 90 degree angles, but this may be improved in the future. |
| % |
| % The format of the RotateKernelInfo method is: |
| % |
| % void RotateKernelInfo(KernelInfo *kernel, double angle) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel |
| % |
| % o angle: angle to rotate in degrees |
| % |
| % This function is only internel to this module, as it is not finalized, |
| % especially with regard to non-orthogonal angles, and rotation of larger |
| % 2D kernels. |
| */ |
| static void RotateKernelInfo(KernelInfo *kernel, double angle) |
| { |
| /* WARNING: Currently assumes the kernel (rightly) is horizontally symetrical |
| ** |
| ** TODO: expand beyond simple 90 degree rotates, flips and flops |
| */ |
| |
| /* Modulus the angle */ |
| angle = fmod(angle, 360.0); |
| if ( angle < 0 ) |
| angle += 360.0; |
| |
| if ( 315.0 < angle || angle <= 45.0 ) |
| return; /* no change! - At least at this time */ |
| |
| switch (kernel->type) { |
| /* These built-in kernels are cylindrical kernels, rotating is useless */ |
| case GaussianKernel: |
| case LaplacianKernel: |
| case LOGKernel: |
| case DOGKernel: |
| case DiskKernel: |
| case ChebyshevKernel: |
| case ManhattenKernel: |
| case EuclideanKernel: |
| return; |
| |
| /* These may be rotatable at non-90 angles in the future */ |
| /* but simply rotating them in multiples of 90 degrees is useless */ |
| case SquareKernel: |
| case DiamondKernel: |
| case PlusKernel: |
| return; |
| |
| /* These only allows a +/-90 degree rotation (by transpose) */ |
| /* A 180 degree rotation is useless */ |
| case BlurKernel: |
| case RectangleKernel: |
| if ( 135.0 < angle && angle <= 225.0 ) |
| return; |
| if ( 225.0 < angle && angle <= 315.0 ) |
| angle -= 180; |
| break; |
| |
| /* these are freely rotatable in 90 degree units */ |
| case CometKernel: |
| case UndefinedKernel: |
| case UserDefinedKernel: |
| break; |
| } |
| if ( 135.0 < angle && angle <= 225.0 ) |
| { |
| /* For a 180 degree rotation - also know as a reflection */ |
| /* This is actually a very very common operation! */ |
| /* Basically all that is needed is a reversal of the kernel data! */ |
| unsigned long |
| i,j; |
| register double |
| *k,t; |
| |
| k=kernel->values; |
| for ( i=0, j=kernel->width*kernel->height-1; i<j; i++, j--) |
| t=k[i], k[i]=k[j], k[j]=t; |
| |
| kernel->x = (long) kernel->width - kernel->x - 1; |
| kernel->y = (long) kernel->height - kernel->y - 1; |
| angle = fmod(angle+180.0, 360.0); |
| } |
| if ( 45.0 < angle && angle <= 135.0 ) |
| { /* Do a transpose and a flop, of the image, which results in a 90 |
| * degree rotation using two mirror operations. |
| * |
| * WARNING: this assumes the original image was a 1 dimentional image |
| * but currently that is the only built-ins it is applied to. |
| */ |
| long |
| t; |
| t = (long) kernel->width; |
| kernel->width = kernel->height; |
| kernel->height = (unsigned long) t; |
| t = kernel->x; |
| kernel->x = kernel->y; |
| kernel->y = t; |
| angle = fmod(450.0 - angle, 360.0); |
| } |
| /* At this point angle should be between -45 (315) and +45 degrees |
| * In the future some form of non-orthogonal angled rotates could be |
| * performed here, posibily with a linear kernel restriction. |
| */ |
| |
| #if 0 |
| Not currently in use! |
| { /* Do a flop, this assumes kernel is horizontally symetrical. |
| * Each row of the kernel needs to be reversed! |
| */ |
| unsigned long |
| y; |
| register long |
| x,r; |
| register double |
| *k,t; |
| |
| for ( y=0, k=kernel->values; y < kernel->height; y++, k+=kernel->width) |
| for ( x=0, r=kernel->width-1; x<kernel->width/2; x++, r--) |
| t=k[x], k[x]=k[r], k[r]=t; |
| |
| kernel->x = kernel->width - kernel->x - 1; |
| angle = fmod(angle+180.0, 360.0); |
| } |
| #endif |
| return; |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % S c a l e K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ScaleKernelInfo() scales the kernel by the given amount, with or without |
| % normalization of the sum of the kernel values. |
| % |
| % By default (no flags given) the values within the kernel is scaled |
| % according the given scaling factor. |
| % |
| % If any 'normalize_flags' are given the kernel will be normalized and then |
| % further scaled by the scaleing factor value given. A 'PercentValue' flag |
| % will cause the given scaling factor to be divided by one hundred percent. |
| % |
| % Kernel normalization ('normalize_flags' given) is designed to ensure that |
| % any use of the kernel scaling factor with 'Convolve' or 'Correlate' |
| % morphology methods will fall into -1.0 to +1.0 range. Note however that |
| % for non-HDRI versions of IM this may cause images to have any negative |
| % results clipped, unless some 'clip' any negative output from 'Convolve' |
| % with the use of some kernels. |
| % |
| % More specifically. Kernels which only contain positive values (such as a |
| % 'Gaussian' kernel) will be scaled so that those values sum to +1.0, |
| % ensuring a 0.0 to +1.0 convolution output range for non-HDRI images. |
| % |
| % For Kernels that contain some negative values, (such as 'Sharpen' kernels) |
| % the kernel will be scaled by the absolute of the sum of kernel values, so |
| % that it will generally fall within the +/- 1.0 range. |
| % |
| % For kernels whose values sum to zero, (such as 'Laplician' kernels) kernel |
| % will be scaled by just the sum of the postive values, so that its output |
| % range will again fall into the +/- 1.0 range. |
| % |
| % For special kernels designed for locating shapes using 'Correlate', (often |
| % only containing +1 and -1 values, representing foreground/brackground |
| % matching) a special normalization method is provided to scale the positive |
| % values seperatally to those of the negative values, so the kernel will be |
| % forced to become a zero-sum kernel better suited to such searches. |
| % |
| % WARNING: Correct normalization of the kernal assumes that the '*_range' |
| % attributes within the kernel structure have been correctly set during the |
| % kernels creation. |
| % |
| % NOTE: The values used for 'normalize_flags' have been selected specifically |
| % to match the use of geometry options, so that '!' means NormalizeValue, '^' |
| % means CorrelateNormalizeValue, and '%' means PercentValue. All other |
| % GeometryFlags values are ignored. |
| % |
| % The format of the ScaleKernelInfo method is: |
| % |
| % void ScaleKernelInfo(KernelInfo *kernel, const double scaling_factor, |
| % const MagickStatusType normalize_flags ) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel |
| % |
| % o scaling_factor: |
| % multiply all values (after normalization) by this factor if not |
| % zero. If the kernel is normalized regardless of any flags. |
| % |
| % o normalize_flags: |
| % GeometryFlags defining normalization method to use. |
| % specifically: NormalizeValue, CorrelateNormalizeValue, |
| % and/or PercentValue |
| % |
| % This function is internal to this module only at this time, but can be |
| % exported to other modules if needed. |
| */ |
| MagickExport void ScaleKernelInfo(KernelInfo *kernel, |
| const double scaling_factor,const GeometryFlags normalize_flags) |
| { |
| register long |
| i; |
| |
| register double |
| pos_scale, |
| neg_scale; |
| |
| pos_scale = 1.0; |
| if ( (normalize_flags&NormalizeValue) != 0 ) { |
| /* normalize kernel appropriately */ |
| if ( fabs(kernel->positive_range + kernel->negative_range) > MagickEpsilon ) |
| pos_scale = fabs(kernel->positive_range + kernel->negative_range); |
| else |
| pos_scale = kernel->positive_range; /* special zero-summing kernel */ |
| } |
| /* force kernel into being a normalized zero-summing kernel */ |
| if ( (normalize_flags&CorrelateNormalizeValue) != 0 ) { |
| pos_scale = ( fabs(kernel->positive_range) > MagickEpsilon ) |
| ? kernel->positive_range : 1.0; |
| neg_scale = ( fabs(kernel->negative_range) > MagickEpsilon ) |
| ? -kernel->negative_range : 1.0; |
| } |
| else |
| neg_scale = pos_scale; |
| |
| /* finialize scaling_factor for positive and negative components */ |
| pos_scale = scaling_factor/pos_scale; |
| neg_scale = scaling_factor/neg_scale; |
| if ( (normalize_flags&PercentValue) != 0 ) { |
| pos_scale /= 100.0; |
| neg_scale /= 100.0; |
| } |
| |
| for (i=0; i < (long) (kernel->width*kernel->height); i++) |
| if ( ! IsNan(kernel->values[i]) ) |
| kernel->values[i] *= (kernel->values[i] >= 0) ? pos_scale : neg_scale; |
| |
| /* convolution output range */ |
| kernel->positive_range *= pos_scale; |
| kernel->negative_range *= neg_scale; |
| /* maximum and minimum values in kernel */ |
| kernel->maximum *= (kernel->maximum >= 0.0) ? pos_scale : neg_scale; |
| kernel->minimum *= (kernel->minimum >= 0.0) ? pos_scale : neg_scale; |
| |
| /* swap kernel settings if user scaling factor is negative */ |
| if ( scaling_factor < MagickEpsilon ) { |
| double t; |
| t = kernel->positive_range; |
| kernel->positive_range = kernel->negative_range; |
| kernel->negative_range = t; |
| t = kernel->maximum; |
| kernel->maximum = kernel->minimum; |
| kernel->minimum = 1; |
| } |
| |
| return; |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + S h o w K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ShowKernelInfo() outputs the details of the given kernel defination to |
| % standard error, generally due to a users 'showkernel' option request. |
| % |
| % The format of the ShowKernel method is: |
| % |
| % void ShowKernelInfo(KernelInfo *kernel) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel |
| % |
| % This function is internal to this module only at this time. That may change |
| % in the future. |
| */ |
| MagickExport void ShowKernelInfo(KernelInfo *kernel) |
| { |
| long |
| i, u, v; |
| |
| fprintf(stderr, |
| "Kernel \"%s\" of size %lux%lu%+ld%+ld with values from %.*lg to %.*lg\n", |
| MagickOptionToMnemonic(MagickKernelOptions, kernel->type), |
| kernel->width, kernel->height, |
| kernel->x, kernel->y, |
| GetMagickPrecision(), kernel->minimum, |
| GetMagickPrecision(), kernel->maximum); |
| fprintf(stderr, "Forming convolution output range from %.*lg to %.*lg%s\n", |
| GetMagickPrecision(), kernel->negative_range, |
| GetMagickPrecision(), kernel->positive_range, |
| /*kernel->normalized == MagickTrue ? " (normalized)" : */ "" ); |
| for (i=v=0; v < (long) kernel->height; v++) { |
| fprintf(stderr,"%2ld:",v); |
| for (u=0; u < (long) kernel->width; u++, i++) |
| if ( IsNan(kernel->values[i]) ) |
| fprintf(stderr," %*s", GetMagickPrecision()+2, "nan"); |
| else |
| fprintf(stderr," %*.*lg", GetMagickPrecision()+2, |
| GetMagickPrecision(), kernel->values[i]); |
| fprintf(stderr,"\n"); |
| } |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + Z e r o K e r n e l N a n s % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ZeroKernelNans() replaces any special 'nan' value that may be present in |
| % the kernel with a zero value. This is typically done when the kernel will |
| % be used in special hardware (GPU) convolution processors, to simply |
| % matters. |
| % |
| % The format of the ZeroKernelNans method is: |
| % |
| % voidZeroKernelNans (KernelInfo *kernel) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel |
| % |
| % FUTURE: return the information in a string for API usage. |
| */ |
| MagickExport void ZeroKernelNans(KernelInfo *kernel) |
| { |
| register long |
| i; |
| |
| for (i=0; i < (long) (kernel->width*kernel->height); i++) |
| if ( IsNan(kernel->values[i]) ) |
| kernel->values[i] = 0.0; |
| |
| return; |
| } |