blob: 88c28a2e41620105f08964b1031310d81f2e25d9 [file] [log] [blame]
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% QQQ U U AAA N N TTTTT U U M M %
% Q Q U U A A NN N T U U MM MM %
% Q Q U U AAAAA N N N T U U M M M %
% Q QQ U U A A N NN T U U M M %
% QQQQ UUU A A N N T UUU M M %
% %
% EEEEE X X PPPP OOO RRRR TTTTT %
% E X X P P O O R R T %
% EEE X PPPP O O RRRR T %
% E X X P O O R R T %
% EEEEE X X P OOO R R T %
% %
% MagickCore Methods to Export Quantum Pixels %
% %
% Software Design %
% John Cristy %
% October 1998 %
% %
% %
% Copyright 1999-2008 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% http://www.imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
*/
/*
Include declarations.
*/
#include "magick/studio.h"
#include "magick/property.h"
#include "magick/blob.h"
#include "magick/blob-private.h"
#include "magick/color-private.h"
#include "magick/exception.h"
#include "magick/exception-private.h"
#include "magick/cache.h"
#include "magick/constitute.h"
#include "magick/delegate.h"
#include "magick/geometry.h"
#include "magick/list.h"
#include "magick/magick.h"
#include "magick/memory_.h"
#include "magick/monitor.h"
#include "magick/option.h"
#include "magick/pixel.h"
#include "magick/pixel-private.h"
#include "magick/quantum.h"
#include "magick/quantum-private.h"
#include "magick/resource_.h"
#include "magick/semaphore.h"
#include "magick/statistic.h"
#include "magick/stream.h"
#include "magick/string_.h"
#include "magick/utility.h"
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ E x p o r t Q u a n t u m P i x e l s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ExportQuantumPixels() transfers one or more pixel components from the image
% pixel cache to a user supplied buffer. The pixels are returned in network
% byte order. MagickTrue is returned if the pixels are successfully
% transferred, otherwise MagickFalse.
%
% The format of the ExportQuantumPixels method is:
%
% size_t ExportQuantumPixels(const Image *image,
% const CacheView *image_view,const QuantumInfo *quantum_info,
% const QuantumType quantum_type,unsigned char *pixels,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o image_view: the image cache view.
%
% o quantum_info: the quantum info.
%
% o quantum_type: Declare which pixel components to transfer (RGB, RGBA,
% etc).
%
% o pixels: The components are transferred to this buffer.
%
% o exception: return any errors or warnings in this structure.
%
*/
static inline unsigned char *PopDoublePixel(const QuantumState *quantum_state,
const double pixel,unsigned char *pixels)
{
double
*p;
unsigned char
quantum[8];
p=(double *) quantum;
*p=(double) (pixel*quantum_state->inverse_scale+quantum_state->minimum);
if (quantum_state->endian != LSBEndian)
{
*pixels++=quantum[7];
*pixels++=quantum[6];
*pixels++=quantum[5];
*pixels++=quantum[4];
*pixels++=quantum[3];
*pixels++=quantum[2];
*pixels++=quantum[1];
*pixels++=quantum[0];
return(pixels);
}
*pixels++=quantum[0];
*pixels++=quantum[1];
*pixels++=quantum[2];
*pixels++=quantum[3];
*pixels++=quantum[4];
*pixels++=quantum[5];
*pixels++=quantum[6];
*pixels++=quantum[7];
return(pixels);
}
static inline unsigned char *PopFloatPixel(const QuantumState *quantum_state,
const float pixel,unsigned char *pixels)
{
float
*p;
unsigned char
quantum[4];
p=(float *) quantum;
*p=(float) ((double) pixel*quantum_state->inverse_scale+
quantum_state->minimum);
if (quantum_state->endian != LSBEndian)
{
*pixels++=quantum[3];
*pixels++=quantum[2];
*pixels++=quantum[1];
*pixels++=quantum[0];
return(pixels);
}
*pixels++=quantum[0];
*pixels++=quantum[1];
*pixels++=quantum[2];
*pixels++=quantum[3];
return(pixels);
}
static inline unsigned char *PopQuantumPixel(QuantumState *quantum_state,
const unsigned long depth,const QuantumAny pixel,unsigned char *pixels)
{
register long
i;
register unsigned long
quantum_bits;
if (quantum_state->bits == 0UL)
quantum_state->bits=8UL;
for (i=(long) depth; i > 0L; )
{
quantum_bits=(unsigned long) i;
if (quantum_bits > quantum_state->bits)
quantum_bits=quantum_state->bits;
i-=quantum_bits;
if (quantum_state->bits == 8)
*pixels='\0';
quantum_state->bits-=quantum_bits;
*pixels|=(((pixel >> i) &~ ((~0UL) << quantum_bits)) <<
quantum_state->bits);
if (quantum_state->bits == 0UL)
{
pixels++;
quantum_state->bits=8UL;
}
}
return(pixels);
}
static inline unsigned char *PopQuantumLongPixel(QuantumState *quantum_state,
const unsigned long depth,const unsigned long pixel,unsigned char *pixels)
{
register long
i;
unsigned long
quantum_bits;
if (quantum_state->bits == 0UL)
quantum_state->bits=32UL;
for (i=(long) depth; i > 0; )
{
quantum_bits=(unsigned long) i;
if (quantum_bits > quantum_state->bits)
quantum_bits=quantum_state->bits;
quantum_state->pixel|=(((pixel >> (depth-i)) &
quantum_state->mask[quantum_bits]) << (32UL-quantum_state->bits));
i-=quantum_bits;
quantum_state->bits-=quantum_bits;
if (quantum_state->bits == 0U)
{
pixels=PopLongPixel(quantum_state->endian,quantum_state->pixel,pixels);
quantum_state->pixel=0U;
quantum_state->bits=32UL;
}
}
return(pixels);
}
MagickExport size_t ExportQuantumPixels(const Image *image,
const CacheView *image_view,const QuantumInfo *quantum_info,
const QuantumType quantum_type,unsigned char *pixels,ExceptionInfo *exception)
{
EndianType
endian;
long
bit;
MagickRealType
alpha;
MagickSizeType
number_pixels;
QuantumAny
range;
QuantumState
quantum_state;
register const IndexPacket
*restrict indexes;
register const PixelPacket
*restrict p;
register long
x;
register unsigned char
*restrict q;
size_t
extent;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(quantum_info != (QuantumInfo *) NULL);
assert(quantum_info->signature == MagickSignature);
if (pixels == (unsigned char *) NULL)
pixels=GetQuantumPixels(quantum_info);
if (image_view == (CacheView *) NULL)
{
number_pixels=GetImageExtent(image);
p=GetVirtualPixelQueue(image);
indexes=GetVirtualIndexQueue(image);
}
else
{
number_pixels=GetCacheViewExtent(image_view);
p=GetCacheViewVirtualPixelQueue(image_view);
indexes=GetCacheViewVirtualIndexQueue(image_view);
}
if (quantum_info->alpha_type == AssociatedQuantumAlpha)
{
register PixelPacket
*restrict q;
/*
Associate alpha.
*/
q=GetAuthenticPixelQueue(image);
if (image_view != (CacheView *) NULL)
q=(PixelPacket *) GetCacheViewVirtualPixelQueue(image_view);
for (x=0; x < (long) image->columns; x++)
{
alpha=QuantumScale*((double) QuantumRange-q->opacity);
q->red=ClampToQuantum(alpha*q->red);
q->green=ClampToQuantum(alpha*q->green);
q->blue=ClampToQuantum(alpha*q->blue);
q++;
}
}
if ((quantum_type == RGBOQuantum) || (quantum_type == CMYKOQuantum))
{
register PixelPacket
*restrict q;
q=GetAuthenticPixelQueue(image);
if (image_view != (CacheView *) NULL)
q=(PixelPacket *) GetCacheViewVirtualPixelQueue(image_view);
for (x=0; x < (long) number_pixels; x++)
{
q->opacity=(Quantum) GetAlphaPixelComponent(q);
q++;
}
}
if ((quantum_type == CbYCrQuantum) || (quantum_type == CbYCrAQuantum))
{
Quantum
quantum;
register PixelPacket
*restrict q;
q=GetAuthenticPixelQueue(image);
if (image_view != (CacheView *) NULL)
q=GetAuthenticPixelQueue(image);
for (x=0; x < (long) number_pixels; x++)
{
quantum=q->red;
q->red=q->green;
q->green=quantum;
q++;
}
}
x=0;
q=pixels;
InitializeQuantumState(quantum_info,image->endian,&quantum_state);
extent=GetQuantumExtent(image,quantum_info,quantum_type);
endian=quantum_state.endian;
switch (quantum_type)
{
case IndexQuantum:
{
if (image->storage_class != PseudoClass)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColormappedImageRequired","`%s'",image->filename);
return(extent);
}
switch (quantum_info->depth)
{
case 1:
{
register unsigned char
pixel;
for (x=((long) number_pixels-7); x > 0; x-=8)
{
pixel=(unsigned char) *indexes++;
*q=((pixel & 0x01) << 7);
pixel=(unsigned char) *indexes++;
*q|=((pixel & 0x01) << 6);
pixel=(unsigned char) *indexes++;
*q|=((pixel & 0x01) << 5);
pixel=(unsigned char) *indexes++;
*q|=((pixel & 0x01) << 4);
pixel=(unsigned char) *indexes++;
*q|=((pixel & 0x01) << 3);
pixel=(unsigned char) *indexes++;
*q|=((pixel & 0x01) << 2);
pixel=(unsigned char) *indexes++;
*q|=((pixel & 0x01) << 1);
pixel=(unsigned char) *indexes++;
*q|=((pixel & 0x01) << 0);
q++;
}
if ((number_pixels % 8) != 0)
{
*q='\0';
for (bit=7; bit >= (long) (8-(number_pixels % 8)); bit--)
{
pixel=(unsigned char) *indexes++;
*q|=((pixel & 0x01) << (unsigned char) bit);
}
q++;
}
break;
}
case 4:
{
register unsigned char
pixel;
for (x=0; x < (long) (number_pixels-1) ; x+=2)
{
pixel=(unsigned char) *indexes++;
*q=((pixel & 0xf) << 4);
pixel=(unsigned char) *indexes++;
*q|=((pixel & 0xf) << 0);
q++;
}
if ((number_pixels % 2) != 0)
{
pixel=(unsigned char) *indexes++;
*q=((pixel & 0xf) << 4);
q++;
}
break;
}
case 8:
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopCharPixel((unsigned char) indexes[x],q);
q+=quantum_info->pad;
}
break;
}
case 16:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopShortPixel(endian,SinglePrecisionToHalf(QuantumScale*
indexes[x]),q);
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
q=PopShortPixel(endian,(unsigned short) indexes[x],q);
q+=quantum_info->pad;
}
break;
}
case 32:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopFloatPixel(&quantum_state,(float) indexes[x],q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
q=PopLongPixel(endian,(unsigned long) indexes[x],q);
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double) indexes[x],q);
p++;
q+=quantum_info->pad;
}
break;
}
}
default:
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,image->depth,indexes[x],q);
p++;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case IndexAlphaQuantum:
{
if (image->storage_class != PseudoClass)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColormappedImageRequired","`%s'",image->filename);
return(extent);
}
switch (quantum_info->depth)
{
case 1:
{
register unsigned char
pixel;
for (x=((long) number_pixels-3); x > 0; x-=4)
{
pixel=(unsigned char) *indexes++;
*q=((pixel & 0x01) << 7);
pixel=(unsigned char) (p->opacity == (Quantum) TransparentOpacity ?
1 : 0);
*q|=((pixel & 0x01) << 6);
p++;
pixel=(unsigned char) *indexes++;
*q|=((pixel & 0x01) << 5);
pixel=(unsigned char) (p->opacity == (Quantum) TransparentOpacity ?
1 : 0);
*q|=((pixel & 0x01) << 4);
p++;
pixel=(unsigned char) *indexes++;
*q|=((pixel & 0x01) << 3);
pixel=(unsigned char) (p->opacity == (Quantum) TransparentOpacity ?
1 : 0);
*q|=((pixel & 0x01) << 2);
p++;
pixel=(unsigned char) *indexes++;
*q|=((pixel & 0x01) << 1);
pixel=(unsigned char) (p->opacity == (Quantum) TransparentOpacity ?
1 : 0);
*q|=((pixel & 0x01) << 0);
p++;
q++;
}
if ((number_pixels % 4) != 0)
{
*q='\0';
for (bit=3; bit >= (long) (4-(number_pixels % 4)); bit-=2)
{
pixel=(unsigned char) *indexes++;
*q|=((pixel & 0x01) << (unsigned char) (bit+4));
pixel=(unsigned char) (p->opacity == (Quantum)
TransparentOpacity ? 1 : 0);
*q|=((pixel & 0x01) << (unsigned char) (bit+4-1));
p++;
}
q++;
}
break;
}
case 4:
{
register unsigned char
pixel;
for (x=0; x < (long) number_pixels ; x++)
{
pixel=(unsigned char) *indexes++;
*q=((pixel & 0xf) << 4);
pixel=(unsigned char) (16*QuantumScale*((Quantum) (QuantumRange-
GetOpacityPixelComponent(p)))+0.5);
*q|=((pixel & 0xf) << 0);
p++;
q++;
}
break;
}
case 8:
{
register unsigned char
pixel;
for (x=0; x < (long) number_pixels; x++)
{
q=PopCharPixel((unsigned char) indexes[x],q);
pixel=ScaleQuantumToChar((Quantum) (QuantumRange-
GetOpacityPixelComponent(p)));
q=PopCharPixel(pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopShortPixel(endian,(unsigned short) indexes[x],q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetAlphaPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
q=PopShortPixel(endian,(unsigned short) indexes[x],q);
pixel=ScaleQuantumToShort((Quantum) (QuantumRange-
GetOpacityPixelComponent(p)));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned long
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
float
pixel;
q=PopFloatPixel(&quantum_state,(float) indexes[x],q);
pixel=(float) (GetAlphaPixelComponent(p));
q=PopFloatPixel(&quantum_state,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
q=PopLongPixel(endian,(unsigned long) indexes[x],q);
pixel=ScaleQuantumToLong((Quantum) (QuantumRange-
GetOpacityPixelComponent(p)));
q=PopLongPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
double
pixel;
q=PopDoublePixel(&quantum_state,(double) indexes[x],q);
pixel=(double) (GetAlphaPixelComponent(p));
q=PopDoublePixel(&quantum_state,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (long) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,image->depth,indexes[x],q);
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
(Quantum) (GetAlphaPixelComponent(p)),range),q);
p++;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case GrayQuantum:
{
switch (quantum_info->depth)
{
case 1:
{
register Quantum
threshold;
register unsigned char
black,
white;
black=0x00;
white=0x01;
if (quantum_info->min_is_white != MagickFalse)
{
black=0x01;
white=0x00;
}
threshold=(Quantum) (QuantumRange/2);
for (x=((long) number_pixels-7); x > 0; x-=8)
{
*q='\0';
*q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 7;
p++;
*q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 6;
p++;
*q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 5;
p++;
*q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 4;
p++;
*q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 3;
p++;
*q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 2;
p++;
*q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 1;
p++;
*q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 0;
p++;
q++;
}
if ((number_pixels % 8) != 0)
{
*q='\0';
for (bit=7; bit >= (long) (8-(number_pixels % 8)); bit--)
{
*q|=(PixelIntensityToQuantum(p) < threshold ? black : white) <<
bit;
p++;
}
q++;
}
break;
}
case 4:
{
register unsigned char
pixel;
for (x=0; x < (long) (number_pixels-1) ; x+=2)
{
pixel=ScaleQuantumToChar(PixelIntensityToQuantum(p));
*q=(((pixel >> 4) & 0xf) << 4);
p++;
pixel=ScaleQuantumToChar(PixelIntensityToQuantum(p));
*q|=pixel >> 4;
p++;
q++;
}
if ((number_pixels % 2) != 0)
{
pixel=ScaleQuantumToChar(PixelIntensityToQuantum(p));
*q=(((pixel >> 4) & 0xf) << 4);
p++;
q++;
}
break;
}
case 8:
{
register unsigned char
pixel;
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToChar(PixelIntensityToQuantum(p));
q=PopCharPixel(pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 10:
{
range=GetQuantumRange(image->depth);
if (quantum_info->pack == MagickFalse)
{
register unsigned long
pixel;
for (x=0; x < (long) (number_pixels-2); x+=3)
{
pixel=(unsigned long) (
ScaleQuantumToAny(PixelIntensityToQuantum(p+2),range) << 22 |
ScaleQuantumToAny(PixelIntensityToQuantum(p+1),range) << 12 |
ScaleQuantumToAny(PixelIntensityToQuantum(p+0),range) << 2);
q=PopLongPixel(endian,pixel,q);
p+=3;
q+=quantum_info->pad;
}
pixel=0UL;
if (x++ < (long) (number_pixels-1))
pixel|=ScaleQuantumToAny(PixelIntensityToQuantum(p+1),
range) << 12;
if (x++ < (long) number_pixels)
pixel|=ScaleQuantumToAny(PixelIntensityToQuantum(p+0),
range) << 2;
q=PopLongPixel(endian,pixel,q);
break;
}
for (x=0; x < (long) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
PixelIntensityToQuantum(p),range),q);
p++;
q+=quantum_info->pad;
}
break;
}
case 12:
{
register unsigned short
pixel;
range=GetQuantumRange(image->depth);
if (quantum_info->pack == MagickFalse)
{
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToShort(PixelIntensityToQuantum(p));
q=PopShortPixel(endian,(unsigned short) (pixel >> 4),q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
PixelIntensityToQuantum(p),range),q);
p++;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
PixelIntensityToQuantum(p));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToShort(PixelIntensityToQuantum(p));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned long
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
float
pixel;
pixel=(float) PixelIntensityToQuantum(p);
q=PopFloatPixel(&quantum_state,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToLong(PixelIntensityToQuantum(p));
q=PopLongPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
double
pixel;
pixel=(double) PixelIntensityToQuantum(p);
q=PopDoublePixel(&quantum_state,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (long) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
PixelIntensityToQuantum(p),range),q);
p++;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case GrayAlphaQuantum:
{
switch (quantum_info->depth)
{
case 1:
{
register Quantum
threshold;
register unsigned char
black,
pixel,
white;
black=0x00;
white=0x01;
if (quantum_info->min_is_white == MagickFalse)
{
black=0x01;
white=0x00;
}
threshold=(Quantum) (QuantumRange/2);
for (x=((long) number_pixels-3); x > 0; x-=4)
{
*q='\0';
*q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 7;
pixel=(unsigned char) (p->opacity == OpaqueOpacity ? 0x00 : 0x01);
*q|=(((int) pixel != 0 ? 0x00 : 0x01) << 6);
p++;
*q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 5;
pixel=(unsigned char) (p->opacity == OpaqueOpacity ? 0x00 : 0x01);
*q|=(((int) pixel != 0 ? 0x00 : 0x01) << 4);
p++;
*q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 3;
pixel=(unsigned char) (p->opacity == OpaqueOpacity ? 0x00 : 0x01);
*q|=(((int) pixel != 0 ? 0x00 : 0x01) << 2);
p++;
*q|=(PixelIntensityToQuantum(p) < threshold ? black : white) << 1;
pixel=(unsigned char) (p->opacity == OpaqueOpacity ? 0x00 : 0x01);
*q|=(((int) pixel != 0 ? 0x00 : 0x01) << 0);
p++;
q++;
}
if ((number_pixels % 4) != 0)
{
*q='\0';
for (bit=3; bit >= (long) (4-(number_pixels % 4)); bit-=2)
{
*q|=(PixelIntensityToQuantum(p) < threshold ? black : white) <<
(bit+4);
pixel=(unsigned char) (p->opacity == OpaqueOpacity ? 0x00 :
0x01);
*q|=(((int) pixel != 0 ? 0x00 : 0x01) << (unsigned char)
(bit+4-1));
p++;
}
q++;
}
break;
}
case 4:
{
register unsigned char
pixel;
for (x=0; x < (long) number_pixels ; x++)
{
pixel=ScaleQuantumToChar(PixelIntensityToQuantum(p));
*q=(((pixel >> 4) & 0xf) << 4);
pixel=(unsigned char) (16*QuantumScale*((Quantum) (QuantumRange-
GetOpacityPixelComponent(p)))+0.5);
*q|=pixel & 0xf;
p++;
q++;
}
break;
}
case 8:
{
register unsigned char
pixel;
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToChar(PixelIntensityToQuantum(p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar((Quantum) (QuantumRange-
GetOpacityPixelComponent(p)));
q=PopCharPixel(pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
PixelIntensityToQuantum(p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetAlphaPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToShort(PixelIntensityToQuantum(p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort((Quantum) (QuantumRange-
GetOpacityPixelComponent(p)));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned long
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
float
pixel;
pixel=(float) PixelIntensityToQuantum(p);
q=PopFloatPixel(&quantum_state,pixel,q);
pixel=(float) (GetAlphaPixelComponent(p));
q=PopFloatPixel(&quantum_state,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToLong(PixelIntensityToQuantum(p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong((Quantum) (QuantumRange-
GetOpacityPixelComponent(p)));
q=PopLongPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
double
pixel;
pixel=(double) PixelIntensityToQuantum(p);
q=PopDoublePixel(&quantum_state,pixel,q);
pixel=(double) (GetAlphaPixelComponent(p));
q=PopDoublePixel(&quantum_state,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (long) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
PixelIntensityToQuantum(p),range),q);
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
(Quantum) (GetAlphaPixelComponent(p)),range),q);
p++;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case RedQuantum:
case CyanQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetRedPixelComponent(p));
q=PopCharPixel(pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetRedPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetRedPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned long
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopFloatPixel(&quantum_state,(float) p->red,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetRedPixelComponent(p));
q=PopLongPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double) p->red,q);
p++;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (long) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
p->red,range),q);
p++;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case GreenQuantum:
case MagentaQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetGreenPixelComponent(p));
q=PopCharPixel(pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetGreenPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetGreenPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned long
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopFloatPixel(&quantum_state,(float) p->green,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetGreenPixelComponent(p));
q=PopLongPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double) p->green,q);
p++;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (long) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
p->green,range),q);
p++;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case BlueQuantum:
case YellowQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetBluePixelComponent(p));
q=PopCharPixel(pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetBluePixelComponent(p));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetBluePixelComponent(p));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned long
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopFloatPixel(&quantum_state,(float) p->blue,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetBluePixelComponent(p));
q=PopLongPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double) p->blue,q);
p++;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (long) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
p->blue,range),q);
p++;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case AlphaQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToChar((Quantum) (QuantumRange-
GetOpacityPixelComponent(p)));
q=PopCharPixel(pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetAlphaPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToShort((Quantum) (QuantumRange-
GetOpacityPixelComponent(p)));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned long
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
float
pixel;
pixel=(float) (GetAlphaPixelComponent(p));
q=PopFloatPixel(&quantum_state,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToLong((Quantum) (QuantumRange-
GetOpacityPixelComponent(p)));
q=PopLongPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
double
pixel;
pixel=(double) (GetAlphaPixelComponent(p));
q=PopDoublePixel(&quantum_state,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (long) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
(Quantum) (GetAlphaPixelComponent(p)),range),q);
p++;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case OpacityQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetOpacityPixelComponent(p));
q=PopCharPixel(pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetOpacityPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetOpacityPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned long
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopFloatPixel(&quantum_state,(float) p->opacity,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetOpacityPixelComponent(p));
q=PopLongPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double) p->opacity,q);
p++;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (long) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
p->opacity,range),q);
p++;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case BlackQuantum:
{
if (image->colorspace != CMYKColorspace)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",image->filename);
return(extent);
}
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToChar(indexes[x]);
q=PopCharPixel(pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*indexes[x]);
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToShort(indexes[x]);
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned long
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopFloatPixel(&quantum_state,(float) indexes[x],q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToLong(indexes[x]);
q=PopLongPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double) indexes[x],q);
p++;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (long) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
(Quantum) indexes[x],range),q);
p++;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case RGBQuantum:
case CbYCrQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopCharPixel(ScaleQuantumToChar(GetRedPixelComponent(p)),q);
q=PopCharPixel(ScaleQuantumToChar(GetGreenPixelComponent(p)),q);
q=PopCharPixel(ScaleQuantumToChar(GetBluePixelComponent(p)),q);
p++;
q+=quantum_info->pad;
}
break;
}
case 10:
{
register unsigned long
pixel;
range=GetQuantumRange(image->depth);
if (quantum_info->pack == MagickFalse)
{
for (x=0; x < (long) number_pixels; x++)
{
pixel=(unsigned long) (ScaleQuantumToAny(p->red,range) << 22 |
ScaleQuantumToAny(p->green,range) << 12 |
ScaleQuantumToAny(p->blue,range) << 2);
q=PopLongPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
if (quantum_info->quantum == 32UL)
{
for (x=0; x < (long) number_pixels; x++)
{
pixel=(unsigned long) ScaleQuantumToAny(p->red,range);
q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q);
pixel=(unsigned long) ScaleQuantumToAny(p->green,range);
q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q);
pixel=(unsigned long) ScaleQuantumToAny(p->blue,range);
q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=(unsigned long) ScaleQuantumToAny(p->red,range);
q=PopQuantumPixel(&quantum_state,image->depth,pixel,q);
pixel=(unsigned long) ScaleQuantumToAny(p->green,range);
q=PopQuantumPixel(&quantum_state,image->depth,pixel,q);
pixel=(unsigned long) ScaleQuantumToAny(p->blue,range);
q=PopQuantumPixel(&quantum_state,image->depth,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 12:
{
register unsigned long
pixel;
range=GetQuantumRange(image->depth);
if (quantum_info->pack == MagickFalse)
{
for (x=0; x < (long) (3*number_pixels-1); x+=2)
{
switch (x % 3)
{
default:
case 0:
{
pixel=(unsigned long) ScaleQuantumToAny(p->red,range);
break;
}
case 1:
{
pixel=(unsigned long) ScaleQuantumToAny(p->green,range);
break;
}
case 2:
{
pixel=(unsigned long) ScaleQuantumToAny(p->blue,range);
p++;
break;
}
}
q=PopShortPixel(endian,(unsigned short) (pixel << 4),q);
switch ((x+1) % 3)
{
default:
case 0:
{
pixel=(unsigned long) ScaleQuantumToAny(p->red,range);
break;
}
case 1:
{
pixel=(unsigned long) ScaleQuantumToAny(p->green,range);
break;
}
case 2:
{
pixel=(unsigned long) ScaleQuantumToAny(p->blue,range);
p++;
break;
}
}
q=PopShortPixel(endian,(unsigned short) (pixel << 4),q);
q+=quantum_info->pad;
}
for (bit=0; bit < (long) (3*number_pixels % 2); bit++)
{
switch ((x+bit) % 3)
{
default:
case 0:
{
pixel=(unsigned long) ScaleQuantumToAny(p->red,range);
break;
}
case 1:
{
pixel=(unsigned long) ScaleQuantumToAny(p->green,range);
break;
}
case 2:
{
pixel=(unsigned long) ScaleQuantumToAny(p->blue,range);
p++;
break;
}
}
q=PopShortPixel(endian,(unsigned short) (pixel << 4),q);
q+=quantum_info->pad;
}
if (bit != 0)
p++;
break;
}
if (quantum_info->quantum == 32UL)
{
for (x=0; x < (long) number_pixels; x++)
{
pixel=(unsigned long) ScaleQuantumToAny(p->red,range);
q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q);
pixel=(unsigned long) ScaleQuantumToAny(p->green,range);
q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q);
pixel=(unsigned long) ScaleQuantumToAny(p->blue,range);
q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=(unsigned long) ScaleQuantumToAny(p->red,range);
q=PopQuantumPixel(&quantum_state,image->depth,pixel,q);
pixel=(unsigned long) ScaleQuantumToAny(p->green,range);
q=PopQuantumPixel(&quantum_state,image->depth,pixel,q);
pixel=(unsigned long) ScaleQuantumToAny(p->blue,range);
q=PopQuantumPixel(&quantum_state,image->depth,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetRedPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetGreenPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetBluePixelComponent(p));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetRedPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetGreenPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetBluePixelComponent(p));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned long
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopFloatPixel(&quantum_state,(float) p->red,q);
q=PopFloatPixel(&quantum_state,(float) p->green,q);
q=PopFloatPixel(&quantum_state,(float) p->blue,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetRedPixelComponent(p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetGreenPixelComponent(p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetBluePixelComponent(p));
q=PopLongPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double) p->red,q);
q=PopDoublePixel(&quantum_state,(double) p->green,q);
q=PopDoublePixel(&quantum_state,(double) p->blue,q);
p++;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (long) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
p->red,range),q);
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
p->green,range),q);
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
p->blue,range),q);
p++;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case RGBAQuantum:
case RGBOQuantum:
case CbYCrAQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetRedPixelComponent(p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetGreenPixelComponent(p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetBluePixelComponent(p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetAlphaPixelComponent(p));
q=PopCharPixel(pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 10:
{
register unsigned long
pixel;
range=GetQuantumRange(image->depth);
if (quantum_info->pack == MagickFalse)
{
long
n;
register long
i;
unsigned long
quantum;
n=0;
quantum=0;
pixel=0;
for (x=0; x < (long) number_pixels; x++)
{
for (i=0; i < 4; i++)
{
switch (i)
{
case 0: quantum=p->red; break;
case 1: quantum=p->green; break;
case 2: quantum=p->blue; break;
case 3: quantum=QuantumRange-p->opacity; break;
}
switch (n % 3)
{
case 0:
{
pixel|=(unsigned long) (ScaleQuantumToAny(quantum,
range) << 22);
break;
}
case 1:
{
pixel|=(unsigned long) (ScaleQuantumToAny(quantum,
range) << 12);
break;
}
case 2:
{
pixel|=(unsigned long) (ScaleQuantumToAny(quantum,
range) << 2);
q=PopLongPixel(endian,pixel,q);
pixel=0;
break;
}
}
n++;
}
p++;
q+=quantum_info->pad;
}
break;
}
if (quantum_info->quantum == 32UL)
{
for (x=0; x < (long) number_pixels; x++)
{
pixel=(unsigned long) ScaleQuantumToAny(p->red,range);
q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q);
pixel=(unsigned long) ScaleQuantumToAny(p->green,range);
q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q);
pixel=(unsigned long) ScaleQuantumToAny(p->blue,range);
q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q);
pixel=(unsigned long) ScaleQuantumToAny(QuantumRange-p->opacity,
range);
q=PopQuantumLongPixel(&quantum_state,image->depth,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=(unsigned long) ScaleQuantumToAny(p->red,range);
q=PopQuantumPixel(&quantum_state,image->depth,pixel,q);
pixel=(unsigned long) ScaleQuantumToAny(p->green,range);
q=PopQuantumPixel(&quantum_state,image->depth,pixel,q);
pixel=(unsigned long) ScaleQuantumToAny(p->blue,range);
q=PopQuantumPixel(&quantum_state,image->depth,pixel,q);
pixel=(unsigned long) ScaleQuantumToAny(QuantumRange-
p->opacity,range);
q=PopQuantumPixel(&quantum_state,image->depth,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetRedPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetGreenPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetBluePixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetAlphaPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetRedPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetGreenPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetBluePixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetAlphaPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned long
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
float
pixel;
q=PopFloatPixel(&quantum_state,(float) p->red,q);
q=PopFloatPixel(&quantum_state,(float) p->green,q);
q=PopFloatPixel(&quantum_state,(float) p->blue,q);
pixel=GetAlphaPixelComponent(p);
q=PopFloatPixel(&quantum_state,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetRedPixelComponent(p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetGreenPixelComponent(p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetBluePixelComponent(p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetAlphaPixelComponent(p));
q=PopLongPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (long) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double) p->red,q);
q=PopDoublePixel(&quantum_state,(double) p->green,q);
q=PopDoublePixel(&quantum_state,(double) p->blue,q);
pixel=(double) GetAlphaPixelComponent(p);
q=PopDoublePixel(&quantum_state,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (long) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
GetRedPixelComponent(p),range),q);
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
GetGreenPixelComponent(p),range),q);
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
GetBluePixelComponent(p),range),q);
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
GetAlphaPixelComponent(p),range),q);
p++;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case CMYKQuantum:
{
if (image->colorspace != CMYKColorspace)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",image->filename);
return(extent);
}
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetRedPixelComponent(p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetGreenPixelComponent(p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetBluePixelComponent(p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(indexes[x]);
q=PopCharPixel(pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetRedPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetGreenPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetBluePixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*indexes[x]);
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetRedPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetGreenPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetBluePixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(indexes[x]);
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned long
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopFloatPixel(&quantum_state,(float) p->red,q);
q=PopFloatPixel(&quantum_state,(float) p->green,q);
q=PopFloatPixel(&quantum_state,(float) p->blue,q);
q=PopFloatPixel(&quantum_state,(float) indexes[x],q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetRedPixelComponent(p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetGreenPixelComponent(p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetBluePixelComponent(p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(indexes[x]);
q=PopLongPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double) p->red,q);
q=PopDoublePixel(&quantum_state,(double) p->green,q);
q=PopDoublePixel(&quantum_state,(double) p->blue,q);
q=PopDoublePixel(&quantum_state,(double) indexes[x],q);
p++;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (long) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
p->red,range),q);
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
p->green,range),q);
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
p->blue,range),q);
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
indexes[x],range),q);
p++;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case CMYKAQuantum:
case CMYKOQuantum:
{
if (image->colorspace != CMYKColorspace)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",image->filename);
return(extent);
}
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetRedPixelComponent(p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetGreenPixelComponent(p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetBluePixelComponent(p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(indexes[x]);
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar((Quantum) (QuantumRange-
GetOpacityPixelComponent(p)));
q=PopCharPixel(pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetRedPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetGreenPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetBluePixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*indexes[x]);
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetAlphaPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetRedPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetGreenPixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetBluePixelComponent(p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(indexes[x]);
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort((Quantum) (QuantumRange-
GetOpacityPixelComponent(p)));
q=PopShortPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned long
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (long) number_pixels; x++)
{
float
pixel;
q=PopFloatPixel(&quantum_state,(float) p->red,q);
q=PopFloatPixel(&quantum_state,(float) p->green,q);
q=PopFloatPixel(&quantum_state,(float) p->blue,q);
q=PopFloatPixel(&quantum_state,(float) indexes[x],q);
pixel=(float) (GetAlphaPixelComponent(p));
q=PopFloatPixel(&quantum_state,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (long) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetRedPixelComponent(p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetGreenPixelComponent(p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetBluePixelComponent(p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(indexes[x]);
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong((Quantum) (QuantumRange-
GetOpacityPixelComponent(p)));
q=PopLongPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (long) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double) p->red,q);
q=PopDoublePixel(&quantum_state,(double) p->green,q);
q=PopDoublePixel(&quantum_state,(double) p->blue,q);
q=PopDoublePixel(&quantum_state,(double) indexes[x],q);
pixel=(double) (GetAlphaPixelComponent(p));
q=PopDoublePixel(&quantum_state,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(image->depth);
for (x=0; x < (long) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
p->red,range),q);
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
p->green,range),q);
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
p->blue,range),q);
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
indexes[x],range),q);
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
p->opacity,range),q);
p++;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case CbYCrYQuantum:
{
long
n;
Quantum
cbcr[4];
register long
i;
register unsigned long
pixel;
unsigned long
quantum;
n=0;
quantum=0;
range=GetQuantumRange(image->depth);
switch (quantum_info->depth)
{
case 10:
{
if (quantum_info->pack == MagickFalse)
{
for (x=0; x < (long) number_pixels; x+=2)
{
for (i=0; i < 4; i++)
{
switch (n % 3)
{
case 0:
{
quantum=GetRedPixelComponent(p);
break;
}
case 1:
{
quantum=GetGreenPixelComponent(p);
break;
}
case 2:
{
quantum=GetBluePixelComponent(p);
break;
}
}
cbcr[i]=(Quantum) quantum;
n++;
}
pixel=(unsigned long) ((unsigned long) (cbcr[1]) << 22 |
(unsigned long) (cbcr[0]) << 12 |
(unsigned long) (cbcr[2]) << 2);
q=PopLongPixel(endian,pixel,q);
p++;
pixel=(unsigned long) ((unsigned long) (cbcr[3]) << 22 |
(unsigned long) (cbcr[0]) << 12 |
(unsigned long) (cbcr[2]) << 2);
q=PopLongPixel(endian,pixel,q);
p++;
q+=quantum_info->pad;
}
break;
}
break;
}
default:
{
for (x=0; x < (long) number_pixels; x+=2)
{
for (i=0; i < 4; i++)
{
switch (n % 3)
{
case 0:
{
quantum=GetRedPixelComponent(p);
break;
}
case 1:
{
quantum=GetGreenPixelComponent(p);
break;
}
case 2:
{
quantum=GetBluePixelComponent(p);
break;
}
}
cbcr[i]=(Quantum) quantum;
n++;
}
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
cbcr[1],range),q);
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
cbcr[0],range),q);
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
cbcr[2],range),q);
p++;
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
cbcr[3],range),q);
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
cbcr[0],range),q);
q=PopQuantumPixel(&quantum_state,image->depth,ScaleQuantumToAny(
cbcr[2],range),q);
p++;
q+=quantum_info->pad;
}
break;
}
}
break;
}
default:
break;
}
if ((quantum_type == CbYCrQuantum) || (quantum_type == CbYCrAQuantum))
{
Quantum
quantum;
register PixelPacket
*restrict q;
q=GetAuthenticPixelQueue(image);
if (image_view != (CacheView *) NULL)
q=(PixelPacket *) GetCacheViewVirtualPixelQueue(image_view);
for (x=0; x < (long) number_pixels; x++)
{
quantum=q->red;
q->red=q->green;
q->green=quantum;
q++;
}
}
if ((quantum_type == RGBOQuantum) || (quantum_type == CMYKOQuantum))
{
register PixelPacket
*restrict q;
q=GetAuthenticPixelQueue(image);
if (image_view != (CacheView *) NULL)
q=(PixelPacket *) GetCacheViewVirtualPixelQueue(image_view);
for (x=0; x < (long) number_pixels; x++)
{
q->opacity=(Quantum) GetAlphaPixelComponent(q);
q++;
}
}
return(extent);
}