| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % SSSSS TTTTT AAA TTTTT IIIII SSSSS TTTTT IIIII CCCC % |
| % SS T A A T I SS T I C % |
| % SSS T AAAAA T I SSS T I C % |
| % SS T A A T I SS T I C % |
| % SSSSS T A A T IIIII SSSSS T IIIII CCCC % |
| % % |
| % % |
| % MagickCore Image Statistical Methods % |
| % % |
| % Software Design % |
| % John Cristy % |
| % July 1992 % |
| % % |
| % % |
| % Copyright 1999-2011 ImageMagick Studio LLC, a non-profit organization % |
| % dedicated to making software imaging solutions freely available. % |
| % % |
| % You may not use this file except in compliance with the License. You may % |
| % obtain a copy of the License at % |
| % % |
| % http://www.imagemagick.org/script/license.php % |
| % % |
| % Unless required by applicable law or agreed to in writing, software % |
| % distributed under the License is distributed on an "AS IS" BASIS, % |
| % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % |
| % See the License for the specific language governing permissions and % |
| % limitations under the License. % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % |
| % |
| */ |
| |
| /* |
| Include declarations. |
| */ |
| #include "magick/studio.h" |
| #include "magick/property.h" |
| #include "magick/animate.h" |
| #include "magick/blob.h" |
| #include "magick/blob-private.h" |
| #include "magick/cache.h" |
| #include "magick/cache-private.h" |
| #include "magick/cache-view.h" |
| #include "magick/client.h" |
| #include "magick/color.h" |
| #include "magick/color-private.h" |
| #include "magick/colorspace.h" |
| #include "magick/colorspace-private.h" |
| #include "magick/composite.h" |
| #include "magick/composite-private.h" |
| #include "magick/compress.h" |
| #include "magick/constitute.h" |
| #include "magick/deprecate.h" |
| #include "magick/display.h" |
| #include "magick/draw.h" |
| #include "magick/enhance.h" |
| #include "magick/exception.h" |
| #include "magick/exception-private.h" |
| #include "magick/gem.h" |
| #include "magick/geometry.h" |
| #include "magick/list.h" |
| #include "magick/image-private.h" |
| #include "magick/magic.h" |
| #include "magick/magick.h" |
| #include "magick/memory_.h" |
| #include "magick/module.h" |
| #include "magick/monitor.h" |
| #include "magick/monitor-private.h" |
| #include "magick/option.h" |
| #include "magick/paint.h" |
| #include "magick/pixel-private.h" |
| #include "magick/profile.h" |
| #include "magick/quantize.h" |
| #include "magick/random_.h" |
| #include "magick/random-private.h" |
| #include "magick/segment.h" |
| #include "magick/semaphore.h" |
| #include "magick/signature-private.h" |
| #include "magick/statistic.h" |
| #include "magick/string_.h" |
| #include "magick/thread-private.h" |
| #include "magick/timer.h" |
| #include "magick/utility.h" |
| #include "magick/version.h" |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % E v a l u a t e I m a g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % EvaluateImage() applies a value to the image with an arithmetic, relational, |
| % or logical operator to an image. Use these operations to lighten or darken |
| % an image, to increase or decrease contrast in an image, or to produce the |
| % "negative" of an image. |
| % |
| % The format of the EvaluateImageChannel method is: |
| % |
| % MagickBooleanType EvaluateImage(Image *image, |
| % const MagickEvaluateOperator op,const double value, |
| % ExceptionInfo *exception) |
| % MagickBooleanType EvaluateImages(Image *images, |
| % const MagickEvaluateOperator op,const double value, |
| % ExceptionInfo *exception) |
| % MagickBooleanType EvaluateImageChannel(Image *image, |
| % const ChannelType channel,const MagickEvaluateOperator op, |
| % const double value,ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o channel: the channel. |
| % |
| % o op: A channel op. |
| % |
| % o value: A value value. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| |
| static MagickPixelPacket **DestroyPixelThreadSet(MagickPixelPacket **pixels) |
| { |
| register ssize_t |
| i; |
| |
| assert(pixels != (MagickPixelPacket **) NULL); |
| for (i=0; i < (ssize_t) GetOpenMPMaximumThreads(); i++) |
| if (pixels[i] != (MagickPixelPacket *) NULL) |
| pixels[i]=(MagickPixelPacket *) RelinquishMagickMemory(pixels[i]); |
| pixels=(MagickPixelPacket **) RelinquishMagickMemory(pixels); |
| return(pixels); |
| } |
| |
| static MagickPixelPacket **AcquirePixelThreadSet(const Image *image, |
| const size_t number_images) |
| { |
| register ssize_t |
| i, |
| j; |
| |
| MagickPixelPacket |
| **pixels; |
| |
| size_t |
| length, |
| number_threads; |
| |
| number_threads=GetOpenMPMaximumThreads(); |
| pixels=(MagickPixelPacket **) AcquireQuantumMemory(number_threads, |
| sizeof(*pixels)); |
| if (pixels == (MagickPixelPacket **) NULL) |
| return((MagickPixelPacket **) NULL); |
| (void) ResetMagickMemory(pixels,0,number_threads*sizeof(*pixels)); |
| for (i=0; i < (ssize_t) number_threads; i++) |
| { |
| length=image->columns; |
| if (length < number_images) |
| length=number_images; |
| pixels[i]=(MagickPixelPacket *) AcquireQuantumMemory(length, |
| sizeof(**pixels)); |
| if (pixels[i] == (MagickPixelPacket *) NULL) |
| return(DestroyPixelThreadSet(pixels)); |
| for (j=0; j < (ssize_t) length; j++) |
| GetMagickPixelPacket(image,&pixels[i][j]); |
| } |
| return(pixels); |
| } |
| |
| static inline double MagickMax(const double x,const double y) |
| { |
| if (x > y) |
| return(x); |
| return(y); |
| } |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| extern "C" { |
| #endif |
| |
| static int IntensityCompare(const void *x,const void *y) |
| { |
| const MagickPixelPacket |
| *color_1, |
| *color_2; |
| |
| int |
| intensity; |
| |
| color_1=(const MagickPixelPacket *) x; |
| color_2=(const MagickPixelPacket *) y; |
| intensity=(int) MagickPixelIntensity(color_2)- |
| (int) MagickPixelIntensity(color_1); |
| return(intensity); |
| } |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| } |
| #endif |
| |
| static inline double MagickMin(const double x,const double y) |
| { |
| if (x < y) |
| return(x); |
| return(y); |
| } |
| |
| static MagickRealType ApplyEvaluateOperator(RandomInfo *random_info, |
| Quantum pixel,const MagickEvaluateOperator op,const MagickRealType value) |
| { |
| MagickRealType |
| result; |
| |
| result=0.0; |
| switch (op) |
| { |
| case UndefinedEvaluateOperator: |
| break; |
| case AbsEvaluateOperator: |
| { |
| result=(MagickRealType) fabs((double) (pixel+value)); |
| break; |
| } |
| case AddEvaluateOperator: |
| { |
| result=(MagickRealType) (pixel+value); |
| break; |
| } |
| case AddModulusEvaluateOperator: |
| { |
| /* |
| This returns a 'floored modulus' of the addition which is a |
| positive result. It differs from % or fmod() which returns a |
| 'truncated modulus' result, where floor() is replaced by trunc() |
| and could return a negative result (which is clipped). |
| */ |
| result=pixel+value; |
| result-=(QuantumRange+1.0)*floor((double) result/(QuantumRange+1.0)); |
| break; |
| } |
| case AndEvaluateOperator: |
| { |
| result=(MagickRealType) ((size_t) pixel & (size_t) (value+0.5)); |
| break; |
| } |
| case CosineEvaluateOperator: |
| { |
| result=(MagickRealType) (QuantumRange*(0.5*cos((double) (2.0*MagickPI* |
| QuantumScale*pixel*value))+0.5)); |
| break; |
| } |
| case DivideEvaluateOperator: |
| { |
| result=pixel/(value == 0.0 ? 1.0 : value); |
| break; |
| } |
| case ExponentialEvaluateOperator: |
| { |
| result=(MagickRealType) (QuantumRange*exp((double) (value*QuantumScale* |
| pixel))); |
| break; |
| } |
| case GaussianNoiseEvaluateOperator: |
| { |
| result=(MagickRealType) GenerateDifferentialNoise(random_info,pixel, |
| GaussianNoise,value); |
| break; |
| } |
| case ImpulseNoiseEvaluateOperator: |
| { |
| result=(MagickRealType) GenerateDifferentialNoise(random_info,pixel, |
| ImpulseNoise,value); |
| break; |
| } |
| case LaplacianNoiseEvaluateOperator: |
| { |
| result=(MagickRealType) GenerateDifferentialNoise(random_info,pixel, |
| LaplacianNoise,value); |
| break; |
| } |
| case LeftShiftEvaluateOperator: |
| { |
| result=(MagickRealType) ((size_t) pixel << (size_t) (value+0.5)); |
| break; |
| } |
| case LogEvaluateOperator: |
| { |
| result=(MagickRealType) (QuantumRange*log((double) (QuantumScale*value* |
| pixel+1.0))/log((double) (value+1.0))); |
| break; |
| } |
| case MaxEvaluateOperator: |
| { |
| result=(MagickRealType) MagickMax((double) pixel,value); |
| break; |
| } |
| case MeanEvaluateOperator: |
| { |
| result=(MagickRealType) (pixel+value); |
| break; |
| } |
| case MedianEvaluateOperator: |
| { |
| result=(MagickRealType) (pixel+value); |
| break; |
| } |
| case MinEvaluateOperator: |
| { |
| result=(MagickRealType) MagickMin((double) pixel,value); |
| break; |
| } |
| case MultiplicativeNoiseEvaluateOperator: |
| { |
| result=(MagickRealType) GenerateDifferentialNoise(random_info,pixel, |
| MultiplicativeGaussianNoise,value); |
| break; |
| } |
| case MultiplyEvaluateOperator: |
| { |
| result=(MagickRealType) (value*pixel); |
| break; |
| } |
| case OrEvaluateOperator: |
| { |
| result=(MagickRealType) ((size_t) pixel | (size_t) (value+0.5)); |
| break; |
| } |
| case PoissonNoiseEvaluateOperator: |
| { |
| result=(MagickRealType) GenerateDifferentialNoise(random_info,pixel, |
| PoissonNoise,value); |
| break; |
| } |
| case PowEvaluateOperator: |
| { |
| result=(MagickRealType) (QuantumRange*pow((double) (QuantumScale*pixel), |
| (double) value)); |
| break; |
| } |
| case RightShiftEvaluateOperator: |
| { |
| result=(MagickRealType) ((size_t) pixel >> (size_t) (value+0.5)); |
| break; |
| } |
| case SetEvaluateOperator: |
| { |
| result=value; |
| break; |
| } |
| case SineEvaluateOperator: |
| { |
| result=(MagickRealType) (QuantumRange*(0.5*sin((double) (2.0*MagickPI* |
| QuantumScale*pixel*value))+0.5)); |
| break; |
| } |
| case SubtractEvaluateOperator: |
| { |
| result=(MagickRealType) (pixel-value); |
| break; |
| } |
| case ThresholdEvaluateOperator: |
| { |
| result=(MagickRealType) (((MagickRealType) pixel <= value) ? 0 : |
| QuantumRange); |
| break; |
| } |
| case ThresholdBlackEvaluateOperator: |
| { |
| result=(MagickRealType) (((MagickRealType) pixel <= value) ? 0 : pixel); |
| break; |
| } |
| case ThresholdWhiteEvaluateOperator: |
| { |
| result=(MagickRealType) (((MagickRealType) pixel > value) ? QuantumRange : |
| pixel); |
| break; |
| } |
| case UniformNoiseEvaluateOperator: |
| { |
| result=(MagickRealType) GenerateDifferentialNoise(random_info,pixel, |
| UniformNoise,value); |
| break; |
| } |
| case XorEvaluateOperator: |
| { |
| result=(MagickRealType) ((size_t) pixel ^ (size_t) (value+0.5)); |
| break; |
| } |
| } |
| return(result); |
| } |
| |
| MagickExport MagickBooleanType EvaluateImage(Image *image, |
| const MagickEvaluateOperator op,const double value,ExceptionInfo *exception) |
| { |
| MagickBooleanType |
| status; |
| |
| status=EvaluateImageChannel(image,AllChannels,op,value,exception); |
| return(status); |
| } |
| |
| MagickExport Image *EvaluateImages(const Image *images, |
| const MagickEvaluateOperator op,ExceptionInfo *exception) |
| { |
| #define EvaluateImageTag "Evaluate/Image" |
| |
| CacheView |
| *evaluate_view; |
| |
| const Image |
| *next; |
| |
| Image |
| *evaluate_image; |
| |
| MagickBooleanType |
| status; |
| |
| MagickOffsetType |
| progress; |
| |
| MagickPixelPacket |
| **restrict evaluate_pixels, |
| zero; |
| |
| RandomInfo |
| **restrict random_info; |
| |
| size_t |
| number_images; |
| |
| ssize_t |
| y; |
| |
| /* |
| Ensure the image are the same size. |
| */ |
| assert(images != (Image *) NULL); |
| assert(images->signature == MagickSignature); |
| if (images->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",images->filename); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickSignature); |
| for (next=images; next != (Image *) NULL; next=GetNextImageInList(next)) |
| if ((next->columns != images->columns) || (next->rows != images->rows)) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(),OptionError, |
| "ImageWidthsOrHeightsDiffer","`%s'",images->filename); |
| return((Image *) NULL); |
| } |
| /* |
| Initialize evaluate next attributes. |
| */ |
| evaluate_image=CloneImage(images,images->columns,images->rows,MagickTrue, |
| exception); |
| if (evaluate_image == (Image *) NULL) |
| return((Image *) NULL); |
| if (SetImageStorageClass(evaluate_image,DirectClass) == MagickFalse) |
| { |
| InheritException(exception,&evaluate_image->exception); |
| evaluate_image=DestroyImage(evaluate_image); |
| return((Image *) NULL); |
| } |
| number_images=GetImageListLength(images); |
| evaluate_pixels=AcquirePixelThreadSet(images,number_images); |
| if (evaluate_pixels == (MagickPixelPacket **) NULL) |
| { |
| evaluate_image=DestroyImage(evaluate_image); |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'",images->filename); |
| return((Image *) NULL); |
| } |
| /* |
| Evaluate image pixels. |
| */ |
| status=MagickTrue; |
| progress=0; |
| GetMagickPixelPacket(images,&zero); |
| random_info=AcquireRandomInfoThreadSet(); |
| evaluate_view=AcquireCacheView(evaluate_image); |
| if (op == MedianEvaluateOperator) |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel for schedule(dynamic) shared(progress,status) |
| #endif |
| for (y=0; y < (ssize_t) evaluate_image->rows; y++) |
| { |
| CacheView |
| *image_view; |
| |
| const Image |
| *next; |
| |
| const int |
| id = GetOpenMPThreadId(); |
| |
| register IndexPacket |
| *restrict evaluate_indexes; |
| |
| register MagickPixelPacket |
| *evaluate_pixel; |
| |
| register PixelPacket |
| *restrict q; |
| |
| register ssize_t |
| x; |
| |
| if (status == MagickFalse) |
| continue; |
| q=QueueCacheViewAuthenticPixels(evaluate_view,0,y,evaluate_image->columns, |
| 1,exception); |
| if (q == (PixelPacket *) NULL) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| evaluate_indexes=GetCacheViewAuthenticIndexQueue(evaluate_view); |
| evaluate_pixel=evaluate_pixels[id]; |
| for (x=0; x < (ssize_t) evaluate_image->columns; x++) |
| { |
| register ssize_t |
| i; |
| |
| for (i=0; i < (ssize_t) number_images; i++) |
| evaluate_pixel[i]=zero; |
| next=images; |
| for (i=0; i < (ssize_t) number_images; i++) |
| { |
| register const IndexPacket |
| *indexes; |
| |
| register const PixelPacket |
| *p; |
| |
| image_view=AcquireCacheView(next); |
| p=GetCacheViewVirtualPixels(image_view,x,y,1,1,exception); |
| if (p == (const PixelPacket *) NULL) |
| { |
| image_view=DestroyCacheView(image_view); |
| break; |
| } |
| indexes=GetCacheViewVirtualIndexQueue(image_view); |
| evaluate_pixel[i].red=ApplyEvaluateOperator(random_info[id], |
| p->red,op,evaluate_pixel[i].red); |
| evaluate_pixel[i].green=ApplyEvaluateOperator(random_info[id], |
| p->green,op,evaluate_pixel[i].green); |
| evaluate_pixel[i].blue=ApplyEvaluateOperator(random_info[id], |
| p->blue,op,evaluate_pixel[i].blue); |
| evaluate_pixel[i].opacity=ApplyEvaluateOperator(random_info[id], |
| p->opacity,op,evaluate_pixel[i].opacity); |
| if (evaluate_image->colorspace == CMYKColorspace) |
| evaluate_pixel[i].index=ApplyEvaluateOperator(random_info[id], |
| *indexes,op,evaluate_pixel[i].index); |
| image_view=DestroyCacheView(image_view); |
| next=GetNextImageInList(next); |
| } |
| qsort((void *) evaluate_pixel,number_images,sizeof(*evaluate_pixel), |
| IntensityCompare); |
| q->red=ClampToQuantum(evaluate_pixel[i/2].red); |
| q->green=ClampToQuantum(evaluate_pixel[i/2].green); |
| q->blue=ClampToQuantum(evaluate_pixel[i/2].blue); |
| if (evaluate_image->matte == MagickFalse) |
| q->opacity=ClampToQuantum(evaluate_pixel[i/2].opacity); |
| else |
| q->opacity=ClampToQuantum(QuantumRange-evaluate_pixel[i/2].opacity); |
| if (evaluate_image->colorspace == CMYKColorspace) |
| evaluate_indexes[i]=ClampToQuantum(evaluate_pixel[i/2].index); |
| q++; |
| } |
| if (SyncCacheViewAuthenticPixels(evaluate_view,exception) == MagickFalse) |
| status=MagickFalse; |
| if (images->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp critical (MagickCore_EvaluateImages) |
| #endif |
| proceed=SetImageProgress(images,EvaluateImageTag,progress++, |
| evaluate_image->rows); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| } |
| else |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel for schedule(dynamic) shared(progress,status) |
| #endif |
| for (y=0; y < (ssize_t) evaluate_image->rows; y++) |
| { |
| CacheView |
| *image_view; |
| |
| const Image |
| *next; |
| |
| const int |
| id = GetOpenMPThreadId(); |
| |
| register IndexPacket |
| *restrict evaluate_indexes; |
| |
| register ssize_t |
| i, |
| x; |
| |
| register MagickPixelPacket |
| *evaluate_pixel; |
| |
| register PixelPacket |
| *restrict q; |
| |
| if (status == MagickFalse) |
| continue; |
| q=QueueCacheViewAuthenticPixels(evaluate_view,0,y,evaluate_image->columns, |
| 1,exception); |
| if (q == (PixelPacket *) NULL) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| evaluate_indexes=GetCacheViewAuthenticIndexQueue(evaluate_view); |
| evaluate_pixel=evaluate_pixels[id]; |
| for (x=0; x < (ssize_t) evaluate_image->columns; x++) |
| evaluate_pixel[x]=zero; |
| next=images; |
| for (i=0; i < (ssize_t) number_images; i++) |
| { |
| register const IndexPacket |
| *indexes; |
| |
| register const PixelPacket |
| *p; |
| |
| image_view=AcquireCacheView(next); |
| p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception); |
| if (p == (const PixelPacket *) NULL) |
| { |
| image_view=DestroyCacheView(image_view); |
| break; |
| } |
| indexes=GetCacheViewVirtualIndexQueue(image_view); |
| for (x=0; x < (ssize_t) next->columns; x++) |
| { |
| evaluate_pixel[x].red=ApplyEvaluateOperator(random_info[id], |
| p->red,i == 0 ? AddEvaluateOperator : op,evaluate_pixel[x].red); |
| evaluate_pixel[x].green=ApplyEvaluateOperator(random_info[id], |
| p->green,i == 0 ? AddEvaluateOperator : op,evaluate_pixel[x].green); |
| evaluate_pixel[x].blue=ApplyEvaluateOperator(random_info[id], |
| p->blue,i == 0 ? AddEvaluateOperator : op,evaluate_pixel[x].blue); |
| evaluate_pixel[x].opacity=ApplyEvaluateOperator(random_info[id], |
| p->opacity,i == 0 ? AddEvaluateOperator : op, |
| evaluate_pixel[x].opacity); |
| if (evaluate_image->colorspace == CMYKColorspace) |
| evaluate_pixel[x].index=ApplyEvaluateOperator(random_info[id], |
| indexes[x],i == 0 ? AddEvaluateOperator : op, |
| evaluate_pixel[x].index); |
| p++; |
| } |
| image_view=DestroyCacheView(image_view); |
| next=GetNextImageInList(next); |
| } |
| if (op == MeanEvaluateOperator) |
| for (x=0; x < (ssize_t) evaluate_image->columns; x++) |
| { |
| evaluate_pixel[x].red/=number_images; |
| evaluate_pixel[x].green/=number_images; |
| evaluate_pixel[x].blue/=number_images; |
| evaluate_pixel[x].opacity/=number_images; |
| evaluate_pixel[x].index/=number_images; |
| } |
| for (x=0; x < (ssize_t) evaluate_image->columns; x++) |
| { |
| q->red=ClampToQuantum(evaluate_pixel[x].red); |
| q->green=ClampToQuantum(evaluate_pixel[x].green); |
| q->blue=ClampToQuantum(evaluate_pixel[x].blue); |
| if (evaluate_image->matte == MagickFalse) |
| q->opacity=ClampToQuantum(evaluate_pixel[x].opacity); |
| else |
| q->opacity=ClampToQuantum(QuantumRange-evaluate_pixel[x].opacity); |
| if (evaluate_image->colorspace == CMYKColorspace) |
| evaluate_indexes[x]=ClampToQuantum(evaluate_pixel[x].index); |
| q++; |
| } |
| if (SyncCacheViewAuthenticPixels(evaluate_view,exception) == MagickFalse) |
| status=MagickFalse; |
| if (images->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp critical (MagickCore_EvaluateImages) |
| #endif |
| proceed=SetImageProgress(images,EvaluateImageTag,progress++, |
| evaluate_image->rows); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| } |
| evaluate_view=DestroyCacheView(evaluate_view); |
| evaluate_pixels=DestroyPixelThreadSet(evaluate_pixels); |
| random_info=DestroyRandomInfoThreadSet(random_info); |
| if (status == MagickFalse) |
| evaluate_image=DestroyImage(evaluate_image); |
| return(evaluate_image); |
| } |
| |
| MagickExport MagickBooleanType EvaluateImageChannel(Image *image, |
| const ChannelType channel,const MagickEvaluateOperator op,const double value, |
| ExceptionInfo *exception) |
| { |
| CacheView |
| *image_view; |
| |
| MagickBooleanType |
| status; |
| |
| MagickOffsetType |
| progress; |
| |
| RandomInfo |
| **restrict random_info; |
| |
| ssize_t |
| y; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickSignature); |
| if (SetImageStorageClass(image,DirectClass) == MagickFalse) |
| { |
| InheritException(exception,&image->exception); |
| return(MagickFalse); |
| } |
| status=MagickTrue; |
| progress=0; |
| random_info=AcquireRandomInfoThreadSet(); |
| image_view=AcquireCacheView(image); |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel for schedule(dynamic,4) shared(progress,status) |
| #endif |
| for (y=0; y < (ssize_t) image->rows; y++) |
| { |
| const int |
| id = GetOpenMPThreadId(); |
| |
| register IndexPacket |
| *restrict indexes; |
| |
| register PixelPacket |
| *restrict q; |
| |
| register ssize_t |
| x; |
| |
| if (status == MagickFalse) |
| continue; |
| q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); |
| if (q == (PixelPacket *) NULL) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| indexes=GetCacheViewAuthenticIndexQueue(image_view); |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| if ((channel & RedChannel) != 0) |
| q->red=ClampToQuantum(ApplyEvaluateOperator(random_info[id],q->red,op, |
| value)); |
| if ((channel & GreenChannel) != 0) |
| q->green=ClampToQuantum(ApplyEvaluateOperator(random_info[id],q->green, |
| op,value)); |
| if ((channel & BlueChannel) != 0) |
| q->blue=ClampToQuantum(ApplyEvaluateOperator(random_info[id],q->blue,op, |
| value)); |
| if ((channel & OpacityChannel) != 0) |
| { |
| if (image->matte == MagickFalse) |
| q->opacity=ClampToQuantum(ApplyEvaluateOperator(random_info[id], |
| q->opacity,op,value)); |
| else |
| q->opacity=ClampToQuantum(QuantumRange-ApplyEvaluateOperator( |
| random_info[id],(Quantum) GetAlphaPixelComponent(q),op,value)); |
| } |
| if (((channel & IndexChannel) != 0) && (indexes != (IndexPacket *) NULL)) |
| indexes[x]=(IndexPacket) ClampToQuantum(ApplyEvaluateOperator( |
| random_info[id],indexes[x],op,value)); |
| q++; |
| } |
| if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) |
| status=MagickFalse; |
| if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp critical (MagickCore_EvaluateImageChannel) |
| #endif |
| proceed=SetImageProgress(image,EvaluateImageTag,progress++,image->rows); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| } |
| image_view=DestroyCacheView(image_view); |
| random_info=DestroyRandomInfoThreadSet(random_info); |
| return(status); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % F u n c t i o n I m a g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % FunctionImage() applies a value to the image with an arithmetic, relational, |
| % or logical operator to an image. Use these operations to lighten or darken |
| % an image, to increase or decrease contrast in an image, or to produce the |
| % "negative" of an image. |
| % |
| % The format of the FunctionImageChannel method is: |
| % |
| % MagickBooleanType FunctionImage(Image *image, |
| % const MagickFunction function,const ssize_t number_parameters, |
| % const double *parameters,ExceptionInfo *exception) |
| % MagickBooleanType FunctionImageChannel(Image *image, |
| % const ChannelType channel,const MagickFunction function, |
| % const ssize_t number_parameters,const double *argument, |
| % ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o channel: the channel. |
| % |
| % o function: A channel function. |
| % |
| % o parameters: one or more parameters. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| |
| static Quantum ApplyFunction(Quantum pixel,const MagickFunction function, |
| const size_t number_parameters,const double *parameters, |
| ExceptionInfo *exception) |
| { |
| MagickRealType |
| result; |
| |
| register ssize_t |
| i; |
| |
| (void) exception; |
| result=0.0; |
| switch (function) |
| { |
| case PolynomialFunction: |
| { |
| /* |
| * Polynomial |
| * Parameters: polynomial constants, highest to lowest order |
| * For example: c0*x^3 + c1*x^2 + c2*x + c3 |
| */ |
| result=0.0; |
| for (i=0; i < (ssize_t) number_parameters; i++) |
| result = result*QuantumScale*pixel + parameters[i]; |
| result *= QuantumRange; |
| break; |
| } |
| case SinusoidFunction: |
| { |
| /* Sinusoid Function |
| * Parameters: Freq, Phase, Ampl, bias |
| */ |
| double freq,phase,ampl,bias; |
| freq = ( number_parameters >= 1 ) ? parameters[0] : 1.0; |
| phase = ( number_parameters >= 2 ) ? parameters[1] : 0.0; |
| ampl = ( number_parameters >= 3 ) ? parameters[2] : 0.5; |
| bias = ( number_parameters >= 4 ) ? parameters[3] : 0.5; |
| result=(MagickRealType) (QuantumRange*(ampl*sin((double) (2.0*MagickPI* |
| (freq*QuantumScale*pixel + phase/360.0) )) + bias ) ); |
| break; |
| } |
| case ArcsinFunction: |
| { |
| /* Arcsin Function (peged at range limits for invalid results) |
| * Parameters: Width, Center, Range, Bias |
| */ |
| double width,range,center,bias; |
| width = ( number_parameters >= 1 ) ? parameters[0] : 1.0; |
| center = ( number_parameters >= 2 ) ? parameters[1] : 0.5; |
| range = ( number_parameters >= 3 ) ? parameters[2] : 1.0; |
| bias = ( number_parameters >= 4 ) ? parameters[3] : 0.5; |
| result = 2.0/width*(QuantumScale*pixel - center); |
| if ( result <= -1.0 ) |
| result = bias - range/2.0; |
| else if ( result >= 1.0 ) |
| result = bias + range/2.0; |
| else |
| result=(MagickRealType) (range/MagickPI*asin((double) result)+bias); |
| result *= QuantumRange; |
| break; |
| } |
| case ArctanFunction: |
| { |
| /* Arctan Function |
| * Parameters: Slope, Center, Range, Bias |
| */ |
| double slope,range,center,bias; |
| slope = ( number_parameters >= 1 ) ? parameters[0] : 1.0; |
| center = ( number_parameters >= 2 ) ? parameters[1] : 0.5; |
| range = ( number_parameters >= 3 ) ? parameters[2] : 1.0; |
| bias = ( number_parameters >= 4 ) ? parameters[3] : 0.5; |
| result=(MagickRealType) (MagickPI*slope*(QuantumScale*pixel-center)); |
| result=(MagickRealType) (QuantumRange*(range/MagickPI*atan((double) |
| result) + bias ) ); |
| break; |
| } |
| case UndefinedFunction: |
| break; |
| } |
| return(ClampToQuantum(result)); |
| } |
| |
| MagickExport MagickBooleanType FunctionImage(Image *image, |
| const MagickFunction function,const size_t number_parameters, |
| const double *parameters,ExceptionInfo *exception) |
| { |
| MagickBooleanType |
| status; |
| |
| status=FunctionImageChannel(image,AllChannels,function,number_parameters, |
| parameters,exception); |
| return(status); |
| } |
| |
| MagickExport MagickBooleanType FunctionImageChannel(Image *image, |
| const ChannelType channel,const MagickFunction function, |
| const size_t number_parameters,const double *parameters, |
| ExceptionInfo *exception) |
| { |
| #define FunctionImageTag "Function/Image " |
| |
| CacheView |
| *image_view; |
| |
| MagickBooleanType |
| status; |
| |
| MagickOffsetType |
| progress; |
| |
| ssize_t |
| y; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickSignature); |
| if (SetImageStorageClass(image,DirectClass) == MagickFalse) |
| { |
| InheritException(exception,&image->exception); |
| return(MagickFalse); |
| } |
| status=MagickTrue; |
| progress=0; |
| image_view=AcquireCacheView(image); |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel for schedule(dynamic,4) shared(progress,status) |
| #endif |
| for (y=0; y < (ssize_t) image->rows; y++) |
| { |
| register IndexPacket |
| *restrict indexes; |
| |
| register ssize_t |
| x; |
| |
| register PixelPacket |
| *restrict q; |
| |
| if (status == MagickFalse) |
| continue; |
| q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); |
| if (q == (PixelPacket *) NULL) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| indexes=GetCacheViewAuthenticIndexQueue(image_view); |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| if ((channel & RedChannel) != 0) |
| q->red=ApplyFunction(q->red,function,number_parameters,parameters, |
| exception); |
| if ((channel & GreenChannel) != 0) |
| q->green=ApplyFunction(q->green,function,number_parameters,parameters, |
| exception); |
| if ((channel & BlueChannel) != 0) |
| q->blue=ApplyFunction(q->blue,function,number_parameters,parameters, |
| exception); |
| if ((channel & OpacityChannel) != 0) |
| { |
| if (image->matte == MagickFalse) |
| q->opacity=ApplyFunction(q->opacity,function,number_parameters, |
| parameters,exception); |
| else |
| q->opacity=(Quantum) QuantumRange-ApplyFunction((Quantum) |
| GetAlphaPixelComponent(q),function,number_parameters,parameters, |
| exception); |
| } |
| if (((channel & IndexChannel) != 0) && (indexes != (IndexPacket *) NULL)) |
| indexes[x]=(IndexPacket) ApplyFunction(GetIndexPixelComponent(indexes+x),function, |
| number_parameters,parameters,exception); |
| q++; |
| } |
| if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) |
| status=MagickFalse; |
| if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp critical (MagickCore_FunctionImageChannel) |
| #endif |
| proceed=SetImageProgress(image,FunctionImageTag,progress++,image->rows); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| } |
| image_view=DestroyCacheView(image_view); |
| return(status); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + G e t I m a g e C h a n n e l E x t r e m a % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % GetImageChannelExtrema() returns the extrema of one or more image channels. |
| % |
| % The format of the GetImageChannelExtrema method is: |
| % |
| % MagickBooleanType GetImageChannelExtrema(const Image *image, |
| % const ChannelType channel,size_t *minima,size_t *maxima, |
| % ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o channel: the channel. |
| % |
| % o minima: the minimum value in the channel. |
| % |
| % o maxima: the maximum value in the channel. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| |
| MagickExport MagickBooleanType GetImageExtrema(const Image *image, |
| size_t *minima,size_t *maxima,ExceptionInfo *exception) |
| { |
| return(GetImageChannelExtrema(image,AllChannels,minima,maxima,exception)); |
| } |
| |
| MagickExport MagickBooleanType GetImageChannelExtrema(const Image *image, |
| const ChannelType channel,size_t *minima,size_t *maxima, |
| ExceptionInfo *exception) |
| { |
| double |
| max, |
| min; |
| |
| MagickBooleanType |
| status; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| status=GetImageChannelRange(image,channel,&min,&max,exception); |
| *minima=(size_t) ceil(min-0.5); |
| *maxima=(size_t) floor(max+0.5); |
| return(status); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % G e t I m a g e C h a n n e l M e a n % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % GetImageChannelMean() returns the mean and standard deviation of one or more |
| % image channels. |
| % |
| % The format of the GetImageChannelMean method is: |
| % |
| % MagickBooleanType GetImageChannelMean(const Image *image, |
| % const ChannelType channel,double *mean,double *standard_deviation, |
| % ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o channel: the channel. |
| % |
| % o mean: the average value in the channel. |
| % |
| % o standard_deviation: the standard deviation of the channel. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| |
| MagickExport MagickBooleanType GetImageMean(const Image *image,double *mean, |
| double *standard_deviation,ExceptionInfo *exception) |
| { |
| MagickBooleanType |
| status; |
| |
| status=GetImageChannelMean(image,AllChannels,mean,standard_deviation, |
| exception); |
| return(status); |
| } |
| |
| MagickExport MagickBooleanType GetImageChannelMean(const Image *image, |
| const ChannelType channel,double *mean,double *standard_deviation, |
| ExceptionInfo *exception) |
| { |
| ChannelStatistics |
| *channel_statistics; |
| |
| size_t |
| channels; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| channel_statistics=GetImageChannelStatistics(image,exception); |
| if (channel_statistics == (ChannelStatistics *) NULL) |
| return(MagickFalse); |
| channels=0; |
| channel_statistics[AllChannels].mean=0.0; |
| channel_statistics[AllChannels].standard_deviation=0.0; |
| if ((channel & RedChannel) != 0) |
| { |
| channel_statistics[AllChannels].mean+= |
| channel_statistics[RedChannel].mean; |
| channel_statistics[AllChannels].standard_deviation+= |
| channel_statistics[RedChannel].variance- |
| channel_statistics[RedChannel].mean* |
| channel_statistics[RedChannel].mean; |
| channels++; |
| } |
| if ((channel & GreenChannel) != 0) |
| { |
| channel_statistics[AllChannels].mean+= |
| channel_statistics[GreenChannel].mean; |
| channel_statistics[AllChannels].standard_deviation+= |
| channel_statistics[GreenChannel].variance- |
| channel_statistics[GreenChannel].mean* |
| channel_statistics[GreenChannel].mean; |
| channels++; |
| } |
| if ((channel & BlueChannel) != 0) |
| { |
| channel_statistics[AllChannels].mean+= |
| channel_statistics[BlueChannel].mean; |
| channel_statistics[AllChannels].standard_deviation+= |
| channel_statistics[BlueChannel].variance- |
| channel_statistics[BlueChannel].mean* |
| channel_statistics[BlueChannel].mean; |
| channels++; |
| } |
| if (((channel & OpacityChannel) != 0) && |
| (image->matte != MagickFalse)) |
| { |
| channel_statistics[AllChannels].mean+= |
| channel_statistics[OpacityChannel].mean; |
| channel_statistics[AllChannels].standard_deviation+= |
| channel_statistics[OpacityChannel].variance- |
| channel_statistics[OpacityChannel].mean* |
| channel_statistics[OpacityChannel].mean; |
| channels++; |
| } |
| if (((channel & IndexChannel) != 0) && |
| (image->colorspace == CMYKColorspace)) |
| { |
| channel_statistics[AllChannels].mean+= |
| channel_statistics[BlackChannel].mean; |
| channel_statistics[AllChannels].standard_deviation+= |
| channel_statistics[BlackChannel].variance- |
| channel_statistics[BlackChannel].mean* |
| channel_statistics[BlackChannel].mean; |
| channels++; |
| } |
| channel_statistics[AllChannels].mean/=channels; |
| channel_statistics[AllChannels].standard_deviation= |
| sqrt(channel_statistics[AllChannels].standard_deviation/channels); |
| *mean=channel_statistics[AllChannels].mean; |
| *standard_deviation=channel_statistics[AllChannels].standard_deviation; |
| channel_statistics=(ChannelStatistics *) RelinquishMagickMemory( |
| channel_statistics); |
| return(MagickTrue); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % G e t I m a g e C h a n n e l K u r t o s i s % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % GetImageChannelKurtosis() returns the kurtosis and skewness of one or more |
| % image channels. |
| % |
| % The format of the GetImageChannelKurtosis method is: |
| % |
| % MagickBooleanType GetImageChannelKurtosis(const Image *image, |
| % const ChannelType channel,double *kurtosis,double *skewness, |
| % ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o channel: the channel. |
| % |
| % o kurtosis: the kurtosis of the channel. |
| % |
| % o skewness: the skewness of the channel. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| |
| MagickExport MagickBooleanType GetImageKurtosis(const Image *image, |
| double *kurtosis,double *skewness,ExceptionInfo *exception) |
| { |
| MagickBooleanType |
| status; |
| |
| status=GetImageChannelKurtosis(image,AllChannels,kurtosis,skewness, |
| exception); |
| return(status); |
| } |
| |
| MagickExport MagickBooleanType GetImageChannelKurtosis(const Image *image, |
| const ChannelType channel,double *kurtosis,double *skewness, |
| ExceptionInfo *exception) |
| { |
| double |
| area, |
| mean, |
| standard_deviation, |
| sum_squares, |
| sum_cubes, |
| sum_fourth_power; |
| |
| ssize_t |
| y; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| *kurtosis=0.0; |
| *skewness=0.0; |
| area=0.0; |
| mean=0.0; |
| standard_deviation=0.0; |
| sum_squares=0.0; |
| sum_cubes=0.0; |
| sum_fourth_power=0.0; |
| for (y=0; y < (ssize_t) image->rows; y++) |
| { |
| register const IndexPacket |
| *restrict indexes; |
| |
| register const PixelPacket |
| *restrict p; |
| |
| register ssize_t |
| x; |
| |
| p=GetVirtualPixels(image,0,y,image->columns,1,exception); |
| if (p == (const PixelPacket *) NULL) |
| break; |
| indexes=GetVirtualIndexQueue(image); |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| if ((channel & RedChannel) != 0) |
| { |
| mean+=GetRedPixelComponent(p); |
| sum_squares+=(double) p->red*GetRedPixelComponent(p); |
| sum_cubes+=(double) p->red*p->red*GetRedPixelComponent(p); |
| sum_fourth_power+=(double) p->red*p->red*p->red* |
| GetRedPixelComponent(p); |
| area++; |
| } |
| if ((channel & GreenChannel) != 0) |
| { |
| mean+=GetGreenPixelComponent(p); |
| sum_squares+=(double) p->green*GetGreenPixelComponent(p); |
| sum_cubes+=(double) p->green*p->green*GetGreenPixelComponent(p); |
| sum_fourth_power+=(double) p->green*p->green*p->green* |
| GetGreenPixelComponent(p); |
| area++; |
| } |
| if ((channel & BlueChannel) != 0) |
| { |
| mean+=GetBluePixelComponent(p); |
| sum_squares+=(double) p->blue*GetBluePixelComponent(p); |
| sum_cubes+=(double) p->blue*p->blue*GetBluePixelComponent(p); |
| sum_fourth_power+=(double) p->blue*p->blue*p->blue* |
| GetBluePixelComponent(p); |
| area++; |
| } |
| if ((channel & OpacityChannel) != 0) |
| { |
| mean+=GetOpacityPixelComponent(p); |
| sum_squares+=(double) p->opacity*GetOpacityPixelComponent(p); |
| sum_cubes+=(double) p->opacity*p->opacity*GetOpacityPixelComponent(p); |
| sum_fourth_power+=(double) p->opacity*p->opacity*p->opacity* |
| GetOpacityPixelComponent(p); |
| area++; |
| } |
| if (((channel & IndexChannel) != 0) && |
| (image->colorspace == CMYKColorspace)) |
| { |
| mean+=indexes[x]; |
| sum_squares+=(double) indexes[x]*indexes[x]; |
| sum_cubes+=(double) indexes[x]*indexes[x]*indexes[x]; |
| sum_fourth_power+=(double) indexes[x]*indexes[x]*indexes[x]* |
| indexes[x]; |
| area++; |
| } |
| p++; |
| } |
| } |
| if (y < (ssize_t) image->rows) |
| return(MagickFalse); |
| if (area != 0.0) |
| { |
| mean/=area; |
| sum_squares/=area; |
| sum_cubes/=area; |
| sum_fourth_power/=area; |
| } |
| standard_deviation=sqrt(sum_squares-(mean*mean)); |
| if (standard_deviation != 0.0) |
| { |
| *kurtosis=sum_fourth_power-4.0*mean*sum_cubes+6.0*mean*mean*sum_squares- |
| 3.0*mean*mean*mean*mean; |
| *kurtosis/=standard_deviation*standard_deviation*standard_deviation* |
| standard_deviation; |
| *kurtosis-=3.0; |
| *skewness=sum_cubes-3.0*mean*sum_squares+2.0*mean*mean*mean; |
| *skewness/=standard_deviation*standard_deviation*standard_deviation; |
| } |
| return(y == (ssize_t) image->rows ? MagickTrue : MagickFalse); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % G e t I m a g e C h a n n e l R a n g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % GetImageChannelRange() returns the range of one or more image channels. |
| % |
| % The format of the GetImageChannelRange method is: |
| % |
| % MagickBooleanType GetImageChannelRange(const Image *image, |
| % const ChannelType channel,double *minima,double *maxima, |
| % ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o channel: the channel. |
| % |
| % o minima: the minimum value in the channel. |
| % |
| % o maxima: the maximum value in the channel. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| |
| MagickExport MagickBooleanType GetImageRange(const Image *image, |
| double *minima,double *maxima,ExceptionInfo *exception) |
| { |
| return(GetImageChannelRange(image,AllChannels,minima,maxima,exception)); |
| } |
| |
| MagickExport MagickBooleanType GetImageChannelRange(const Image *image, |
| const ChannelType channel,double *minima,double *maxima, |
| ExceptionInfo *exception) |
| { |
| MagickPixelPacket |
| pixel; |
| |
| ssize_t |
| y; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| *maxima=(-1.0E-37); |
| *minima=1.0E+37; |
| GetMagickPixelPacket(image,&pixel); |
| for (y=0; y < (ssize_t) image->rows; y++) |
| { |
| register const IndexPacket |
| *restrict indexes; |
| |
| register const PixelPacket |
| *restrict p; |
| |
| register ssize_t |
| x; |
| |
| p=GetVirtualPixels(image,0,y,image->columns,1,exception); |
| if (p == (const PixelPacket *) NULL) |
| break; |
| indexes=GetVirtualIndexQueue(image); |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| SetMagickPixelPacket(image,p,indexes+x,&pixel); |
| if ((channel & RedChannel) != 0) |
| { |
| if (pixel.red < *minima) |
| *minima=(double) pixel.red; |
| if (pixel.red > *maxima) |
| *maxima=(double) pixel.red; |
| } |
| if ((channel & GreenChannel) != 0) |
| { |
| if (pixel.green < *minima) |
| *minima=(double) pixel.green; |
| if (pixel.green > *maxima) |
| *maxima=(double) pixel.green; |
| } |
| if ((channel & BlueChannel) != 0) |
| { |
| if (pixel.blue < *minima) |
| *minima=(double) pixel.blue; |
| if (pixel.blue > *maxima) |
| *maxima=(double) pixel.blue; |
| } |
| if ((channel & OpacityChannel) != 0) |
| { |
| if (pixel.opacity < *minima) |
| *minima=(double) pixel.opacity; |
| if (pixel.opacity > *maxima) |
| *maxima=(double) pixel.opacity; |
| } |
| if (((channel & IndexChannel) != 0) && |
| (image->colorspace == CMYKColorspace)) |
| { |
| if ((double) indexes[x] < *minima) |
| *minima=(double) indexes[x]; |
| if ((double) indexes[x] > *maxima) |
| *maxima=(double) indexes[x]; |
| } |
| p++; |
| } |
| } |
| return(y == (ssize_t) image->rows ? MagickTrue : MagickFalse); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % G e t I m a g e C h a n n e l S t a t i s t i c s % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % GetImageChannelStatistics() returns statistics for each channel in the |
| % image. The statistics include the channel depth, its minima, maxima, mean, |
| % standard deviation, kurtosis and skewness. You can access the red channel |
| % mean, for example, like this: |
| % |
| % channel_statistics=GetImageChannelStatistics(image,exception); |
| % red_mean=channel_statistics[RedChannel].mean; |
| % |
| % Use MagickRelinquishMemory() to free the statistics buffer. |
| % |
| % The format of the GetImageChannelStatistics method is: |
| % |
| % ChannelStatistics *GetImageChannelStatistics(const Image *image, |
| % ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| MagickExport ChannelStatistics *GetImageChannelStatistics(const Image *image, |
| ExceptionInfo *exception) |
| { |
| ChannelStatistics |
| *channel_statistics; |
| |
| double |
| area; |
| |
| MagickStatusType |
| status; |
| |
| QuantumAny |
| range; |
| |
| register ssize_t |
| i; |
| |
| size_t |
| channels, |
| depth, |
| length; |
| |
| ssize_t |
| y; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| length=AllChannels+1UL; |
| channel_statistics=(ChannelStatistics *) AcquireQuantumMemory(length, |
| sizeof(*channel_statistics)); |
| if (channel_statistics == (ChannelStatistics *) NULL) |
| ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); |
| (void) ResetMagickMemory(channel_statistics,0,length* |
| sizeof(*channel_statistics)); |
| for (i=0; i <= AllChannels; i++) |
| { |
| channel_statistics[i].depth=1; |
| channel_statistics[i].maxima=(-1.0E-37); |
| channel_statistics[i].minima=1.0E+37; |
| } |
| for (y=0; y < (ssize_t) image->rows; y++) |
| { |
| register const IndexPacket |
| *restrict indexes; |
| |
| register const PixelPacket |
| *restrict p; |
| |
| register ssize_t |
| x; |
| |
| p=GetVirtualPixels(image,0,y,image->columns,1,exception); |
| if (p == (const PixelPacket *) NULL) |
| break; |
| indexes=GetVirtualIndexQueue(image); |
| for (x=0; x < (ssize_t) image->columns; ) |
| { |
| if (channel_statistics[RedChannel].depth != MAGICKCORE_QUANTUM_DEPTH) |
| { |
| depth=channel_statistics[RedChannel].depth; |
| range=GetQuantumRange(depth); |
| status=GetRedPixelComponent(p) != ScaleAnyToQuantum(ScaleQuantumToAny(GetRedPixelComponent(p),range), |
| range) ? MagickTrue : MagickFalse; |
| if (status != MagickFalse) |
| { |
| channel_statistics[RedChannel].depth++; |
| continue; |
| } |
| } |
| if (channel_statistics[GreenChannel].depth != MAGICKCORE_QUANTUM_DEPTH) |
| { |
| depth=channel_statistics[GreenChannel].depth; |
| range=GetQuantumRange(depth); |
| status=GetGreenPixelComponent(p) != ScaleAnyToQuantum(ScaleQuantumToAny(GetGreenPixelComponent(p), |
| range),range) ? MagickTrue : MagickFalse; |
| if (status != MagickFalse) |
| { |
| channel_statistics[GreenChannel].depth++; |
| continue; |
| } |
| } |
| if (channel_statistics[BlueChannel].depth != MAGICKCORE_QUANTUM_DEPTH) |
| { |
| depth=channel_statistics[BlueChannel].depth; |
| range=GetQuantumRange(depth); |
| status=GetBluePixelComponent(p) != ScaleAnyToQuantum(ScaleQuantumToAny(GetBluePixelComponent(p), |
| range),range) ? MagickTrue : MagickFalse; |
| if (status != MagickFalse) |
| { |
| channel_statistics[BlueChannel].depth++; |
| continue; |
| } |
| } |
| if (image->matte != MagickFalse) |
| { |
| if (channel_statistics[OpacityChannel].depth != MAGICKCORE_QUANTUM_DEPTH) |
| { |
| depth=channel_statistics[OpacityChannel].depth; |
| range=GetQuantumRange(depth); |
| status=GetOpacityPixelComponent(p) != ScaleAnyToQuantum(ScaleQuantumToAny( |
| p->opacity,range),range) ? MagickTrue : MagickFalse; |
| if (status != MagickFalse) |
| { |
| channel_statistics[OpacityChannel].depth++; |
| continue; |
| } |
| } |
| } |
| if (image->colorspace == CMYKColorspace) |
| { |
| if (channel_statistics[BlackChannel].depth != MAGICKCORE_QUANTUM_DEPTH) |
| { |
| depth=channel_statistics[BlackChannel].depth; |
| range=GetQuantumRange(depth); |
| status=indexes[x] != ScaleAnyToQuantum(ScaleQuantumToAny( |
| indexes[x],range),range) ? MagickTrue : MagickFalse; |
| if (status != MagickFalse) |
| { |
| channel_statistics[BlackChannel].depth++; |
| continue; |
| } |
| } |
| } |
| if ((double) p->red < channel_statistics[RedChannel].minima) |
| channel_statistics[RedChannel].minima=(double) GetRedPixelComponent(p); |
| if ((double) p->red > channel_statistics[RedChannel].maxima) |
| channel_statistics[RedChannel].maxima=(double) GetRedPixelComponent(p); |
| channel_statistics[RedChannel].sum+=GetRedPixelComponent(p); |
| channel_statistics[RedChannel].sum_squared+=(double) p->red* |
| GetRedPixelComponent(p); |
| channel_statistics[RedChannel].sum_cubed+=(double) p->red*p->red* |
| GetRedPixelComponent(p); |
| channel_statistics[RedChannel].sum_fourth_power+=(double) p->red*p->red* |
| p->red*GetRedPixelComponent(p); |
| if ((double) p->green < channel_statistics[GreenChannel].minima) |
| channel_statistics[GreenChannel].minima=(double) |
| GetGreenPixelComponent(p); |
| if ((double) p->green > channel_statistics[GreenChannel].maxima) |
| channel_statistics[GreenChannel].maxima=(double) |
| GetGreenPixelComponent(p); |
| channel_statistics[GreenChannel].sum+=GetGreenPixelComponent(p); |
| channel_statistics[GreenChannel].sum_squared+=(double) p->green* |
| GetGreenPixelComponent(p); |
| channel_statistics[GreenChannel].sum_cubed+=(double) p->green*p->green* |
| GetGreenPixelComponent(p); |
| channel_statistics[GreenChannel].sum_fourth_power+=(double) p->green* |
| p->green*p->green*GetGreenPixelComponent(p); |
| if ((double) p->blue < channel_statistics[BlueChannel].minima) |
| channel_statistics[BlueChannel].minima=(double) |
| GetBluePixelComponent(p); |
| if ((double) p->blue > channel_statistics[BlueChannel].maxima) |
| channel_statistics[BlueChannel].maxima=(double) |
| GetBluePixelComponent(p); |
| channel_statistics[BlueChannel].sum+=GetBluePixelComponent(p); |
| channel_statistics[BlueChannel].sum_squared+=(double) p->blue* |
| GetBluePixelComponent(p); |
| channel_statistics[BlueChannel].sum_cubed+=(double) p->blue*p->blue* |
| GetBluePixelComponent(p); |
| channel_statistics[BlueChannel].sum_fourth_power+=(double) p->blue* |
| p->blue*p->blue*GetBluePixelComponent(p); |
| if (image->matte != MagickFalse) |
| { |
| if ((double) p->opacity < channel_statistics[OpacityChannel].minima) |
| channel_statistics[OpacityChannel].minima=(double) |
| GetOpacityPixelComponent(p); |
| if ((double) p->opacity > channel_statistics[OpacityChannel].maxima) |
| channel_statistics[OpacityChannel].maxima=(double) |
| GetOpacityPixelComponent(p); |
| channel_statistics[OpacityChannel].sum+=GetOpacityPixelComponent(p); |
| channel_statistics[OpacityChannel].sum_squared+=(double) |
| p->opacity*GetOpacityPixelComponent(p); |
| channel_statistics[OpacityChannel].sum_cubed+=(double) p->opacity* |
| p->opacity*GetOpacityPixelComponent(p); |
| channel_statistics[OpacityChannel].sum_fourth_power+=(double) |
| p->opacity*p->opacity*p->opacity*GetOpacityPixelComponent(p); |
| } |
| if (image->colorspace == CMYKColorspace) |
| { |
| if ((double) indexes[x] < channel_statistics[BlackChannel].minima) |
| channel_statistics[BlackChannel].minima=(double) indexes[x]; |
| if ((double) indexes[x] > channel_statistics[BlackChannel].maxima) |
| channel_statistics[BlackChannel].maxima=(double) indexes[x]; |
| channel_statistics[BlackChannel].sum+=indexes[x]; |
| channel_statistics[BlackChannel].sum_squared+=(double) |
| indexes[x]*indexes[x]; |
| channel_statistics[BlackChannel].sum_cubed+=(double) indexes[x]* |
| indexes[x]*indexes[x]; |
| channel_statistics[BlackChannel].sum_fourth_power+=(double) |
| indexes[x]*indexes[x]*indexes[x]*indexes[x]; |
| } |
| x++; |
| p++; |
| } |
| } |
| area=(double) image->columns*image->rows; |
| for (i=0; i < AllChannels; i++) |
| { |
| channel_statistics[i].sum/=area; |
| channel_statistics[i].sum_squared/=area; |
| channel_statistics[i].sum_cubed/=area; |
| channel_statistics[i].sum_fourth_power/=area; |
| channel_statistics[i].mean=channel_statistics[i].sum; |
| channel_statistics[i].variance=channel_statistics[i].sum_squared; |
| channel_statistics[i].standard_deviation=sqrt( |
| channel_statistics[i].variance-(channel_statistics[i].mean* |
| channel_statistics[i].mean)); |
| } |
| for (i=0; i < AllChannels; i++) |
| { |
| channel_statistics[AllChannels].depth=(size_t) MagickMax((double) |
| channel_statistics[AllChannels].depth,(double) |
| channel_statistics[i].depth); |
| channel_statistics[AllChannels].minima=MagickMin( |
| channel_statistics[AllChannels].minima,channel_statistics[i].minima); |
| channel_statistics[AllChannels].maxima=MagickMax( |
| channel_statistics[AllChannels].maxima,channel_statistics[i].maxima); |
| channel_statistics[AllChannels].sum+=channel_statistics[i].sum; |
| channel_statistics[AllChannels].sum_squared+= |
| channel_statistics[i].sum_squared; |
| channel_statistics[AllChannels].sum_cubed+=channel_statistics[i].sum_cubed; |
| channel_statistics[AllChannels].sum_fourth_power+= |
| channel_statistics[i].sum_fourth_power; |
| channel_statistics[AllChannels].mean+=channel_statistics[i].mean; |
| channel_statistics[AllChannels].variance+=channel_statistics[i].variance- |
| channel_statistics[i].mean*channel_statistics[i].mean; |
| channel_statistics[AllChannels].standard_deviation+= |
| channel_statistics[i].variance-channel_statistics[i].mean* |
| channel_statistics[i].mean; |
| } |
| channels=3; |
| if (image->matte != MagickFalse) |
| channels++; |
| if (image->colorspace == CMYKColorspace) |
| channels++; |
| channel_statistics[AllChannels].sum/=channels; |
| channel_statistics[AllChannels].sum_squared/=channels; |
| channel_statistics[AllChannels].sum_cubed/=channels; |
| channel_statistics[AllChannels].sum_fourth_power/=channels; |
| channel_statistics[AllChannels].mean/=channels; |
| channel_statistics[AllChannels].variance/=channels; |
| channel_statistics[AllChannels].standard_deviation= |
| sqrt(channel_statistics[AllChannels].standard_deviation/channels); |
| channel_statistics[AllChannels].kurtosis/=channels; |
| channel_statistics[AllChannels].skewness/=channels; |
| for (i=0; i <= AllChannels; i++) |
| { |
| if (channel_statistics[i].standard_deviation == 0.0) |
| continue; |
| channel_statistics[i].skewness=(channel_statistics[i].sum_cubed- |
| 3.0*channel_statistics[i].mean*channel_statistics[i].sum_squared+ |
| 2.0*channel_statistics[i].mean*channel_statistics[i].mean* |
| channel_statistics[i].mean)/(channel_statistics[i].standard_deviation* |
| channel_statistics[i].standard_deviation* |
| channel_statistics[i].standard_deviation); |
| channel_statistics[i].kurtosis=(channel_statistics[i].sum_fourth_power- |
| 4.0*channel_statistics[i].mean*channel_statistics[i].sum_cubed+ |
| 6.0*channel_statistics[i].mean*channel_statistics[i].mean* |
| channel_statistics[i].sum_squared-3.0*channel_statistics[i].mean* |
| channel_statistics[i].mean*1.0*channel_statistics[i].mean* |
| channel_statistics[i].mean)/(channel_statistics[i].standard_deviation* |
| channel_statistics[i].standard_deviation* |
| channel_statistics[i].standard_deviation* |
| channel_statistics[i].standard_deviation)-3.0; |
| } |
| return(channel_statistics); |
| } |