| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % SSSSS EEEEE GGGG M M EEEEE N N TTTTT % |
| % SS E G MM MM E NN N T % |
| % SSS EEE G GGG M M M EEE N N N T % |
| % SS E G G M M E N NN T % |
| % SSSSS EEEEE GGGG M M EEEEE N N T % |
| % % |
| % % |
| % MagickCore Methods to Segment an Image with Thresholding Fuzzy c-Means % |
| % % |
| % Software Design % |
| % Cristy % |
| % April 1993 % |
| % % |
| % % |
| % Copyright 1999-2017 ImageMagick Studio LLC, a non-profit organization % |
| % dedicated to making software imaging solutions freely available. % |
| % % |
| % You may not use this file except in compliance with the License. You may % |
| % obtain a copy of the License at % |
| % % |
| % http://www.imagemagick.org/script/license.php % |
| % % |
| % Unless required by applicable law or agreed to in writing, software % |
| % distributed under the License is distributed on an "AS IS" BASIS, % |
| % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % |
| % See the License for the specific language governing permissions and % |
| % limitations under the License. % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % Segment segments an image by analyzing the histograms of the color |
| % components and identifying units that are homogeneous with the fuzzy |
| % c-means technique. The scale-space filter analyzes the histograms of |
| % the three color components of the image and identifies a set of |
| % classes. The extents of each class is used to coarsely segment the |
| % image with thresholding. The color associated with each class is |
| % determined by the mean color of all pixels within the extents of a |
| % particular class. Finally, any unclassified pixels are assigned to |
| % the closest class with the fuzzy c-means technique. |
| % |
| % The fuzzy c-Means algorithm can be summarized as follows: |
| % |
| % o Build a histogram, one for each color component of the image. |
| % |
| % o For each histogram, successively apply the scale-space filter and |
| % build an interval tree of zero crossings in the second derivative |
| % at each scale. Analyze this scale-space ''fingerprint'' to |
| % determine which peaks and valleys in the histogram are most |
| % predominant. |
| % |
| % o The fingerprint defines intervals on the axis of the histogram. |
| % Each interval contains either a minima or a maxima in the original |
| % signal. If each color component lies within the maxima interval, |
| % that pixel is considered ''classified'' and is assigned an unique |
| % class number. |
| % |
| % o Any pixel that fails to be classified in the above thresholding |
| % pass is classified using the fuzzy c-Means technique. It is |
| % assigned to one of the classes discovered in the histogram analysis |
| % phase. |
| % |
| % The fuzzy c-Means technique attempts to cluster a pixel by finding |
| % the local minima of the generalized within group sum of squared error |
| % objective function. A pixel is assigned to the closest class of |
| % which the fuzzy membership has a maximum value. |
| % |
| % Segment is strongly based on software written by Andy Gallo, |
| % University of Delaware. |
| % |
| % The following reference was used in creating this program: |
| % |
| % Young Won Lim, Sang Uk Lee, "On The Color Image Segmentation |
| % Algorithm Based on the Thresholding and the Fuzzy c-Means |
| % Techniques", Pattern Recognition, Volume 23, Number 9, pages |
| % 935-952, 1990. |
| % |
| % |
| */ |
| |
| #include "MagickCore/studio.h" |
| #include "MagickCore/cache.h" |
| #include "MagickCore/color.h" |
| #include "MagickCore/colormap.h" |
| #include "MagickCore/colorspace.h" |
| #include "MagickCore/colorspace-private.h" |
| #include "MagickCore/exception.h" |
| #include "MagickCore/exception-private.h" |
| #include "MagickCore/image.h" |
| #include "MagickCore/image-private.h" |
| #include "MagickCore/memory_.h" |
| #include "MagickCore/monitor.h" |
| #include "MagickCore/monitor-private.h" |
| #include "MagickCore/pixel-accessor.h" |
| #include "MagickCore/pixel-private.h" |
| #include "MagickCore/quantize.h" |
| #include "MagickCore/quantum.h" |
| #include "MagickCore/quantum-private.h" |
| #include "MagickCore/resource_.h" |
| #include "MagickCore/segment.h" |
| #include "MagickCore/string_.h" |
| #include "MagickCore/thread-private.h" |
| |
| /* |
| Define declarations. |
| */ |
| #define MaxDimension 3 |
| #define DeltaTau 0.5f |
| #if defined(FastClassify) |
| #define WeightingExponent 2.0 |
| #define SegmentPower(ratio) (ratio) |
| #else |
| #define WeightingExponent 2.5 |
| #define SegmentPower(ratio) pow(ratio,(double) (1.0/(weighting_exponent-1.0))); |
| #endif |
| #define Tau 5.2f |
| |
| /* |
| Typedef declarations. |
| */ |
| typedef struct _ExtentPacket |
| { |
| double |
| center; |
| |
| ssize_t |
| index, |
| left, |
| right; |
| } ExtentPacket; |
| |
| typedef struct _Cluster |
| { |
| struct _Cluster |
| *next; |
| |
| ExtentPacket |
| red, |
| green, |
| blue; |
| |
| ssize_t |
| count, |
| id; |
| } Cluster; |
| |
| typedef struct _IntervalTree |
| { |
| double |
| tau; |
| |
| ssize_t |
| left, |
| right; |
| |
| double |
| mean_stability, |
| stability; |
| |
| struct _IntervalTree |
| *sibling, |
| *child; |
| } IntervalTree; |
| |
| typedef struct _ZeroCrossing |
| { |
| double |
| tau, |
| histogram[256]; |
| |
| short |
| crossings[256]; |
| } ZeroCrossing; |
| |
| /* |
| Constant declarations. |
| */ |
| static const int |
| Blue = 2, |
| Green = 1, |
| Red = 0, |
| SafeMargin = 3, |
| TreeLength = 600; |
| |
| /* |
| Method prototypes. |
| */ |
| static double |
| OptimalTau(const ssize_t *,const double,const double,const double, |
| const double,short *); |
| |
| static ssize_t |
| DefineRegion(const short *,ExtentPacket *); |
| |
| static void |
| InitializeHistogram(const Image *,ssize_t **,ExceptionInfo *), |
| ScaleSpace(const ssize_t *,const double,double *), |
| ZeroCrossHistogram(double *,const double,short *); |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + C l a s s i f y % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % Classify() defines one or more classes. Each pixel is thresholded to |
| % determine which class it belongs to. If the class is not identified it is |
| % assigned to the closest class based on the fuzzy c-Means technique. |
| % |
| % The format of the Classify method is: |
| % |
| % MagickBooleanType Classify(Image *image,short **extrema, |
| % const double cluster_threshold, |
| % const double weighting_exponent, |
| % const MagickBooleanType verbose,ExceptionInfo *exception) |
| % |
| % A description of each parameter follows. |
| % |
| % o image: the image. |
| % |
| % o extrema: Specifies a pointer to an array of integers. They |
| % represent the peaks and valleys of the histogram for each color |
| % component. |
| % |
| % o cluster_threshold: This double represents the minimum number of |
| % pixels contained in a hexahedra before it can be considered valid |
| % (expressed as a percentage). |
| % |
| % o weighting_exponent: Specifies the membership weighting exponent. |
| % |
| % o verbose: A value greater than zero prints detailed information about |
| % the identified classes. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| static MagickBooleanType Classify(Image *image,short **extrema, |
| const double cluster_threshold, |
| const double weighting_exponent,const MagickBooleanType verbose, |
| ExceptionInfo *exception) |
| { |
| #define SegmentImageTag "Segment/Image" |
| |
| CacheView |
| *image_view; |
| |
| Cluster |
| *cluster, |
| *head, |
| *last_cluster, |
| *next_cluster; |
| |
| ExtentPacket |
| blue, |
| green, |
| red; |
| |
| MagickOffsetType |
| progress; |
| |
| double |
| *free_squares; |
| |
| MagickStatusType |
| status; |
| |
| register ssize_t |
| i; |
| |
| register double |
| *squares; |
| |
| size_t |
| number_clusters; |
| |
| ssize_t |
| count, |
| y; |
| |
| /* |
| Form clusters. |
| */ |
| cluster=(Cluster *) NULL; |
| head=(Cluster *) NULL; |
| (void) ResetMagickMemory(&red,0,sizeof(red)); |
| (void) ResetMagickMemory(&green,0,sizeof(green)); |
| (void) ResetMagickMemory(&blue,0,sizeof(blue)); |
| while (DefineRegion(extrema[Red],&red) != 0) |
| { |
| green.index=0; |
| while (DefineRegion(extrema[Green],&green) != 0) |
| { |
| blue.index=0; |
| while (DefineRegion(extrema[Blue],&blue) != 0) |
| { |
| /* |
| Allocate a new class. |
| */ |
| if (head != (Cluster *) NULL) |
| { |
| cluster->next=(Cluster *) AcquireMagickMemory( |
| sizeof(*cluster->next)); |
| cluster=cluster->next; |
| } |
| else |
| { |
| cluster=(Cluster *) AcquireMagickMemory(sizeof(*cluster)); |
| head=cluster; |
| } |
| if (cluster == (Cluster *) NULL) |
| ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", |
| image->filename); |
| /* |
| Initialize a new class. |
| */ |
| cluster->count=0; |
| cluster->red=red; |
| cluster->green=green; |
| cluster->blue=blue; |
| cluster->next=(Cluster *) NULL; |
| } |
| } |
| } |
| if (head == (Cluster *) NULL) |
| { |
| /* |
| No classes were identified-- create one. |
| */ |
| cluster=(Cluster *) AcquireMagickMemory(sizeof(*cluster)); |
| if (cluster == (Cluster *) NULL) |
| ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", |
| image->filename); |
| /* |
| Initialize a new class. |
| */ |
| cluster->count=0; |
| cluster->red=red; |
| cluster->green=green; |
| cluster->blue=blue; |
| cluster->next=(Cluster *) NULL; |
| head=cluster; |
| } |
| /* |
| Count the pixels for each cluster. |
| */ |
| status=MagickTrue; |
| count=0; |
| progress=0; |
| image_view=AcquireVirtualCacheView(image,exception); |
| for (y=0; y < (ssize_t) image->rows; y++) |
| { |
| register const Quantum |
| *p; |
| |
| register ssize_t |
| x; |
| |
| p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); |
| if (p == (const Quantum *) NULL) |
| break; |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) |
| if (((ssize_t) ScaleQuantumToChar(GetPixelRed(image,p)) >= |
| (cluster->red.left-SafeMargin)) && |
| ((ssize_t) ScaleQuantumToChar(GetPixelRed(image,p)) <= |
| (cluster->red.right+SafeMargin)) && |
| ((ssize_t) ScaleQuantumToChar(GetPixelGreen(image,p)) >= |
| (cluster->green.left-SafeMargin)) && |
| ((ssize_t) ScaleQuantumToChar(GetPixelGreen(image,p)) <= |
| (cluster->green.right+SafeMargin)) && |
| ((ssize_t) ScaleQuantumToChar(GetPixelBlue(image,p)) >= |
| (cluster->blue.left-SafeMargin)) && |
| ((ssize_t) ScaleQuantumToChar(GetPixelBlue(image,p)) <= |
| (cluster->blue.right+SafeMargin))) |
| { |
| /* |
| Count this pixel. |
| */ |
| count++; |
| cluster->red.center+=(double) ScaleQuantumToChar( |
| GetPixelRed(image,p)); |
| cluster->green.center+=(double) ScaleQuantumToChar( |
| GetPixelGreen(image,p)); |
| cluster->blue.center+=(double) ScaleQuantumToChar( |
| GetPixelBlue(image,p)); |
| cluster->count++; |
| break; |
| } |
| p+=GetPixelChannels(image); |
| } |
| if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp critical (MagickCore_Classify) |
| #endif |
| proceed=SetImageProgress(image,SegmentImageTag,progress++,2* |
| image->rows); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| } |
| image_view=DestroyCacheView(image_view); |
| /* |
| Remove clusters that do not meet minimum cluster threshold. |
| */ |
| count=0; |
| last_cluster=head; |
| next_cluster=head; |
| for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster) |
| { |
| next_cluster=cluster->next; |
| if ((cluster->count > 0) && |
| (cluster->count >= (count*cluster_threshold/100.0))) |
| { |
| /* |
| Initialize cluster. |
| */ |
| cluster->id=count; |
| cluster->red.center/=cluster->count; |
| cluster->green.center/=cluster->count; |
| cluster->blue.center/=cluster->count; |
| count++; |
| last_cluster=cluster; |
| continue; |
| } |
| /* |
| Delete cluster. |
| */ |
| if (cluster == head) |
| head=next_cluster; |
| else |
| last_cluster->next=next_cluster; |
| cluster=(Cluster *) RelinquishMagickMemory(cluster); |
| } |
| number_clusters=(size_t) count; |
| if (verbose != MagickFalse) |
| { |
| /* |
| Print cluster statistics. |
| */ |
| (void) FormatLocaleFile(stdout,"Fuzzy C-means Statistics\n"); |
| (void) FormatLocaleFile(stdout,"===================\n\n"); |
| (void) FormatLocaleFile(stdout,"\tCluster Threshold = %g\n",(double) |
| cluster_threshold); |
| (void) FormatLocaleFile(stdout,"\tWeighting Exponent = %g\n",(double) |
| weighting_exponent); |
| (void) FormatLocaleFile(stdout,"\tTotal Number of Clusters = %.20g\n\n", |
| (double) number_clusters); |
| /* |
| Print the total number of points per cluster. |
| */ |
| (void) FormatLocaleFile(stdout,"\n\nNumber of Vectors Per Cluster\n"); |
| (void) FormatLocaleFile(stdout,"=============================\n\n"); |
| for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) |
| (void) FormatLocaleFile(stdout,"Cluster #%.20g = %.20g\n",(double) |
| cluster->id,(double) cluster->count); |
| /* |
| Print the cluster extents. |
| */ |
| (void) FormatLocaleFile(stdout, |
| "\n\n\nCluster Extents: (Vector Size: %d)\n",MaxDimension); |
| (void) FormatLocaleFile(stdout,"================"); |
| for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) |
| { |
| (void) FormatLocaleFile(stdout,"\n\nCluster #%.20g\n\n",(double) |
| cluster->id); |
| (void) FormatLocaleFile(stdout, |
| "%.20g-%.20g %.20g-%.20g %.20g-%.20g\n",(double) |
| cluster->red.left,(double) cluster->red.right,(double) |
| cluster->green.left,(double) cluster->green.right,(double) |
| cluster->blue.left,(double) cluster->blue.right); |
| } |
| /* |
| Print the cluster center values. |
| */ |
| (void) FormatLocaleFile(stdout, |
| "\n\n\nCluster Center Values: (Vector Size: %d)\n",MaxDimension); |
| (void) FormatLocaleFile(stdout,"====================="); |
| for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) |
| { |
| (void) FormatLocaleFile(stdout,"\n\nCluster #%.20g\n\n",(double) |
| cluster->id); |
| (void) FormatLocaleFile(stdout,"%g %g %g\n",(double) |
| cluster->red.center,(double) cluster->green.center,(double) |
| cluster->blue.center); |
| } |
| (void) FormatLocaleFile(stdout,"\n"); |
| } |
| if (number_clusters > 256) |
| ThrowBinaryException(ImageError,"TooManyClusters",image->filename); |
| /* |
| Speed up distance calculations. |
| */ |
| squares=(double *) AcquireQuantumMemory(513UL,sizeof(*squares)); |
| if (squares == (double *) NULL) |
| ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", |
| image->filename); |
| squares+=255; |
| for (i=(-255); i <= 255; i++) |
| squares[i]=(double) i*(double) i; |
| /* |
| Allocate image colormap. |
| */ |
| if (AcquireImageColormap(image,number_clusters,exception) == MagickFalse) |
| ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", |
| image->filename); |
| i=0; |
| for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) |
| { |
| image->colormap[i].red=(double) ScaleCharToQuantum((unsigned char) |
| (cluster->red.center+0.5)); |
| image->colormap[i].green=(double) ScaleCharToQuantum((unsigned char) |
| (cluster->green.center+0.5)); |
| image->colormap[i].blue=(double) ScaleCharToQuantum((unsigned char) |
| (cluster->blue.center+0.5)); |
| i++; |
| } |
| /* |
| Do course grain classes. |
| */ |
| image_view=AcquireAuthenticCacheView(image,exception); |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel for schedule(static,4) shared(progress,status) \ |
| magick_threads(image,image,image->rows,1) |
| #endif |
| for (y=0; y < (ssize_t) image->rows; y++) |
| { |
| Cluster |
| *cluster; |
| |
| register const PixelInfo |
| *magick_restrict p; |
| |
| register ssize_t |
| x; |
| |
| register Quantum |
| *magick_restrict q; |
| |
| if (status == MagickFalse) |
| continue; |
| q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); |
| if (q == (Quantum *) NULL) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| SetPixelIndex(image,0,q); |
| for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) |
| { |
| if (((ssize_t) ScaleQuantumToChar(GetPixelRed(image,q)) >= |
| (cluster->red.left-SafeMargin)) && |
| ((ssize_t) ScaleQuantumToChar(GetPixelRed(image,q)) <= |
| (cluster->red.right+SafeMargin)) && |
| ((ssize_t) ScaleQuantumToChar(GetPixelGreen(image,q)) >= |
| (cluster->green.left-SafeMargin)) && |
| ((ssize_t) ScaleQuantumToChar(GetPixelGreen(image,q)) <= |
| (cluster->green.right+SafeMargin)) && |
| ((ssize_t) ScaleQuantumToChar(GetPixelBlue(image,q)) >= |
| (cluster->blue.left-SafeMargin)) && |
| ((ssize_t) ScaleQuantumToChar(GetPixelBlue(image,q)) <= |
| (cluster->blue.right+SafeMargin))) |
| { |
| /* |
| Classify this pixel. |
| */ |
| SetPixelIndex(image,(Quantum) cluster->id,q); |
| break; |
| } |
| } |
| if (cluster == (Cluster *) NULL) |
| { |
| double |
| distance_squared, |
| local_minima, |
| numerator, |
| ratio, |
| sum; |
| |
| register ssize_t |
| j, |
| k; |
| |
| /* |
| Compute fuzzy membership. |
| */ |
| local_minima=0.0; |
| for (j=0; j < (ssize_t) image->colors; j++) |
| { |
| sum=0.0; |
| p=image->colormap+j; |
| distance_squared=squares[(ssize_t) ScaleQuantumToChar( |
| GetPixelRed(image,q))-(ssize_t) |
| ScaleQuantumToChar(ClampToQuantum(p->red))]+squares[(ssize_t) |
| ScaleQuantumToChar(GetPixelGreen(image,q))-(ssize_t) |
| ScaleQuantumToChar(ClampToQuantum(p->green))]+squares[(ssize_t) |
| ScaleQuantumToChar(GetPixelBlue(image,q))-(ssize_t) |
| ScaleQuantumToChar(ClampToQuantum(p->blue))]; |
| numerator=distance_squared; |
| for (k=0; k < (ssize_t) image->colors; k++) |
| { |
| p=image->colormap+k; |
| distance_squared=squares[(ssize_t) ScaleQuantumToChar( |
| GetPixelRed(image,q))-(ssize_t) |
| ScaleQuantumToChar(ClampToQuantum(p->red))]+squares[ |
| (ssize_t) ScaleQuantumToChar(GetPixelGreen(image,q))-(ssize_t) |
| ScaleQuantumToChar(ClampToQuantum(p->green))]+squares[ |
| (ssize_t) ScaleQuantumToChar(GetPixelBlue(image,q))-(ssize_t) |
| ScaleQuantumToChar(ClampToQuantum(p->blue))]; |
| ratio=numerator/distance_squared; |
| sum+=SegmentPower(ratio); |
| } |
| if ((sum != 0.0) && ((1.0/sum) > local_minima)) |
| { |
| /* |
| Classify this pixel. |
| */ |
| local_minima=1.0/sum; |
| SetPixelIndex(image,(Quantum) j,q); |
| } |
| } |
| } |
| q+=GetPixelChannels(image); |
| } |
| if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) |
| status=MagickFalse; |
| if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp critical (MagickCore_Classify) |
| #endif |
| proceed=SetImageProgress(image,SegmentImageTag,progress++, |
| 2*image->rows); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| } |
| image_view=DestroyCacheView(image_view); |
| status&=SyncImage(image,exception); |
| /* |
| Relinquish resources. |
| */ |
| for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster) |
| { |
| next_cluster=cluster->next; |
| cluster=(Cluster *) RelinquishMagickMemory(cluster); |
| } |
| squares-=255; |
| free_squares=squares; |
| free_squares=(double *) RelinquishMagickMemory(free_squares); |
| return(MagickTrue); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + C o n s o l i d a t e C r o s s i n g s % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ConsolidateCrossings() guarantees that an even number of zero crossings |
| % always lie between two crossings. |
| % |
| % The format of the ConsolidateCrossings method is: |
| % |
| % ConsolidateCrossings(ZeroCrossing *zero_crossing, |
| % const size_t number_crossings) |
| % |
| % A description of each parameter follows. |
| % |
| % o zero_crossing: Specifies an array of structures of type ZeroCrossing. |
| % |
| % o number_crossings: This size_t specifies the number of elements |
| % in the zero_crossing array. |
| % |
| */ |
| static void ConsolidateCrossings(ZeroCrossing *zero_crossing, |
| const size_t number_crossings) |
| { |
| register ssize_t |
| i, |
| j, |
| k, |
| l; |
| |
| ssize_t |
| center, |
| correct, |
| count, |
| left, |
| right; |
| |
| /* |
| Consolidate zero crossings. |
| */ |
| for (i=(ssize_t) number_crossings-1; i >= 0; i--) |
| for (j=0; j <= 255; j++) |
| { |
| if (zero_crossing[i].crossings[j] == 0) |
| continue; |
| /* |
| Find the entry that is closest to j and still preserves the |
| property that there are an even number of crossings between |
| intervals. |
| */ |
| for (k=j-1; k > 0; k--) |
| if (zero_crossing[i+1].crossings[k] != 0) |
| break; |
| left=MagickMax(k,0); |
| center=j; |
| for (k=j+1; k < 255; k++) |
| if (zero_crossing[i+1].crossings[k] != 0) |
| break; |
| right=MagickMin(k,255); |
| /* |
| K is the zero crossing just left of j. |
| */ |
| for (k=j-1; k > 0; k--) |
| if (zero_crossing[i].crossings[k] != 0) |
| break; |
| if (k < 0) |
| k=0; |
| /* |
| Check center for an even number of crossings between k and j. |
| */ |
| correct=(-1); |
| if (zero_crossing[i+1].crossings[j] != 0) |
| { |
| count=0; |
| for (l=k+1; l < center; l++) |
| if (zero_crossing[i+1].crossings[l] != 0) |
| count++; |
| if (((count % 2) == 0) && (center != k)) |
| correct=center; |
| } |
| /* |
| Check left for an even number of crossings between k and j. |
| */ |
| if (correct == -1) |
| { |
| count=0; |
| for (l=k+1; l < left; l++) |
| if (zero_crossing[i+1].crossings[l] != 0) |
| count++; |
| if (((count % 2) == 0) && (left != k)) |
| correct=left; |
| } |
| /* |
| Check right for an even number of crossings between k and j. |
| */ |
| if (correct == -1) |
| { |
| count=0; |
| for (l=k+1; l < right; l++) |
| if (zero_crossing[i+1].crossings[l] != 0) |
| count++; |
| if (((count % 2) == 0) && (right != k)) |
| correct=right; |
| } |
| l=(ssize_t) zero_crossing[i].crossings[j]; |
| zero_crossing[i].crossings[j]=0; |
| if (correct != -1) |
| zero_crossing[i].crossings[correct]=(short) l; |
| } |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + D e f i n e R e g i o n % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % DefineRegion() defines the left and right boundaries of a peak region. |
| % |
| % The format of the DefineRegion method is: |
| % |
| % ssize_t DefineRegion(const short *extrema,ExtentPacket *extents) |
| % |
| % A description of each parameter follows. |
| % |
| % o extrema: Specifies a pointer to an array of integers. They |
| % represent the peaks and valleys of the histogram for each color |
| % component. |
| % |
| % o extents: This pointer to an ExtentPacket represent the extends |
| % of a particular peak or valley of a color component. |
| % |
| */ |
| static ssize_t DefineRegion(const short *extrema,ExtentPacket *extents) |
| { |
| /* |
| Initialize to default values. |
| */ |
| extents->left=0; |
| extents->center=0.0; |
| extents->right=255; |
| /* |
| Find the left side (maxima). |
| */ |
| for ( ; extents->index <= 255; extents->index++) |
| if (extrema[extents->index] > 0) |
| break; |
| if (extents->index > 255) |
| return(MagickFalse); /* no left side - no region exists */ |
| extents->left=extents->index; |
| /* |
| Find the right side (minima). |
| */ |
| for ( ; extents->index <= 255; extents->index++) |
| if (extrema[extents->index] < 0) |
| break; |
| extents->right=extents->index-1; |
| return(MagickTrue); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + D e r i v a t i v e H i s t o g r a m % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % DerivativeHistogram() determines the derivative of the histogram using |
| % central differencing. |
| % |
| % The format of the DerivativeHistogram method is: |
| % |
| % DerivativeHistogram(const double *histogram, |
| % double *derivative) |
| % |
| % A description of each parameter follows. |
| % |
| % o histogram: Specifies an array of doubles representing the number |
| % of pixels for each intensity of a particular color component. |
| % |
| % o derivative: This array of doubles is initialized by |
| % DerivativeHistogram to the derivative of the histogram using central |
| % differencing. |
| % |
| */ |
| static void DerivativeHistogram(const double *histogram, |
| double *derivative) |
| { |
| register ssize_t |
| i, |
| n; |
| |
| /* |
| Compute endpoints using second order polynomial interpolation. |
| */ |
| n=255; |
| derivative[0]=(-1.5*histogram[0]+2.0*histogram[1]-0.5*histogram[2]); |
| derivative[n]=(0.5*histogram[n-2]-2.0*histogram[n-1]+1.5*histogram[n]); |
| /* |
| Compute derivative using central differencing. |
| */ |
| for (i=1; i < n; i++) |
| derivative[i]=(histogram[i+1]-histogram[i-1])/2.0; |
| return; |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + G e t I m a g e D y n a m i c T h r e s h o l d % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % GetImageDynamicThreshold() returns the dynamic threshold for an image. |
| % |
| % The format of the GetImageDynamicThreshold method is: |
| % |
| % MagickBooleanType GetImageDynamicThreshold(const Image *image, |
| % const double cluster_threshold,const double smooth_threshold, |
| % PixelInfo *pixel,ExceptionInfo *exception) |
| % |
| % A description of each parameter follows. |
| % |
| % o image: the image. |
| % |
| % o cluster_threshold: This double represents the minimum number of |
| % pixels contained in a hexahedra before it can be considered valid |
| % (expressed as a percentage). |
| % |
| % o smooth_threshold: the smoothing threshold eliminates noise in the second |
| % derivative of the histogram. As the value is increased, you can expect a |
| % smoother second derivative. |
| % |
| % o pixel: return the dynamic threshold here. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| MagickExport MagickBooleanType GetImageDynamicThreshold(const Image *image, |
| const double cluster_threshold,const double smooth_threshold, |
| PixelInfo *pixel,ExceptionInfo *exception) |
| { |
| Cluster |
| *background, |
| *cluster, |
| *object, |
| *head, |
| *last_cluster, |
| *next_cluster; |
| |
| ExtentPacket |
| blue, |
| green, |
| red; |
| |
| MagickBooleanType |
| proceed; |
| |
| double |
| threshold; |
| |
| register const Quantum |
| *p; |
| |
| register ssize_t |
| i, |
| x; |
| |
| short |
| *extrema[MaxDimension]; |
| |
| ssize_t |
| count, |
| *histogram[MaxDimension], |
| y; |
| |
| /* |
| Allocate histogram and extrema. |
| */ |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickCoreSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| GetPixelInfo(image,pixel); |
| for (i=0; i < MaxDimension; i++) |
| { |
| histogram[i]=(ssize_t *) AcquireQuantumMemory(256UL,sizeof(**histogram)); |
| extrema[i]=(short *) AcquireQuantumMemory(256UL,sizeof(**histogram)); |
| if ((histogram[i] == (ssize_t *) NULL) || (extrema[i] == (short *) NULL)) |
| { |
| for (i-- ; i >= 0; i--) |
| { |
| extrema[i]=(short *) RelinquishMagickMemory(extrema[i]); |
| histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]); |
| } |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); |
| return(MagickFalse); |
| } |
| } |
| /* |
| Initialize histogram. |
| */ |
| InitializeHistogram(image,histogram,exception); |
| (void) OptimalTau(histogram[Red],Tau,0.2f,DeltaTau, |
| (smooth_threshold == 0.0f ? 1.0f : smooth_threshold),extrema[Red]); |
| (void) OptimalTau(histogram[Green],Tau,0.2f,DeltaTau, |
| (smooth_threshold == 0.0f ? 1.0f : smooth_threshold),extrema[Green]); |
| (void) OptimalTau(histogram[Blue],Tau,0.2f,DeltaTau, |
| (smooth_threshold == 0.0f ? 1.0f : smooth_threshold),extrema[Blue]); |
| /* |
| Form clusters. |
| */ |
| cluster=(Cluster *) NULL; |
| head=(Cluster *) NULL; |
| (void) ResetMagickMemory(&red,0,sizeof(red)); |
| (void) ResetMagickMemory(&green,0,sizeof(green)); |
| (void) ResetMagickMemory(&blue,0,sizeof(blue)); |
| while (DefineRegion(extrema[Red],&red) != 0) |
| { |
| green.index=0; |
| while (DefineRegion(extrema[Green],&green) != 0) |
| { |
| blue.index=0; |
| while (DefineRegion(extrema[Blue],&blue) != 0) |
| { |
| /* |
| Allocate a new class. |
| */ |
| if (head != (Cluster *) NULL) |
| { |
| cluster->next=(Cluster *) AcquireMagickMemory( |
| sizeof(*cluster->next)); |
| cluster=cluster->next; |
| } |
| else |
| { |
| cluster=(Cluster *) AcquireMagickMemory(sizeof(*cluster)); |
| head=cluster; |
| } |
| if (cluster == (Cluster *) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'", |
| image->filename); |
| return(MagickFalse); |
| } |
| /* |
| Initialize a new class. |
| */ |
| cluster->count=0; |
| cluster->red=red; |
| cluster->green=green; |
| cluster->blue=blue; |
| cluster->next=(Cluster *) NULL; |
| } |
| } |
| } |
| if (head == (Cluster *) NULL) |
| { |
| /* |
| No classes were identified-- create one. |
| */ |
| cluster=(Cluster *) AcquireMagickMemory(sizeof(*cluster)); |
| if (cluster == (Cluster *) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); |
| return(MagickFalse); |
| } |
| /* |
| Initialize a new class. |
| */ |
| cluster->count=0; |
| cluster->red=red; |
| cluster->green=green; |
| cluster->blue=blue; |
| cluster->next=(Cluster *) NULL; |
| head=cluster; |
| } |
| /* |
| Count the pixels for each cluster. |
| */ |
| count=0; |
| for (y=0; y < (ssize_t) image->rows; y++) |
| { |
| p=GetVirtualPixels(image,0,y,image->columns,1,exception); |
| if (p == (const Quantum *) NULL) |
| break; |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) |
| if (((ssize_t) ScaleQuantumToChar(GetPixelRed(image,p)) >= |
| (cluster->red.left-SafeMargin)) && |
| ((ssize_t) ScaleQuantumToChar(GetPixelRed(image,p)) <= |
| (cluster->red.right+SafeMargin)) && |
| ((ssize_t) ScaleQuantumToChar(GetPixelGreen(image,p)) >= |
| (cluster->green.left-SafeMargin)) && |
| ((ssize_t) ScaleQuantumToChar(GetPixelGreen(image,p)) <= |
| (cluster->green.right+SafeMargin)) && |
| ((ssize_t) ScaleQuantumToChar(GetPixelBlue(image,p)) >= |
| (cluster->blue.left-SafeMargin)) && |
| ((ssize_t) ScaleQuantumToChar(GetPixelBlue(image,p)) <= |
| (cluster->blue.right+SafeMargin))) |
| { |
| /* |
| Count this pixel. |
| */ |
| count++; |
| cluster->red.center+=(double) ScaleQuantumToChar( |
| GetPixelRed(image,p)); |
| cluster->green.center+=(double) ScaleQuantumToChar( |
| GetPixelGreen(image,p)); |
| cluster->blue.center+=(double) ScaleQuantumToChar( |
| GetPixelBlue(image,p)); |
| cluster->count++; |
| break; |
| } |
| p+=GetPixelChannels(image); |
| } |
| proceed=SetImageProgress(image,SegmentImageTag,(MagickOffsetType) y, |
| 2*image->rows); |
| if (proceed == MagickFalse) |
| break; |
| } |
| /* |
| Remove clusters that do not meet minimum cluster threshold. |
| */ |
| count=0; |
| last_cluster=head; |
| next_cluster=head; |
| for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster) |
| { |
| next_cluster=cluster->next; |
| if ((cluster->count > 0) && |
| (cluster->count >= (count*cluster_threshold/100.0))) |
| { |
| /* |
| Initialize cluster. |
| */ |
| cluster->id=count; |
| cluster->red.center/=cluster->count; |
| cluster->green.center/=cluster->count; |
| cluster->blue.center/=cluster->count; |
| count++; |
| last_cluster=cluster; |
| continue; |
| } |
| /* |
| Delete cluster. |
| */ |
| if (cluster == head) |
| head=next_cluster; |
| else |
| last_cluster->next=next_cluster; |
| cluster=(Cluster *) RelinquishMagickMemory(cluster); |
| } |
| object=head; |
| background=head; |
| if (count > 1) |
| { |
| object=head->next; |
| for (cluster=object; cluster->next != (Cluster *) NULL; ) |
| { |
| if (cluster->count < object->count) |
| object=cluster; |
| cluster=cluster->next; |
| } |
| background=head->next; |
| for (cluster=background; cluster->next != (Cluster *) NULL; ) |
| { |
| if (cluster->count > background->count) |
| background=cluster; |
| cluster=cluster->next; |
| } |
| } |
| if (background != (Cluster *) NULL) |
| { |
| threshold=(background->red.center+object->red.center)/2.0; |
| pixel->red=(double) ScaleCharToQuantum((unsigned char) |
| (threshold+0.5)); |
| threshold=(background->green.center+object->green.center)/2.0; |
| pixel->green=(double) ScaleCharToQuantum((unsigned char) |
| (threshold+0.5)); |
| threshold=(background->blue.center+object->blue.center)/2.0; |
| pixel->blue=(double) ScaleCharToQuantum((unsigned char) |
| (threshold+0.5)); |
| } |
| /* |
| Relinquish resources. |
| */ |
| for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster) |
| { |
| next_cluster=cluster->next; |
| cluster=(Cluster *) RelinquishMagickMemory(cluster); |
| } |
| for (i=0; i < MaxDimension; i++) |
| { |
| extrema[i]=(short *) RelinquishMagickMemory(extrema[i]); |
| histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]); |
| } |
| return(MagickTrue); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + I n i t i a l i z e H i s t o g r a m % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % InitializeHistogram() computes the histogram for an image. |
| % |
| % The format of the InitializeHistogram method is: |
| % |
| % InitializeHistogram(const Image *image,ssize_t **histogram) |
| % |
| % A description of each parameter follows. |
| % |
| % o image: Specifies a pointer to an Image structure; returned from |
| % ReadImage. |
| % |
| % o histogram: Specifies an array of integers representing the number |
| % of pixels for each intensity of a particular color component. |
| % |
| */ |
| static void InitializeHistogram(const Image *image,ssize_t **histogram, |
| ExceptionInfo *exception) |
| { |
| register const Quantum |
| *p; |
| |
| register ssize_t |
| i, |
| x; |
| |
| ssize_t |
| y; |
| |
| /* |
| Initialize histogram. |
| */ |
| for (i=0; i <= 255; i++) |
| { |
| histogram[Red][i]=0; |
| histogram[Green][i]=0; |
| histogram[Blue][i]=0; |
| } |
| for (y=0; y < (ssize_t) image->rows; y++) |
| { |
| p=GetVirtualPixels(image,0,y,image->columns,1,exception); |
| if (p == (const Quantum *) NULL) |
| break; |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| histogram[Red][(ssize_t) ScaleQuantumToChar(GetPixelRed(image,p))]++; |
| histogram[Green][(ssize_t) ScaleQuantumToChar(GetPixelGreen(image,p))]++; |
| histogram[Blue][(ssize_t) ScaleQuantumToChar(GetPixelBlue(image,p))]++; |
| p+=GetPixelChannels(image); |
| } |
| } |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + I n i t i a l i z e I n t e r v a l T r e e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % InitializeIntervalTree() initializes an interval tree from the lists of |
| % zero crossings. |
| % |
| % The format of the InitializeIntervalTree method is: |
| % |
| % InitializeIntervalTree(IntervalTree **list,ssize_t *number_nodes, |
| % IntervalTree *node) |
| % |
| % A description of each parameter follows. |
| % |
| % o zero_crossing: Specifies an array of structures of type ZeroCrossing. |
| % |
| % o number_crossings: This size_t specifies the number of elements |
| % in the zero_crossing array. |
| % |
| */ |
| |
| static void InitializeList(IntervalTree **list,ssize_t *number_nodes, |
| IntervalTree *node) |
| { |
| if (node == (IntervalTree *) NULL) |
| return; |
| if (node->child == (IntervalTree *) NULL) |
| list[(*number_nodes)++]=node; |
| InitializeList(list,number_nodes,node->sibling); |
| InitializeList(list,number_nodes,node->child); |
| } |
| |
| static void MeanStability(IntervalTree *node) |
| { |
| register IntervalTree |
| *child; |
| |
| if (node == (IntervalTree *) NULL) |
| return; |
| node->mean_stability=0.0; |
| child=node->child; |
| if (child != (IntervalTree *) NULL) |
| { |
| register ssize_t |
| count; |
| |
| register double |
| sum; |
| |
| sum=0.0; |
| count=0; |
| for ( ; child != (IntervalTree *) NULL; child=child->sibling) |
| { |
| sum+=child->stability; |
| count++; |
| } |
| node->mean_stability=sum/(double) count; |
| } |
| MeanStability(node->sibling); |
| MeanStability(node->child); |
| } |
| |
| static void Stability(IntervalTree *node) |
| { |
| if (node == (IntervalTree *) NULL) |
| return; |
| if (node->child == (IntervalTree *) NULL) |
| node->stability=0.0; |
| else |
| node->stability=node->tau-(node->child)->tau; |
| Stability(node->sibling); |
| Stability(node->child); |
| } |
| |
| static IntervalTree *InitializeIntervalTree(const ZeroCrossing *zero_crossing, |
| const size_t number_crossings) |
| { |
| IntervalTree |
| *head, |
| **list, |
| *node, |
| *root; |
| |
| register ssize_t |
| i; |
| |
| ssize_t |
| j, |
| k, |
| left, |
| number_nodes; |
| |
| /* |
| Allocate interval tree. |
| */ |
| list=(IntervalTree **) AcquireQuantumMemory((size_t) TreeLength, |
| sizeof(*list)); |
| if (list == (IntervalTree **) NULL) |
| return((IntervalTree *) NULL); |
| /* |
| The root is the entire histogram. |
| */ |
| root=(IntervalTree *) AcquireMagickMemory(sizeof(*root)); |
| root->child=(IntervalTree *) NULL; |
| root->sibling=(IntervalTree *) NULL; |
| root->tau=0.0; |
| root->left=0; |
| root->right=255; |
| for (i=(-1); i < (ssize_t) number_crossings; i++) |
| { |
| /* |
| Initialize list with all nodes with no children. |
| */ |
| number_nodes=0; |
| InitializeList(list,&number_nodes,root); |
| /* |
| Split list. |
| */ |
| for (j=0; j < number_nodes; j++) |
| { |
| head=list[j]; |
| left=head->left; |
| node=head; |
| for (k=head->left+1; k < head->right; k++) |
| { |
| if (zero_crossing[i+1].crossings[k] != 0) |
| { |
| if (node == head) |
| { |
| node->child=(IntervalTree *) AcquireMagickMemory( |
| sizeof(*node->child)); |
| node=node->child; |
| } |
| else |
| { |
| node->sibling=(IntervalTree *) AcquireMagickMemory( |
| sizeof(*node->sibling)); |
| node=node->sibling; |
| } |
| node->tau=zero_crossing[i+1].tau; |
| node->child=(IntervalTree *) NULL; |
| node->sibling=(IntervalTree *) NULL; |
| node->left=left; |
| node->right=k; |
| left=k; |
| } |
| } |
| if (left != head->left) |
| { |
| node->sibling=(IntervalTree *) AcquireMagickMemory( |
| sizeof(*node->sibling)); |
| node=node->sibling; |
| node->tau=zero_crossing[i+1].tau; |
| node->child=(IntervalTree *) NULL; |
| node->sibling=(IntervalTree *) NULL; |
| node->left=left; |
| node->right=head->right; |
| } |
| } |
| } |
| /* |
| Determine the stability: difference between a nodes tau and its child. |
| */ |
| Stability(root->child); |
| MeanStability(root->child); |
| list=(IntervalTree **) RelinquishMagickMemory(list); |
| return(root); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + O p t i m a l T a u % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % OptimalTau() finds the optimal tau for each band of the histogram. |
| % |
| % The format of the OptimalTau method is: |
| % |
| % double OptimalTau(const ssize_t *histogram,const double max_tau, |
| % const double min_tau,const double delta_tau, |
| % const double smooth_threshold,short *extrema) |
| % |
| % A description of each parameter follows. |
| % |
| % o histogram: Specifies an array of integers representing the number |
| % of pixels for each intensity of a particular color component. |
| % |
| % o extrema: Specifies a pointer to an array of integers. They |
| % represent the peaks and valleys of the histogram for each color |
| % component. |
| % |
| */ |
| |
| static void ActiveNodes(IntervalTree **list,ssize_t *number_nodes, |
| IntervalTree *node) |
| { |
| if (node == (IntervalTree *) NULL) |
| return; |
| if (node->stability >= node->mean_stability) |
| { |
| list[(*number_nodes)++]=node; |
| ActiveNodes(list,number_nodes,node->sibling); |
| } |
| else |
| { |
| ActiveNodes(list,number_nodes,node->sibling); |
| ActiveNodes(list,number_nodes,node->child); |
| } |
| } |
| |
| static void FreeNodes(IntervalTree *node) |
| { |
| if (node == (IntervalTree *) NULL) |
| return; |
| FreeNodes(node->sibling); |
| FreeNodes(node->child); |
| node=(IntervalTree *) RelinquishMagickMemory(node); |
| } |
| |
| static double OptimalTau(const ssize_t *histogram,const double max_tau, |
| const double min_tau,const double delta_tau,const double smooth_threshold, |
| short *extrema) |
| { |
| IntervalTree |
| **list, |
| *node, |
| *root; |
| |
| MagickBooleanType |
| peak; |
| |
| double |
| average_tau, |
| *derivative, |
| *second_derivative, |
| tau, |
| value; |
| |
| register ssize_t |
| i, |
| x; |
| |
| size_t |
| count, |
| number_crossings; |
| |
| ssize_t |
| index, |
| j, |
| k, |
| number_nodes; |
| |
| ZeroCrossing |
| *zero_crossing; |
| |
| /* |
| Allocate interval tree. |
| */ |
| list=(IntervalTree **) AcquireQuantumMemory((size_t) TreeLength, |
| sizeof(*list)); |
| if (list == (IntervalTree **) NULL) |
| return(0.0); |
| /* |
| Allocate zero crossing list. |
| */ |
| count=(size_t) ((max_tau-min_tau)/delta_tau)+2; |
| zero_crossing=(ZeroCrossing *) AcquireQuantumMemory((size_t) count, |
| sizeof(*zero_crossing)); |
| if (zero_crossing == (ZeroCrossing *) NULL) |
| return(0.0); |
| for (i=0; i < (ssize_t) count; i++) |
| zero_crossing[i].tau=(-1.0); |
| /* |
| Initialize zero crossing list. |
| */ |
| derivative=(double *) AcquireQuantumMemory(256,sizeof(*derivative)); |
| second_derivative=(double *) AcquireQuantumMemory(256, |
| sizeof(*second_derivative)); |
| if ((derivative == (double *) NULL) || |
| (second_derivative == (double *) NULL)) |
| ThrowFatalException(ResourceLimitFatalError, |
| "UnableToAllocateDerivatives"); |
| i=0; |
| for (tau=max_tau; tau >= min_tau; tau-=delta_tau) |
| { |
| zero_crossing[i].tau=tau; |
| ScaleSpace(histogram,tau,zero_crossing[i].histogram); |
| DerivativeHistogram(zero_crossing[i].histogram,derivative); |
| DerivativeHistogram(derivative,second_derivative); |
| ZeroCrossHistogram(second_derivative,smooth_threshold, |
| zero_crossing[i].crossings); |
| i++; |
| } |
| /* |
| Add an entry for the original histogram. |
| */ |
| zero_crossing[i].tau=0.0; |
| for (j=0; j <= 255; j++) |
| zero_crossing[i].histogram[j]=(double) histogram[j]; |
| DerivativeHistogram(zero_crossing[i].histogram,derivative); |
| DerivativeHistogram(derivative,second_derivative); |
| ZeroCrossHistogram(second_derivative,smooth_threshold, |
| zero_crossing[i].crossings); |
| number_crossings=(size_t) i; |
| derivative=(double *) RelinquishMagickMemory(derivative); |
| second_derivative=(double *) |
| RelinquishMagickMemory(second_derivative); |
| /* |
| Ensure the scale-space fingerprints form lines in scale-space, not loops. |
| */ |
| ConsolidateCrossings(zero_crossing,number_crossings); |
| /* |
| Force endpoints to be included in the interval. |
| */ |
| for (i=0; i <= (ssize_t) number_crossings; i++) |
| { |
| for (j=0; j < 255; j++) |
| if (zero_crossing[i].crossings[j] != 0) |
| break; |
| zero_crossing[i].crossings[0]=(-zero_crossing[i].crossings[j]); |
| for (j=255; j > 0; j--) |
| if (zero_crossing[i].crossings[j] != 0) |
| break; |
| zero_crossing[i].crossings[255]=(-zero_crossing[i].crossings[j]); |
| } |
| /* |
| Initialize interval tree. |
| */ |
| root=InitializeIntervalTree(zero_crossing,number_crossings); |
| if (root == (IntervalTree *) NULL) |
| return(0.0); |
| /* |
| Find active nodes: stability is greater (or equal) to the mean stability of |
| its children. |
| */ |
| number_nodes=0; |
| ActiveNodes(list,&number_nodes,root->child); |
| /* |
| Initialize extrema. |
| */ |
| for (i=0; i <= 255; i++) |
| extrema[i]=0; |
| for (i=0; i < number_nodes; i++) |
| { |
| /* |
| Find this tau in zero crossings list. |
| */ |
| k=0; |
| node=list[i]; |
| for (j=0; j <= (ssize_t) number_crossings; j++) |
| if (zero_crossing[j].tau == node->tau) |
| k=j; |
| /* |
| Find the value of the peak. |
| */ |
| peak=zero_crossing[k].crossings[node->right] == -1 ? MagickTrue : |
| MagickFalse; |
| index=node->left; |
| value=zero_crossing[k].histogram[index]; |
| for (x=node->left; x <= node->right; x++) |
| { |
| if (peak != MagickFalse) |
| { |
| if (zero_crossing[k].histogram[x] > value) |
| { |
| value=zero_crossing[k].histogram[x]; |
| index=x; |
| } |
| } |
| else |
| if (zero_crossing[k].histogram[x] < value) |
| { |
| value=zero_crossing[k].histogram[x]; |
| index=x; |
| } |
| } |
| for (x=node->left; x <= node->right; x++) |
| { |
| if (index == 0) |
| index=256; |
| if (peak != MagickFalse) |
| extrema[x]=(short) index; |
| else |
| extrema[x]=(short) (-index); |
| } |
| } |
| /* |
| Determine the average tau. |
| */ |
| average_tau=0.0; |
| for (i=0; i < number_nodes; i++) |
| average_tau+=list[i]->tau; |
| average_tau/=(double) number_nodes; |
| /* |
| Relinquish resources. |
| */ |
| FreeNodes(root); |
| zero_crossing=(ZeroCrossing *) RelinquishMagickMemory(zero_crossing); |
| list=(IntervalTree **) RelinquishMagickMemory(list); |
| return(average_tau); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + S c a l e S p a c e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ScaleSpace() performs a scale-space filter on the 1D histogram. |
| % |
| % The format of the ScaleSpace method is: |
| % |
| % ScaleSpace(const ssize_t *histogram,const double tau, |
| % double *scale_histogram) |
| % |
| % A description of each parameter follows. |
| % |
| % o histogram: Specifies an array of doubles representing the number |
| % of pixels for each intensity of a particular color component. |
| % |
| */ |
| |
| static void ScaleSpace(const ssize_t *histogram,const double tau, |
| double *scale_histogram) |
| { |
| double |
| alpha, |
| beta, |
| *gamma, |
| sum; |
| |
| register ssize_t |
| u, |
| x; |
| |
| gamma=(double *) AcquireQuantumMemory(256,sizeof(*gamma)); |
| if (gamma == (double *) NULL) |
| ThrowFatalException(ResourceLimitFatalError, |
| "UnableToAllocateGammaMap"); |
| alpha=PerceptibleReciprocal(tau*sqrt(2.0*MagickPI)); |
| beta=(-1.0*PerceptibleReciprocal(2.0*tau*tau)); |
| for (x=0; x <= 255; x++) |
| gamma[x]=0.0; |
| for (x=0; x <= 255; x++) |
| { |
| gamma[x]=exp((double) beta*x*x); |
| if (gamma[x] < MagickEpsilon) |
| break; |
| } |
| for (x=0; x <= 255; x++) |
| { |
| sum=0.0; |
| for (u=0; u <= 255; u++) |
| sum+=(double) histogram[u]*gamma[MagickAbsoluteValue(x-u)]; |
| scale_histogram[x]=alpha*sum; |
| } |
| gamma=(double *) RelinquishMagickMemory(gamma); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % S e g m e n t I m a g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % SegmentImage() segment an image by analyzing the histograms of the color |
| % components and identifying units that are homogeneous with the fuzzy |
| % C-means technique. |
| % |
| % The format of the SegmentImage method is: |
| % |
| % MagickBooleanType SegmentImage(Image *image, |
| % const ColorspaceType colorspace,const MagickBooleanType verbose, |
| % const double cluster_threshold,const double smooth_threshold, |
| % ExceptionInfo *exception) |
| % |
| % A description of each parameter follows. |
| % |
| % o image: the image. |
| % |
| % o colorspace: Indicate the colorspace. |
| % |
| % o verbose: Set to MagickTrue to print detailed information about the |
| % identified classes. |
| % |
| % o cluster_threshold: This represents the minimum number of pixels |
| % contained in a hexahedra before it can be considered valid (expressed |
| % as a percentage). |
| % |
| % o smooth_threshold: the smoothing threshold eliminates noise in the second |
| % derivative of the histogram. As the value is increased, you can expect a |
| % smoother second derivative. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| MagickExport MagickBooleanType SegmentImage(Image *image, |
| const ColorspaceType colorspace,const MagickBooleanType verbose, |
| const double cluster_threshold,const double smooth_threshold, |
| ExceptionInfo *exception) |
| { |
| ColorspaceType |
| previous_colorspace; |
| |
| MagickBooleanType |
| status; |
| |
| register ssize_t |
| i; |
| |
| short |
| *extrema[MaxDimension]; |
| |
| ssize_t |
| *histogram[MaxDimension]; |
| |
| /* |
| Allocate histogram and extrema. |
| */ |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickCoreSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| for (i=0; i < MaxDimension; i++) |
| { |
| histogram[i]=(ssize_t *) AcquireQuantumMemory(256,sizeof(**histogram)); |
| extrema[i]=(short *) AcquireQuantumMemory(256,sizeof(**extrema)); |
| if ((histogram[i] == (ssize_t *) NULL) || (extrema[i] == (short *) NULL)) |
| { |
| for (i-- ; i >= 0; i--) |
| { |
| extrema[i]=(short *) RelinquishMagickMemory(extrema[i]); |
| histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]); |
| } |
| ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", |
| image->filename) |
| } |
| } |
| /* |
| Initialize histogram. |
| */ |
| previous_colorspace=image->colorspace; |
| (void) TransformImageColorspace(image,colorspace,exception); |
| InitializeHistogram(image,histogram,exception); |
| (void) OptimalTau(histogram[Red],Tau,0.2,DeltaTau, |
| smooth_threshold == 0.0 ? 1.0 : smooth_threshold,extrema[Red]); |
| (void) OptimalTau(histogram[Green],Tau,0.2,DeltaTau, |
| smooth_threshold == 0.0 ? 1.0 : smooth_threshold,extrema[Green]); |
| (void) OptimalTau(histogram[Blue],Tau,0.2,DeltaTau, |
| smooth_threshold == 0.0 ? 1.0 : smooth_threshold,extrema[Blue]); |
| /* |
| Classify using the fuzzy c-Means technique. |
| */ |
| status=Classify(image,extrema,cluster_threshold,WeightingExponent,verbose, |
| exception); |
| (void) TransformImageColorspace(image,previous_colorspace,exception); |
| /* |
| Relinquish resources. |
| */ |
| for (i=0; i < MaxDimension; i++) |
| { |
| extrema[i]=(short *) RelinquishMagickMemory(extrema[i]); |
| histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]); |
| } |
| return(status); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + Z e r o C r o s s H i s t o g r a m % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ZeroCrossHistogram() find the zero crossings in a histogram and marks |
| % directions as: 1 is negative to positive; 0 is zero crossing; and -1 |
| % is positive to negative. |
| % |
| % The format of the ZeroCrossHistogram method is: |
| % |
| % ZeroCrossHistogram(double *second_derivative, |
| % const double smooth_threshold,short *crossings) |
| % |
| % A description of each parameter follows. |
| % |
| % o second_derivative: Specifies an array of doubles representing the |
| % second derivative of the histogram of a particular color component. |
| % |
| % o crossings: This array of integers is initialized with |
| % -1, 0, or 1 representing the slope of the first derivative of the |
| % of a particular color component. |
| % |
| */ |
| static void ZeroCrossHistogram(double *second_derivative, |
| const double smooth_threshold,short *crossings) |
| { |
| register ssize_t |
| i; |
| |
| ssize_t |
| parity; |
| |
| /* |
| Merge low numbers to zero to help prevent noise. |
| */ |
| for (i=0; i <= 255; i++) |
| if ((second_derivative[i] < smooth_threshold) && |
| (second_derivative[i] >= -smooth_threshold)) |
| second_derivative[i]=0.0; |
| /* |
| Mark zero crossings. |
| */ |
| parity=0; |
| for (i=0; i <= 255; i++) |
| { |
| crossings[i]=0; |
| if (second_derivative[i] < 0.0) |
| { |
| if (parity > 0) |
| crossings[i]=(-1); |
| parity=1; |
| } |
| else |
| if (second_derivative[i] > 0.0) |
| { |
| if (parity < 0) |
| crossings[i]=1; |
| parity=(-1); |
| } |
| } |
| } |