blob: cef5547b2964419cdb0e17e38bbc9ebed9fb221b [file] [log] [blame]
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% QQQ U U AAA N N TTTTT U U M M %
% Q Q U U A A NN N T U U MM MM %
% Q Q U U AAAAA N N N T U U M M M %
% Q QQ U U A A N NN T U U M M %
% QQQQ UUU A A N N T UUU M M %
% %
% EEEEE X X PPPP OOO RRRR TTTTT %
% E X X P P O O R R T %
% EEE X PPPP O O RRRR T %
% E X X P O O R R T %
% EEEEE X X P OOO R R T %
% %
% MagickCore Methods to Export Quantum Pixels %
% %
% Software Design %
% John Cristy %
% October 1998 %
% %
% %
% Copyright 1999-2008 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% http://www.imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
*/
/*
Include declarations.
*/
#include "MagickCore/studio.h"
#include "MagickCore/property.h"
#include "MagickCore/blob.h"
#include "MagickCore/blob-private.h"
#include "MagickCore/color-private.h"
#include "MagickCore/exception.h"
#include "MagickCore/exception-private.h"
#include "MagickCore/cache.h"
#include "MagickCore/constitute.h"
#include "MagickCore/delegate.h"
#include "MagickCore/geometry.h"
#include "MagickCore/list.h"
#include "MagickCore/magick.h"
#include "MagickCore/memory_.h"
#include "MagickCore/monitor.h"
#include "MagickCore/option.h"
#include "MagickCore/pixel.h"
#include "MagickCore/pixel-accessor.h"
#include "MagickCore/quantum.h"
#include "MagickCore/quantum-private.h"
#include "MagickCore/resource_.h"
#include "MagickCore/semaphore.h"
#include "MagickCore/statistic.h"
#include "MagickCore/stream.h"
#include "MagickCore/string_.h"
#include "MagickCore/utility.h"
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ E x p o r t Q u a n t u m P i x e l s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ExportQuantumPixels() transfers one or more pixel components from the image
% pixel cache to a user supplied buffer. The pixels are returned in network
% byte order. MagickTrue is returned if the pixels are successfully
% transferred, otherwise MagickFalse.
%
% The format of the ExportQuantumPixels method is:
%
% size_t ExportQuantumPixels(const Image *image,
% const CacheView *image_view,const QuantumInfo *quantum_info,
% const QuantumType quantum_type,unsigned char *pixels,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o image_view: the image cache view.
%
% o quantum_info: the quantum info.
%
% o quantum_type: Declare which pixel components to transfer (RGB, RGBA,
% etc).
%
% o pixels: The components are transferred to this buffer.
%
% o exception: return any errors or warnings in this structure.
%
*/
static inline unsigned char *PopDoublePixel(const QuantumState *quantum_state,
const double pixel,unsigned char *pixels)
{
double
*p;
unsigned char
quantum[8];
p=(double *) quantum;
*p=(double) (pixel*quantum_state->inverse_scale+quantum_state->minimum);
if (quantum_state->endian != LSBEndian)
{
*pixels++=quantum[7];
*pixels++=quantum[6];
*pixels++=quantum[5];
*pixels++=quantum[4];
*pixels++=quantum[3];
*pixels++=quantum[2];
*pixels++=quantum[1];
*pixels++=quantum[0];
return(pixels);
}
*pixels++=quantum[0];
*pixels++=quantum[1];
*pixels++=quantum[2];
*pixels++=quantum[3];
*pixels++=quantum[4];
*pixels++=quantum[5];
*pixels++=quantum[6];
*pixels++=quantum[7];
return(pixels);
}
static inline unsigned char *PopFloatPixel(const QuantumState *quantum_state,
const float pixel,unsigned char *pixels)
{
float
*p;
unsigned char
quantum[4];
p=(float *) quantum;
*p=(float) ((double) pixel*quantum_state->inverse_scale+
quantum_state->minimum);
if (quantum_state->endian != LSBEndian)
{
*pixels++=quantum[3];
*pixels++=quantum[2];
*pixels++=quantum[1];
*pixels++=quantum[0];
return(pixels);
}
*pixels++=quantum[0];
*pixels++=quantum[1];
*pixels++=quantum[2];
*pixels++=quantum[3];
return(pixels);
}
static inline unsigned char *PopQuantumPixel(QuantumState *quantum_state,
const size_t depth,const QuantumAny pixel,unsigned char *pixels)
{
register ssize_t
i;
size_t
quantum_bits;
if (quantum_state->bits == 0UL)
quantum_state->bits=8U;
for (i=(ssize_t) depth; i > 0L; )
{
quantum_bits=(size_t) i;
if (quantum_bits > quantum_state->bits)
quantum_bits=quantum_state->bits;
i-=(ssize_t) quantum_bits;
if (quantum_state->bits == 8UL)
*pixels='\0';
quantum_state->bits-=quantum_bits;
*pixels|=(((pixel >> i) &~ ((~0UL) << quantum_bits)) <<
quantum_state->bits);
if (quantum_state->bits == 0UL)
{
pixels++;
quantum_state->bits=8UL;
}
}
return(pixels);
}
static inline unsigned char *PopQuantumLongPixel(QuantumState *quantum_state,
const size_t depth,const size_t pixel,unsigned char *pixels)
{
register ssize_t
i;
size_t
quantum_bits;
if (quantum_state->bits == 0U)
quantum_state->bits=32UL;
for (i=(ssize_t) depth; i > 0; )
{
quantum_bits=(size_t) i;
if (quantum_bits > quantum_state->bits)
quantum_bits=quantum_state->bits;
quantum_state->pixel|=(((pixel >> (depth-i)) &
quantum_state->mask[quantum_bits]) << (32U-quantum_state->bits));
i-=(ssize_t) quantum_bits;
quantum_state->bits-=quantum_bits;
if (quantum_state->bits == 0U)
{
pixels=PopLongPixel(quantum_state->endian,quantum_state->pixel,pixels);
quantum_state->pixel=0U;
quantum_state->bits=32U;
}
}
return(pixels);
}
MagickExport size_t ExportQuantumPixels(Image *image,CacheView *image_view,
const QuantumInfo *quantum_info,const QuantumType quantum_type,
unsigned char *pixels,ExceptionInfo *exception)
{
EndianType
endian;
MagickRealType
alpha;
MagickSizeType
number_pixels;
QuantumAny
range;
QuantumState
quantum_state;
register const Quantum
*restrict p;
register ssize_t
x;
register unsigned char
*restrict q;
size_t
channels,
extent;
ssize_t
bit;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(quantum_info != (QuantumInfo *) NULL);
assert(quantum_info->signature == MagickSignature);
if (pixels == (unsigned char *) NULL)
pixels=GetQuantumPixels(quantum_info);
if (image_view == (CacheView *) NULL)
{
number_pixels=GetImageExtent(image);
p=GetVirtualPixelQueue(image);
channels=GetPixelChannels(image);
}
else
{
number_pixels=GetCacheViewExtent(image_view);
p=GetCacheViewVirtualPixelQueue(image_view);
channels=GetPixelChannels(image);
}
if (quantum_info->alpha_type == AssociatedQuantumAlpha)
{
register Quantum
*restrict q;
/*
Associate alpha.
*/
q=GetAuthenticPixelQueue(image);
if (image_view != (CacheView *) NULL)
q=GetCacheViewAuthenticPixelQueue(image_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
alpha=QuantumScale*GetPixelAlpha(image,q);
SetPixelRed(image,ClampToQuantum(alpha*GetPixelRed(image,q)),q);
SetPixelGreen(image,ClampToQuantum(alpha*GetPixelGreen(image,q)),q);
SetPixelBlue(image,ClampToQuantum(alpha*GetPixelBlue(image,q)),q);
q++;
}
}
if ((quantum_type == RGBOQuantum) || (quantum_type == CMYKOQuantum) ||
(quantum_type == BGROQuantum))
{
register Quantum
*restrict q;
q=GetAuthenticPixelQueue(image);
if (image_view != (CacheView *) NULL)
q=GetCacheViewAuthenticPixelQueue(image_view);
for (x=0; x < (ssize_t) number_pixels; x++)
{
SetPixelAlpha(image,GetPixelAlpha(image,q),q);
q++;
}
}
if ((quantum_type == CbYCrQuantum) || (quantum_type == CbYCrAQuantum))
{
Quantum
quantum;
register Quantum
*restrict q;
q=GetAuthenticPixelQueue(image);
if (image_view != (CacheView *) NULL)
q=GetAuthenticPixelQueue(image);
for (x=0; x < (ssize_t) number_pixels; x++)
{
quantum=GetPixelRed(image,q);
SetPixelRed(image,GetPixelGreen(image,q),q);
SetPixelGreen(image,quantum,q);
q+=channels;
}
}
x=0;
q=pixels;
InitializeQuantumState(quantum_info,image->endian,&quantum_state);
extent=GetQuantumExtent(image,quantum_info,quantum_type);
endian=quantum_state.endian;
switch (quantum_type)
{
case IndexQuantum:
{
if (image->storage_class != PseudoClass)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColormappedImageRequired","`%s'",image->filename);
return(extent);
}
switch (quantum_info->depth)
{
case 1:
{
register unsigned char
pixel;
for (x=((ssize_t) number_pixels-7); x > 0; x-=8)
{
pixel=(unsigned char) GetPixelIndex(image,p);
*q=((pixel & 0x01) << 7);
p+=channels;
pixel=(unsigned char) GetPixelIndex(image,p);
*q|=((pixel & 0x01) << 6);
p+=channels;
pixel=(unsigned char) GetPixelIndex(image,p);
*q|=((pixel & 0x01) << 5);
p+=channels;
pixel=(unsigned char) GetPixelIndex(image,p);
*q|=((pixel & 0x01) << 4);
p+=channels;
pixel=(unsigned char) GetPixelIndex(image,p);
*q|=((pixel & 0x01) << 3);
p+=channels;
pixel=(unsigned char) GetPixelIndex(image,p);
*q|=((pixel & 0x01) << 2);
p+=channels;
pixel=(unsigned char) GetPixelIndex(image,p);
*q|=((pixel & 0x01) << 1);
p+=channels;
pixel=(unsigned char) GetPixelIndex(image,p);
*q|=((pixel & 0x01) << 0);
p+=channels;
q++;
}
if ((number_pixels % 8) != 0)
{
*q='\0';
for (bit=7; bit >= (ssize_t) (8-(number_pixels % 8)); bit--)
{
pixel=(unsigned char) GetPixelIndex(image,p);
*q|=((pixel & 0x01) << (unsigned char) bit);
p+=channels;
}
q++;
}
break;
}
case 4:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) (number_pixels-1) ; x+=2)
{
pixel=(unsigned char) GetPixelIndex(image,p);
*q=((pixel & 0xf) << 4);
p+=channels;
pixel=(unsigned char) GetPixelIndex(image,p);
*q|=((pixel & 0xf) << 0);
p+=channels;
q++;
}
if ((number_pixels % 2) != 0)
{
pixel=(unsigned char) GetPixelIndex(image,p);
*q=((pixel & 0xf) << 4);
p+=channels;
q++;
}
break;
}
case 8:
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopCharPixel((unsigned char) GetPixelIndex(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 16:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopShortPixel(endian,SinglePrecisionToHalf(QuantumScale*
GetPixelIndex(image,p)),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopShortPixel(endian,(unsigned short) GetPixelIndex(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 32:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopFloatPixel(&quantum_state,(float)
GetPixelIndex(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopLongPixel(endian,(unsigned int) GetPixelIndex(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double)
GetPixelIndex(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
default:
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
GetPixelIndex(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case IndexAlphaQuantum:
{
if (image->storage_class != PseudoClass)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColormappedImageRequired","`%s'",image->filename);
return(extent);
}
switch (quantum_info->depth)
{
case 1:
{
register unsigned char
pixel;
for (x=((ssize_t) number_pixels-3); x > 0; x-=4)
{
pixel=(unsigned char) GetPixelIndex(image,p);
*q=((pixel & 0x01) << 7);
pixel=(unsigned char) (GetPixelAlpha(image,p) == (Quantum)
TransparentAlpha ? 1 : 0);
*q|=((pixel & 0x01) << 6);
p+=channels;
pixel=(unsigned char) GetPixelIndex(image,p);
*q|=((pixel & 0x01) << 5);
pixel=(unsigned char) (GetPixelAlpha(image,p) == (Quantum)
TransparentAlpha ? 1 : 0);
*q|=((pixel & 0x01) << 4);
p+=channels;
pixel=(unsigned char) GetPixelIndex(image,p);
*q|=((pixel & 0x01) << 3);
pixel=(unsigned char) (GetPixelAlpha(image,p) == (Quantum)
TransparentAlpha ? 1 : 0);
*q|=((pixel & 0x01) << 2);
p+=channels;
pixel=(unsigned char) GetPixelIndex(image,p);
*q|=((pixel & 0x01) << 1);
pixel=(unsigned char) (GetPixelAlpha(image,p) == (Quantum)
TransparentAlpha ? 1 : 0);
*q|=((pixel & 0x01) << 0);
p+=channels;
q++;
}
if ((number_pixels % 4) != 0)
{
*q='\0';
for (bit=3; bit >= (ssize_t) (4-(number_pixels % 4)); bit-=2)
{
pixel=(unsigned char) GetPixelIndex(image,p);
*q|=((pixel & 0x01) << (unsigned char) (bit+4));
pixel=(unsigned char) (GetPixelAlpha(image,p) == (Quantum)
TransparentAlpha ? 1 : 0);
*q|=((pixel & 0x01) << (unsigned char) (bit+4-1));
p+=channels;
}
q++;
}
break;
}
case 4:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels ; x++)
{
pixel=(unsigned char) GetPixelIndex(image,p);
*q=((pixel & 0xf) << 4);
pixel=(unsigned char) (16*QuantumScale*GetPixelAlpha(image,p)+0.5);
*q|=((pixel & 0xf) << 0);
p+=channels;
q++;
}
break;
}
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopCharPixel((unsigned char) GetPixelIndex(image,p),q);
pixel=ScaleQuantumToChar(GetPixelAlpha(image,p));
q=PopCharPixel(pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopShortPixel(endian,(unsigned short)
GetPixelIndex(image,p),q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelAlpha(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopShortPixel(endian,(unsigned short) GetPixelIndex(image,p),q);
pixel=ScaleQuantumToShort(GetPixelAlpha(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
float
pixel;
q=PopFloatPixel(&quantum_state,(float)
GetPixelIndex(image,p),q);
pixel=(float) GetPixelAlpha(image,p);
q=PopFloatPixel(&quantum_state,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopLongPixel(endian,(unsigned int) GetPixelIndex(image,p),q);
pixel=ScaleQuantumToLong(GetPixelAlpha(image,p));
q=PopLongPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
double
pixel;
q=PopDoublePixel(&quantum_state,(double)
GetPixelIndex(image,p),q);
pixel=(double) GetPixelAlpha(image,p);
q=PopDoublePixel(&quantum_state,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
GetPixelIndex(image,p),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelAlpha(image,p),range),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case BGRQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopCharPixel(ScaleQuantumToChar(GetPixelBlue(image,p)),q);
q=PopCharPixel(ScaleQuantumToChar(GetPixelGreen(image,p)),q);
q=PopCharPixel(ScaleQuantumToChar(GetPixelRed(image,p)),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 10:
{
register unsigned int
pixel;
range=GetQuantumRange(quantum_info->depth);
if (quantum_info->pack == MagickFalse)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) (
ScaleQuantumToAny(GetPixelRed(image,p),range) << 22 |
ScaleQuantumToAny(GetPixelGreen(image,p),range) << 12 |
ScaleQuantumToAny(GetPixelBlue(image,p),range) << 2);
q=PopLongPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
if (quantum_info->quantum == 32UL)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),
range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),
range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),
range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 12:
{
register unsigned int
pixel;
range=GetQuantumRange(quantum_info->depth);
if (quantum_info->pack == MagickFalse)
{
for (x=0; x < (ssize_t) (3*number_pixels-1); x+=2)
{
switch (x % 3)
{
default:
case 0:
{
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelRed(image,p),range);
break;
}
case 1:
{
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelGreen(image,p),range);
break;
}
case 2:
{
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelBlue(image,p),range);
p+=channels;
break;
}
}
q=PopShortPixel(endian,(unsigned short) (pixel << 4),q);
switch ((x+1) % 3)
{
default:
case 0:
{
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelRed(image,p),range);
break;
}
case 1:
{
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelGreen(image,p),range);
break;
}
case 2:
{
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelBlue(image,p),range);
p+=channels;
break;
}
}
q=PopShortPixel(endian,(unsigned short) (pixel << 4),q);
q+=quantum_info->pad;
}
for (bit=0; bit < (ssize_t) (3*number_pixels % 2); bit++)
{
switch ((x+bit) % 3)
{
default:
case 0:
{
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelRed(image,p),range);
break;
}
case 1:
{
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelGreen(image,p),range);
break;
}
case 2:
{
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelBlue(image,p),range);
p+=channels;
break;
}
}
q=PopShortPixel(endian,(unsigned short) (pixel << 4),q);
q+=quantum_info->pad;
}
if (bit != 0)
p+=channels;
break;
}
if (quantum_info->quantum == 32UL)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),
range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),
range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),
range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelBlue(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelGreen(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelRed(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelBlue(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelGreen(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelRed(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopFloatPixel(&quantum_state,(float)
GetPixelRed(image,p),q);
q=PopFloatPixel(&quantum_state,(float)
GetPixelGreen(image,p),q);
q=PopFloatPixel(&quantum_state,(float)
GetPixelBlue(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelBlue(image,p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelGreen(image,p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelRed(image,p));
q=PopLongPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double)
GetPixelRed(image,p),q);
q=PopDoublePixel(&quantum_state,(double)
GetPixelGreen(image,p),q);
q=PopDoublePixel(&quantum_state,(double)
GetPixelBlue(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelRed(image,p),range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelGreen(image,p),range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelBlue(image,p),range),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case BGRAQuantum:
case BGROQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelBlue(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelGreen(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelRed(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelAlpha(image,p));
q=PopCharPixel(pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 10:
{
register unsigned int
pixel;
range=GetQuantumRange(quantum_info->depth);
if (quantum_info->pack == MagickFalse)
{
register ssize_t
i;
size_t
quantum;
ssize_t
n;
n=0;
quantum=0;
pixel=0;
for (x=0; x < (ssize_t) number_pixels; x++)
{
for (i=0; i < 4; i++)
{
switch (i)
{
case 0: quantum=GetPixelRed(image,p); break;
case 1: quantum=GetPixelGreen(image,p); break;
case 2: quantum=GetPixelBlue(image,p); break;
case 3: quantum=GetPixelAlpha(image,p); break;
}
switch (n % 3)
{
case 0:
{
pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum,
range) << 22);
break;
}
case 1:
{
pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum,
range) << 12);
break;
}
case 2:
{
pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum,
range) << 2);
q=PopLongPixel(endian,pixel,q);
pixel=0;
break;
}
}
n++;
}
p+=channels;
q+=quantum_info->pad;
}
break;
}
if (quantum_info->quantum == 32UL)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelAlpha(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),
range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),
range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),
range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelAlpha(image,p),
range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelBlue(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelGreen(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelRed(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelAlpha(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelBlue(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelGreen(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelRed(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelAlpha(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
float
pixel;
q=PopFloatPixel(&quantum_state,(float)
GetPixelRed(image,p),q);
q=PopFloatPixel(&quantum_state,(float)
GetPixelGreen(image,p),q);
q=PopFloatPixel(&quantum_state,(float)
GetPixelBlue(image,p),q);
pixel=(float) GetPixelAlpha(image,p);
q=PopFloatPixel(&quantum_state,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelBlue(image,p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelGreen(image,p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelRed(image,p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelAlpha(image,p));
q=PopLongPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double)
GetPixelRed(image,p),q);
q=PopDoublePixel(&quantum_state,(double)
GetPixelGreen(image,p),q);
q=PopDoublePixel(&quantum_state,(double)
GetPixelBlue(image,p),q);
pixel=(double) GetPixelAlpha(image,p);
q=PopDoublePixel(&quantum_state,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelBlue(image,p),range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelGreen(image,p),range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelRed(image,p),range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelAlpha(image,p),range),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case GrayQuantum:
{
switch (quantum_info->depth)
{
case 1:
{
register Quantum
threshold;
register unsigned char
black,
white;
black=0x00;
white=0x01;
if (quantum_info->min_is_white != MagickFalse)
{
black=0x01;
white=0x00;
}
threshold=(Quantum) (QuantumRange/2);
for (x=((ssize_t) number_pixels-7); x > 0; x-=8)
{
*q='\0';
*q|=(GetPixelIntensity(image,p) < threshold ? black : white) << 7;
p+=channels;
*q|=(GetPixelIntensity(image,p) < threshold ? black : white) << 6;
p+=channels;
*q|=(GetPixelIntensity(image,p) < threshold ? black : white) << 5;
p+=channels;
*q|=(GetPixelIntensity(image,p) < threshold ? black : white) << 4;
p+=channels;
*q|=(GetPixelIntensity(image,p) < threshold ? black : white) << 3;
p+=channels;
*q|=(GetPixelIntensity(image,p) < threshold ? black : white) << 2;
p+=channels;
*q|=(GetPixelIntensity(image,p) < threshold ? black : white) << 1;
p+=channels;
*q|=(GetPixelIntensity(image,p) < threshold ? black : white) << 0;
p+=channels;
q++;
}
if ((number_pixels % 8) != 0)
{
*q='\0';
for (bit=7; bit >= (ssize_t) (8-(number_pixels % 8)); bit--)
{
*q|=(GetPixelIntensity(image,p) < threshold ? black : white) <<
bit;
p+=channels;
}
q++;
}
break;
}
case 4:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) (number_pixels-1) ; x+=2)
{
pixel=ScaleQuantumToChar(GetPixelIntensity(image,p));
*q=(((pixel >> 4) & 0xf) << 4);
p+=channels;
pixel=ScaleQuantumToChar(GetPixelIntensity(image,p));
*q|=pixel >> 4;
p+=channels;
q++;
}
if ((number_pixels % 2) != 0)
{
pixel=ScaleQuantumToChar(GetPixelIntensity(image,p));
*q=(((pixel >> 4) & 0xf) << 4);
p+=channels;
q++;
}
break;
}
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelIntensity(image,p));
q=PopCharPixel(pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 10:
{
range=GetQuantumRange(quantum_info->depth);
if (quantum_info->pack == MagickFalse)
{
register unsigned int
pixel;
for (x=0; x < (ssize_t) (number_pixels-2); x+=3)
{
pixel=(unsigned int) (
ScaleQuantumToAny(GetPixelIntensity(image,p+2),range) << 22 |
ScaleQuantumToAny(GetPixelIntensity(image,p+1),range) << 12 |
ScaleQuantumToAny(GetPixelIntensity(image,p+0),range) << 2);
q=PopLongPixel(endian,pixel,q);
p+=3;
q+=quantum_info->pad;
}
pixel=0UL;
if (x++ < (ssize_t) (number_pixels-1))
pixel|=ScaleQuantumToAny(GetPixelIntensity(image,p+1),
range) << 12;
if (x++ < (ssize_t) number_pixels)
pixel|=ScaleQuantumToAny(GetPixelIntensity(image,p+0),
range) << 2;
q=PopLongPixel(endian,pixel,q);
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelIntensity(image,p),range),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 12:
{
register unsigned short
pixel;
range=GetQuantumRange(quantum_info->depth);
if (quantum_info->pack == MagickFalse)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelIntensity(image,p));
q=PopShortPixel(endian,(unsigned short) (pixel >> 4),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelIntensity(image,p),range),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelIntensity(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelIntensity(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
float
pixel;
pixel=(float) GetPixelIntensity(image,p);
q=PopFloatPixel(&quantum_state,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelIntensity(image,p));
q=PopLongPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
double
pixel;
pixel=(double) GetPixelIntensity(image,p);
q=PopDoublePixel(&quantum_state,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelIntensity(image,p),range),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case GrayAlphaQuantum:
{
switch (quantum_info->depth)
{
case 1:
{
register Quantum
threshold;
register unsigned char
black,
pixel,
white;
black=0x00;
white=0x01;
if (quantum_info->min_is_white == MagickFalse)
{
black=0x01;
white=0x00;
}
threshold=(Quantum) (QuantumRange/2);
for (x=((ssize_t) number_pixels-3); x > 0; x-=4)
{
*q='\0';
*q|=(GetPixelIntensity(image,p) > threshold ? black : white) << 7;
pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ?
0x00 : 0x01);
*q|=(((int) pixel != 0 ? 0x00 : 0x01) << 6);
p+=channels;
*q|=(GetPixelIntensity(image,p) > threshold ? black : white) << 5;
pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ?
0x00 : 0x01);
*q|=(((int) pixel != 0 ? 0x00 : 0x01) << 4);
p+=channels;
*q|=(GetPixelIntensity(image,p) > threshold ? black : white) << 3;
pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ?
0x00 : 0x01);
*q|=(((int) pixel != 0 ? 0x00 : 0x01) << 2);
p+=channels;
*q|=(GetPixelIntensity(image,p) > threshold ? black : white) << 1;
pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ?
0x00 : 0x01);
*q|=(((int) pixel != 0 ? 0x00 : 0x01) << 0);
p+=channels;
q++;
}
if ((number_pixels % 4) != 0)
{
*q='\0';
for (bit=0; bit <= (ssize_t) (number_pixels % 4); bit+=2)
{
*q|=(GetPixelIntensity(image,p) > threshold ? black : white) <<
(7-bit);
pixel=(unsigned char) (GetPixelAlpha(image,p) == OpaqueAlpha ?
0x00 : 0x01);
*q|=(((int) pixel != 0 ? 0x00 : 0x01) << (unsigned char)
(7-bit-1));
p+=channels;
}
q++;
}
break;
}
case 4:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels ; x++)
{
pixel=ScaleQuantumToChar(GetPixelIntensity(image,p));
*q=(((pixel >> 4) & 0xf) << 4);
pixel=(unsigned char) (16*QuantumScale*GetPixelAlpha(image,p)+0.5);
*q|=pixel & 0xf;
p+=channels;
q++;
}
break;
}
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelIntensity(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelAlpha(image,p));
q=PopCharPixel(pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelIntensity(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelAlpha(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelIntensity(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelAlpha(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
float
pixel;
pixel=(float) GetPixelIntensity(image,p);
q=PopFloatPixel(&quantum_state,pixel,q);
pixel=(float) (GetPixelAlpha(image,p));
q=PopFloatPixel(&quantum_state,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelIntensity(image,p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelAlpha(image,p));
q=PopLongPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
double
pixel;
pixel=(double) GetPixelIntensity(image,p);
q=PopDoublePixel(&quantum_state,pixel,q);
pixel=(double) (GetPixelAlpha(image,p));
q=PopDoublePixel(&quantum_state,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelIntensity(image,p),range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelAlpha(image,p),range),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case RedQuantum:
case CyanQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelRed(image,p));
q=PopCharPixel(pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelRed(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelRed(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopFloatPixel(&quantum_state,(float)
GetPixelRed(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelRed(image,p));
q=PopLongPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double)
GetPixelRed(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelRed(image,p),range),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case GreenQuantum:
case MagentaQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelGreen(image,p));
q=PopCharPixel(pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelGreen(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelGreen(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopFloatPixel(&quantum_state,(float)
GetPixelGreen(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelGreen(image,p));
q=PopLongPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double)
GetPixelGreen(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelGreen(image,p),range),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case BlueQuantum:
case YellowQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelBlue(image,p));
q=PopCharPixel(pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelBlue(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelBlue(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopFloatPixel(&quantum_state,(float)
GetPixelBlue(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelBlue(image,p));
q=PopLongPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double)
GetPixelBlue(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelBlue(image,p),range),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case AlphaQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelAlpha(image,p));
q=PopCharPixel(pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelAlpha(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelAlpha(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
float
pixel;
pixel=(float) GetPixelAlpha(image,p);
q=PopFloatPixel(&quantum_state,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelAlpha(image,p));
q=PopLongPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
double
pixel;
pixel=(double) (GetPixelAlpha(image,p));
q=PopDoublePixel(&quantum_state,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelAlpha(image,p),range),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case OpacityQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelAlpha(image,p));
q=PopCharPixel(pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelAlpha(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelAlpha(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopFloatPixel(&quantum_state,(float)
GetPixelAlpha(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelAlpha(image,p));
q=PopLongPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double)
GetPixelAlpha(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelAlpha(image,p),range),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case BlackQuantum:
{
if (image->colorspace != CMYKColorspace)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",image->filename);
return(extent);
}
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelBlack(image,p));
q=PopCharPixel(pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelBlack(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelBlack(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopFloatPixel(&quantum_state,(float)
GetPixelBlack(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelBlack(image,p));
q=PopLongPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double)
GetPixelBlack(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny((Quantum) GetPixelBlack(image,p),range),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case RGBQuantum:
case CbYCrQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopCharPixel(ScaleQuantumToChar(GetPixelRed(image,p)),q);
q=PopCharPixel(ScaleQuantumToChar(GetPixelGreen(image,p)),q);
q=PopCharPixel(ScaleQuantumToChar(GetPixelBlue(image,p)),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 10:
{
register unsigned int
pixel;
range=GetQuantumRange(quantum_info->depth);
if (quantum_info->pack == MagickFalse)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) (
ScaleQuantumToAny(GetPixelRed(image,p),range) << 22 |
ScaleQuantumToAny(GetPixelGreen(image,p),range) << 12 |
ScaleQuantumToAny(GetPixelBlue(image,p),range) << 2);
q=PopLongPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
if (quantum_info->quantum == 32UL)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),
range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),
range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),
range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 12:
{
register unsigned int
pixel;
range=GetQuantumRange(quantum_info->depth);
if (quantum_info->pack == MagickFalse)
{
for (x=0; x < (ssize_t) (3*number_pixels-1); x+=2)
{
switch (x % 3)
{
default:
case 0:
{
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelRed(image,p),range);
break;
}
case 1:
{
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelGreen(image,p),range);
break;
}
case 2:
{
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelBlue(image,p),range);
p+=channels;
break;
}
}
q=PopShortPixel(endian,(unsigned short) (pixel << 4),q);
switch ((x+1) % 3)
{
default:
case 0:
{
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelRed(image,p),range);
break;
}
case 1:
{
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelGreen(image,p),range);
break;
}
case 2:
{
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelBlue(image,p),range);
p+=channels;
break;
}
}
q=PopShortPixel(endian,(unsigned short) (pixel << 4),q);
q+=quantum_info->pad;
}
for (bit=0; bit < (ssize_t) (3*number_pixels % 2); bit++)
{
switch ((x+bit) % 3)
{
default:
case 0:
{
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelRed(image,p),range);
break;
}
case 1:
{
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelGreen(image,p),range);
break;
}
case 2:
{
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelBlue(image,p),range);
p+=channels;
break;
}
}
q=PopShortPixel(endian,(unsigned short) (pixel << 4),q);
q+=quantum_info->pad;
}
if (bit != 0)
p+=channels;
break;
}
if (quantum_info->quantum == 32UL)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),
range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),
range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),
range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelRed(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelGreen(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelBlue(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelRed(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelGreen(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelBlue(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopFloatPixel(&quantum_state,(float)
GetPixelRed(image,p),q);
q=PopFloatPixel(&quantum_state,(float)
GetPixelGreen(image,p),q);
q=PopFloatPixel(&quantum_state,(float)
GetPixelBlue(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelRed(image,p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelGreen(image,p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelBlue(image,p));
q=PopLongPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double)
GetPixelRed(image,p),q);
q=PopDoublePixel(&quantum_state,(double)
GetPixelGreen(image,p),q);
q=PopDoublePixel(&quantum_state,(double)
GetPixelBlue(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelRed(image,p),range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelGreen(image,p),range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelBlue(image,p),range),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case RGBAQuantum:
case RGBOQuantum:
case CbYCrAQuantum:
{
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelRed(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelGreen(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelBlue(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelAlpha(image,p));
q=PopCharPixel(pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 10:
{
register unsigned int
pixel;
range=GetQuantumRange(quantum_info->depth);
if (quantum_info->pack == MagickFalse)
{
register ssize_t
i;
size_t
quantum;
ssize_t
n;
n=0;
quantum=0;
pixel=0;
for (x=0; x < (ssize_t) number_pixels; x++)
{
for (i=0; i < 4; i++)
{
switch (i)
{
case 0: quantum=GetPixelRed(image,p); break;
case 1: quantum=GetPixelGreen(image,p); break;
case 2: quantum=GetPixelBlue(image,p); break;
case 3: quantum=GetPixelAlpha(image,p); break;
}
switch (n % 3)
{
case 0:
{
pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum,
range) << 22);
break;
}
case 1:
{
pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum,
range) << 12);
break;
}
case 2:
{
pixel|=(size_t) (ScaleQuantumToAny((Quantum) quantum,
range) << 2);
q=PopLongPixel(endian,pixel,q);
pixel=0;
break;
}
}
n++;
}
p+=channels;
q+=quantum_info->pad;
}
break;
}
if (quantum_info->quantum == 32UL)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(GetPixelRed(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelGreen(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelBlue(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
pixel=(unsigned int) ScaleQuantumToAny(GetPixelAlpha(image,p),
range);
q=PopQuantumLongPixel(&quantum_state,quantum_info->depth,pixel,
q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelRed(image,p),range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelGreen(image,p),range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelBlue(image,p),range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
pixel=(unsigned int) ScaleQuantumToAny(
GetPixelAlpha(image,p),range);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelRed(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelGreen(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelBlue(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelAlpha(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelRed(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelGreen(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelBlue(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelAlpha(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
float
pixel;
q=PopFloatPixel(&quantum_state,(float)
GetPixelRed(image,p),q);
q=PopFloatPixel(&quantum_state,(float)
GetPixelGreen(image,p),q);
q=PopFloatPixel(&quantum_state,(float)
GetPixelBlue(image,p),q);
pixel=(float) GetPixelAlpha(image,p);
q=PopFloatPixel(&quantum_state,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelRed(image,p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelGreen(image,p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelBlue(image,p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelAlpha(image,p));
q=PopLongPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double)
GetPixelRed(image,p),q);
q=PopDoublePixel(&quantum_state,(double)
GetPixelGreen(image,p),q);
q=PopDoublePixel(&quantum_state,(double)
GetPixelBlue(image,p),q);
pixel=(double) GetPixelAlpha(image,p);
q=PopDoublePixel(&quantum_state,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelRed(image,p),range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelGreen(image,p),range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelBlue(image,p),range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelAlpha(image,p),range),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case CMYKQuantum:
{
if (image->colorspace != CMYKColorspace)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",image->filename);
return(extent);
}
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelRed(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelGreen(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelBlue(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelBlack(image,p));
q=PopCharPixel(pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelRed(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelGreen(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelBlue(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelBlack(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelRed(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelGreen(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelBlue(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelBlack(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopFloatPixel(&quantum_state,(float)
GetPixelRed(image,p),q);
q=PopFloatPixel(&quantum_state,(float)
GetPixelGreen(image,p),q);
q=PopFloatPixel(&quantum_state,(float)
GetPixelBlue(image,p),q);
q=PopFloatPixel(&quantum_state,(float)
GetPixelBlack(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelRed(image,p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelGreen(image,p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelBlue(image,p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelBlack(image,p));
q=PopLongPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double)
GetPixelRed(image,p),q);
q=PopDoublePixel(&quantum_state,(double)
GetPixelGreen(image,p),q);
q=PopDoublePixel(&quantum_state,(double)
GetPixelBlue(image,p),q);
q=PopDoublePixel(&quantum_state,(double)
GetPixelBlack(image,p),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelRed(image,p),range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelGreen(image,p),range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelBlue(image,p),range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelBlack(image,p),range),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case CMYKAQuantum:
case CMYKOQuantum:
{
if (image->colorspace != CMYKColorspace)
{
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",image->filename);
return(extent);
}
switch (quantum_info->depth)
{
case 8:
{
register unsigned char
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToChar(GetPixelRed(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelGreen(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelBlue(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelBlack(image,p));
q=PopCharPixel(pixel,q);
pixel=ScaleQuantumToChar(GetPixelAlpha(image,p));
q=PopCharPixel(pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 16:
{
register unsigned short
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelRed(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelGreen(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelBlue(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelBlack(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=SinglePrecisionToHalf(QuantumScale*
GetPixelAlpha(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToShort(GetPixelRed(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelGreen(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelBlue(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelBlack(image,p));
q=PopShortPixel(endian,pixel,q);
pixel=ScaleQuantumToShort(GetPixelAlpha(image,p));
q=PopShortPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 32:
{
register unsigned int
pixel;
if (quantum_info->format == FloatingPointQuantumFormat)
{
for (x=0; x < (ssize_t) number_pixels; x++)
{
float
pixel;
q=PopFloatPixel(&quantum_state,(float)
GetPixelRed(image,p),q);
q=PopFloatPixel(&quantum_state,(float)
GetPixelGreen(image,p),q);
q=PopFloatPixel(&quantum_state,(float)
GetPixelBlue(image,p),q);
q=PopFloatPixel(&quantum_state,(float)
GetPixelBlack(image,p),q);
pixel=(float) (GetPixelAlpha(image,p));
q=PopFloatPixel(&quantum_state,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
for (x=0; x < (ssize_t) number_pixels; x++)
{
pixel=ScaleQuantumToLong(GetPixelRed(image,p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelGreen(image,p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelBlue(image,p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelBlack(image,p));
q=PopLongPixel(endian,pixel,q);
pixel=ScaleQuantumToLong(GetPixelAlpha(image,p));
q=PopLongPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
case 64:
{
if (quantum_info->format == FloatingPointQuantumFormat)
{
double
pixel;
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopDoublePixel(&quantum_state,(double)
GetPixelRed(image,p),q);
q=PopDoublePixel(&quantum_state,(double)
GetPixelGreen(image,p),q);
q=PopDoublePixel(&quantum_state,(double)
GetPixelBlue(image,p),q);
q=PopDoublePixel(&quantum_state,(double)
GetPixelBlack(image,p),q);
pixel=(double) (GetPixelAlpha(image,p));
q=PopDoublePixel(&quantum_state,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
default:
{
range=GetQuantumRange(quantum_info->depth);
for (x=0; x < (ssize_t) number_pixels; x++)
{
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelRed(image,p),range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelGreen(image,p),range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelBlue(image,p),range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelBlack(image,p),range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(GetPixelAlpha(image,p),range),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
break;
}
case CbYCrYQuantum:
{
Quantum
cbcr[4];
register ssize_t
i;
register unsigned int
pixel;
size_t
quantum;
ssize_t
n;
n=0;
quantum=0;
range=GetQuantumRange(quantum_info->depth);
switch (quantum_info->depth)
{
case 10:
{
if (quantum_info->pack == MagickFalse)
{
for (x=0; x < (ssize_t) number_pixels; x+=2)
{
for (i=0; i < 4; i++)
{
switch (n % 3)
{
case 0:
{
quantum=GetPixelRed(image,p);
break;
}
case 1:
{
quantum=GetPixelGreen(image,p);
break;
}
case 2:
{
quantum=GetPixelBlue(image,p);
break;
}
}
cbcr[i]=(Quantum) quantum;
n++;
}
pixel=(unsigned int) ((size_t) (cbcr[1]) << 22 | (size_t)
(cbcr[0]) << 12 | (size_t) (cbcr[2]) << 2);
q=PopLongPixel(endian,pixel,q);
p+=channels;
pixel=(unsigned int) ((size_t) (cbcr[3]) << 22 | (size_t)
(cbcr[0]) << 12 | (size_t) (cbcr[2]) << 2);
q=PopLongPixel(endian,pixel,q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
break;
}
default:
{
for (x=0; x < (ssize_t) number_pixels; x+=2)
{
for (i=0; i < 4; i++)
{
switch (n % 3)
{
case 0:
{
quantum=GetPixelRed(image,p);
break;
}
case 1:
{
quantum=GetPixelGreen(image,p);
break;
}
case 2:
{
quantum=GetPixelBlue(image,p);
break;
}
}
cbcr[i]=(Quantum) quantum;
n++;
}
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(cbcr[1],range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(cbcr[0],range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(cbcr[2],range),q);
p+=channels;
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(cbcr[3],range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(cbcr[0],range),q);
q=PopQuantumPixel(&quantum_state,quantum_info->depth,
ScaleQuantumToAny(cbcr[2],range),q);
p+=channels;
q+=quantum_info->pad;
}
break;
}
}
break;
}
default:
break;
}
if ((quantum_type == CbYCrQuantum) || (quantum_type == CbYCrAQuantum))
{
Quantum
quantum;
register Quantum
*restrict q;
q=GetAuthenticPixelQueue(image);
if (image_view != (CacheView *) NULL)
q=GetCacheViewAuthenticPixelQueue(image_view);
for (x=0; x < (ssize_t) number_pixels; x++)
{
quantum=GetPixelRed(image,q);
SetPixelRed(image,GetPixelGreen(image,q),q);
SetPixelGreen(image,quantum,q);
q+=channels;
}
}
if ((quantum_type == RGBOQuantum) || (quantum_type == CMYKOQuantum) ||
(quantum_type == BGROQuantum))
{
register Quantum
*restrict q;
q=GetAuthenticPixelQueue(image);
if (image_view != (CacheView *) NULL)
q=GetCacheViewAuthenticPixelQueue(image_view);
for (x=0; x < (ssize_t) number_pixels; x++)
{
SetPixelAlpha(image,GetPixelAlpha(image,q),q);
q+=channels;
}
}
return(extent);
}