blob: 0805f6c7541e43c71a5b5c1a0a768e24964a29ff [file] [log] [blame]
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% PPPP IIIII X X EEEEE L %
% P P I X X E L %
% PPPP I X EEE L %
% P I X X E L %
% P IIIII X X EEEEE LLLLL %
% %
% MagickCore Methods to Import/Export Pixels %
% %
% Software Design %
% Cristy %
% October 1998 %
% %
% %
% Copyright 1999-2016 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% http://www.imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
*/
/*
Include declarations.
*/
#include "MagickCore/studio.h"
#include "MagickCore/property.h"
#include "MagickCore/blob.h"
#include "MagickCore/blob-private.h"
#include "MagickCore/cache-private.h"
#include "MagickCore/color-private.h"
#include "MagickCore/colorspace-private.h"
#include "MagickCore/draw.h"
#include "MagickCore/exception.h"
#include "MagickCore/exception-private.h"
#include "MagickCore/cache.h"
#include "MagickCore/constitute.h"
#include "MagickCore/delegate.h"
#include "MagickCore/geometry.h"
#include "MagickCore/image-private.h"
#include "MagickCore/list.h"
#include "MagickCore/magick.h"
#include "MagickCore/memory_.h"
#include "MagickCore/memory-private.h"
#include "MagickCore/monitor.h"
#include "MagickCore/option.h"
#include "MagickCore/pixel.h"
#include "MagickCore/pixel-accessor.h"
#include "MagickCore/pixel-private.h"
#include "MagickCore/quantum.h"
#include "MagickCore/quantum-private.h"
#include "MagickCore/resource_.h"
#include "MagickCore/semaphore.h"
#include "MagickCore/statistic.h"
#include "MagickCore/stream.h"
#include "MagickCore/string_.h"
#include "MagickCore/transform.h"
#include "MagickCore/utility.h"
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ A c q u i r e P i x e l C h a n n e l M a p %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% AcquirePixelChannelMap() acquires a pixel component map.
%
% The format of the AcquirePixelChannelMap() method is:
%
% PixelChannelMap *AcquirePixelChannelMap(void)
%
*/
MagickExport PixelChannelMap *AcquirePixelChannelMap(void)
{
PixelChannelMap
*channel_map;
register ssize_t
i;
channel_map=(PixelChannelMap *) AcquireQuantumMemory(MaxPixelChannels,
sizeof(*channel_map));
if (channel_map == (PixelChannelMap *) NULL)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
(void) ResetMagickMemory(channel_map,0,MaxPixelChannels*sizeof(*channel_map));
for (i=0; i < MaxPixelChannels; i++)
channel_map[i].channel=(PixelChannel) i;
return(channel_map);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ C l o n e P i x e l C h a n n e l M a p %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ClonePixelChannelMap() clones a pixel component map.
%
% The format of the ClonePixelChannelMap() method is:
%
% PixelChannelMap *ClonePixelChannelMap(PixelChannelMap *channel_map)
%
% A description of each parameter follows:
%
% o channel_map: the pixel component map.
%
*/
MagickExport PixelChannelMap *ClonePixelChannelMap(PixelChannelMap *channel_map)
{
PixelChannelMap
*clone_map;
assert(channel_map != (PixelChannelMap *) NULL);
clone_map=AcquirePixelChannelMap();
if (clone_map == (PixelChannelMap *) NULL)
return((PixelChannelMap *) NULL);
(void) CopyMagickMemory(clone_map,channel_map,MaxPixelChannels*
sizeof(*channel_map));
return(clone_map);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ C l o n e P i x e l I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ClonePixelInfo() makes a duplicate of the given pixel info structure, or if
% pixel info is NULL, a new one.
%
% The format of the ClonePixelInfo method is:
%
% PixelInfo *ClonePixelInfo(const PixelInfo *pixel)
%
% A description of each parameter follows:
%
% o pixel: the pixel info.
%
*/
MagickExport PixelInfo *ClonePixelInfo(const PixelInfo *pixel)
{
PixelInfo
*pixel_info;
pixel_info=(PixelInfo *) MagickAssumeAligned(AcquireAlignedMemory(1,
sizeof(*pixel_info)));
if (pixel_info == (PixelInfo *) NULL)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
*pixel_info=(*pixel);
return(pixel_info);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ C o n f o r m P i x e l I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ConformPixelInfo() ensures the pixel conforms with the colorspace and alpha
% attribute of the image.
%
% The format of the ConformPixelInfo method is:
%
% void *ConformPixelInfo((Image *image,const PixelInfo *source,
% PixelInfo *destination,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o source: the source pixel info.
%
% o destination: the destination pixel info.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport void ConformPixelInfo(Image *image,const PixelInfo *source,
PixelInfo *destination,ExceptionInfo *exception)
{
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
assert(destination != (const PixelInfo *) NULL);
*destination=(*source);
if (image->colorspace == CMYKColorspace)
{
if (IssRGBCompatibleColorspace(destination->colorspace))
ConvertRGBToCMYK(destination);
}
else
if (destination->colorspace == CMYKColorspace)
{
if (IssRGBCompatibleColorspace(image->colorspace))
ConvertCMYKToRGB(destination);
}
if ((IsPixelInfoGray(&image->background_color) == MagickFalse) &&
(IsGrayColorspace(image->colorspace) != MagickFalse))
(void) TransformImageColorspace(image,sRGBColorspace,exception);
if ((destination->alpha_trait != UndefinedPixelTrait) &&
(image->alpha_trait == UndefinedPixelTrait))
(void) SetImageAlpha(image,OpaqueAlpha,exception);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% D e c o d e P i x e l G a m m a %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DecodePixelGamma() applies the expansive power-law nonlinearity to the pixel.
%
% The format of the DecodePixelGamma method is:
%
% double DecodePixelGamma(const MagickRealType pixel)
%
% A description of each parameter follows:
%
% o pixel: the pixel.
%
*/
static inline double DecodeGamma(const double x)
{
div_t
quotient;
double
p,
term[9];
int
exponent;
static const double coefficient[] = /* terms for x^(7/5), x=1.5 */
{
1.7917488588043277509,
0.82045614371976854984,
0.027694100686325412819,
-0.00094244335181762134018,
0.000064355540911469709545,
-5.7224404636060757485e-06,
5.8767669437311184313e-07,
-6.6139920053589721168e-08,
7.9323242696227458163e-09
};
static const double powers_of_two[] = /* (2^x)^(7/5) */
{
1.0,
2.6390158215457883983,
6.9644045063689921093,
1.8379173679952558018e+01,
4.8502930128332728543e+01
};
/*
Compute x^2.4 == x*x^(7/5) == pow(x,2.4).
*/
term[0]=1.0;
term[1]=4.0*frexp(x,&exponent)-3.0;
term[2]=2.0*term[1]*term[1]-term[0];
term[3]=2.0*term[1]*term[2]-term[1];
term[4]=2.0*term[1]*term[3]-term[2];
term[5]=2.0*term[1]*term[4]-term[3];
term[6]=2.0*term[1]*term[5]-term[4];
term[7]=2.0*term[1]*term[6]-term[5];
term[8]=2.0*term[1]*term[7]-term[6];
p=coefficient[0]*term[0]+coefficient[1]*term[1]+coefficient[2]*term[2]+
coefficient[3]*term[3]+coefficient[4]*term[4]+coefficient[5]*term[5]+
coefficient[6]*term[6]+coefficient[7]*term[7]+coefficient[8]*term[8];
quotient=div(exponent-1,5);
if (quotient.rem < 0)
{
quotient.quot-=1;
quotient.rem+=5;
}
return(x*ldexp(powers_of_two[quotient.rem]*p,7*quotient.quot));
}
MagickExport MagickRealType DecodePixelGamma(const MagickRealType pixel)
{
if (pixel <= (0.0404482362771076*QuantumRange))
return(pixel/12.92f);
return((MagickRealType) (QuantumRange*DecodeGamma((double) (QuantumScale*
pixel+0.055)/1.055)));
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ D e s t r o y P i x e l C h a n n e l M a p %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DestroyPixelChannelMap() deallocates memory associated with the pixel
% channel map.
%
% The format of the DestroyPixelChannelMap() method is:
%
% PixelChannelMap *DestroyPixelChannelMap(PixelChannelMap *channel_map)
%
% A description of each parameter follows:
%
% o channel_map: the pixel component map.
%
*/
MagickExport PixelChannelMap *DestroyPixelChannelMap(
PixelChannelMap *channel_map)
{
assert(channel_map != (PixelChannelMap *) NULL);
channel_map=(PixelChannelMap *) RelinquishMagickMemory(channel_map);
return((PixelChannelMap *) RelinquishMagickMemory(channel_map));
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ E n c o d e P i x e l G a m m a %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% EncodePixelGamma() cancels any nonlinearity in the pixel.
%
% The format of the EncodePixelGamma method is:
%
% MagickRealType EncodePixelGamma(const double MagickRealType)
%
% A description of each parameter follows:
%
% o pixel: the pixel.
%
*/
static inline double EncodeGamma(const double x)
{
div_t
quotient;
double
p,
term[9];
int
exponent;
static const double coefficient[] = /* Chebychevi poly: x^(5/12), x=1.5 */
{
1.1758200232996901923,
0.16665763094889061230,
-0.0083154894939042125035,
0.00075187976780420279038,
-0.000083240178519391795367,
0.000010229209410070008679,
-1.3400466409860246e-06,
1.8333422241635376682e-07,
-2.5878596761348859722e-08
};
static const double powers_of_two[] = /* (2^N)^(5/12) */
{
1.0,
1.3348398541700343678,
1.7817974362806785482,
2.3784142300054420538,
3.1748021039363991669,
4.2378523774371812394,
5.6568542494923805819,
7.5509945014535482244,
1.0079368399158985525e1,
1.3454342644059433809e1,
1.7959392772949968275e1,
2.3972913230026907883e1
};
/*
Compute x^(1/2.4) == x^(5/12) == pow(x,1.0/2.4).
*/
term[0]=1.0;
term[1]=4.0*frexp(x,&exponent)-3.0;
term[2]=2.0*term[1]*term[1]-term[0];
term[3]=2.0*term[1]*term[2]-term[1];
term[4]=2.0*term[1]*term[3]-term[2];
term[5]=2.0*term[1]*term[4]-term[3];
term[6]=2.0*term[1]*term[5]-term[4];
term[7]=2.0*term[1]*term[6]-term[5];
term[8]=2.0*term[1]*term[7]-term[6];
p=coefficient[0]*term[0]+coefficient[1]*term[1]+coefficient[2]*term[2]+
coefficient[3]*term[3]+coefficient[4]*term[4]+coefficient[5]*term[5]+
coefficient[6]*term[6]+coefficient[7]*term[7]+coefficient[8]*term[8];
quotient=div(exponent-1,12);
if (quotient.rem < 0)
{
quotient.quot-=1;
quotient.rem+=12;
}
return(ldexp(powers_of_two[quotient.rem]*p,5*quotient.quot));
}
MagickExport MagickRealType EncodePixelGamma(const MagickRealType pixel)
{
if (pixel <= (0.0031306684425005883*QuantumRange))
return(12.92f*pixel);
return((MagickRealType) QuantumRange*(1.055*EncodeGamma((double) QuantumScale*
pixel)-0.055));
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% E x p o r t I m a g e P i x e l s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ExportImagePixels() extracts pixel data from an image and returns it to you.
% The method returns MagickTrue on success otherwise MagickFalse if an error is
% encountered. The data is returned as char, short int, Quantum, unsigned int,
% unsigned long long, float, or double in the order specified by map.
%
% Suppose you want to extract the first scanline of a 640x480 image as
% character data in red-green-blue order:
%
% ExportImagePixels(image,0,0,640,1,"RGB",CharPixel,pixels,exception);
%
% The format of the ExportImagePixels method is:
%
% MagickBooleanType ExportImagePixels(const Image *image,const ssize_t x,
% const ssize_t y,const size_t width,const size_t height,
% const char *map,const StorageType type,void *pixels,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o x,y,width,height: These values define the perimeter
% of a region of pixels you want to extract.
%
% o map: This string reflects the expected ordering of the pixel array.
% It can be any combination or order of R = red, G = green, B = blue,
% A = alpha (0 is transparent), O = opacity (0 is opaque), C = cyan,
% Y = yellow, M = magenta, K = black, I = intensity (for grayscale),
% P = pad.
%
% o type: Define the data type of the pixels. Float and double types are
% normalized to [0..1] otherwise [0..QuantumRange]. Choose from these
% types: CharPixel (char *), DoublePixel (double *), FloatPixel (float *),
% LongPixel (unsigned int *), LongLongPixel (unsigned long long *),
% QuantumPixel (Quantum *), or ShortPixel (unsigned short *).
%
% o pixels: This array of values contain the pixel components as defined by
% map and type. You must preallocate this array where the expected
% length varies depending on the values of width, height, map, and type.
%
% o exception: return any errors or warnings in this structure.
%
*/
static void ExportCharPixel(Image *image,const RectangleInfo *roi,
const char *magick_restrict map,const QuantumType *quantum_map,void *pixels,
ExceptionInfo *exception)
{
register const Quantum
*magick_restrict p;
register ssize_t
x;
register unsigned char
*magick_restrict q;
size_t
length;
ssize_t
y;
q=(unsigned char *) pixels;
if (LocaleCompare(map,"BGR") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToChar(GetPixelBlue(image,p));
*q++=ScaleQuantumToChar(GetPixelGreen(image,p));
*q++=ScaleQuantumToChar(GetPixelRed(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"BGRA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToChar(GetPixelBlue(image,p));
*q++=ScaleQuantumToChar(GetPixelGreen(image,p));
*q++=ScaleQuantumToChar(GetPixelRed(image,p));
*q++=ScaleQuantumToChar(GetPixelAlpha(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"BGRP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToChar(GetPixelBlue(image,p));
*q++=ScaleQuantumToChar(GetPixelGreen(image,p));
*q++=ScaleQuantumToChar(GetPixelRed(image,p));
*q++=ScaleQuantumToChar((Quantum) 0);
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"I") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToChar(ClampToQuantum(GetPixelIntensity(image,p)));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGB") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToChar(GetPixelRed(image,p));
*q++=ScaleQuantumToChar(GetPixelGreen(image,p));
*q++=ScaleQuantumToChar(GetPixelBlue(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGBA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToChar(GetPixelRed(image,p));
*q++=ScaleQuantumToChar(GetPixelGreen(image,p));
*q++=ScaleQuantumToChar(GetPixelBlue(image,p));
*q++=ScaleQuantumToChar(GetPixelAlpha(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGBP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToChar(GetPixelRed(image,p));
*q++=ScaleQuantumToChar(GetPixelGreen(image,p));
*q++=ScaleQuantumToChar(GetPixelBlue(image,p));
*q++=ScaleQuantumToChar((Quantum) 0);
p+=GetPixelChannels(image);
}
}
return;
}
length=strlen(map);
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) length; i++)
{
*q=0;
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
*q=ScaleQuantumToChar(GetPixelRed(image,p));
break;
}
case GreenQuantum:
case MagentaQuantum:
{
*q=ScaleQuantumToChar(GetPixelGreen(image,p));
break;
}
case BlueQuantum:
case YellowQuantum:
{
*q=ScaleQuantumToChar(GetPixelBlue(image,p));
break;
}
case AlphaQuantum:
{
*q=ScaleQuantumToChar(GetPixelAlpha(image,p));
break;
}
case OpacityQuantum:
{
*q=ScaleQuantumToChar(GetPixelAlpha(image,p));
break;
}
case BlackQuantum:
{
if (image->colorspace == CMYKColorspace)
*q=ScaleQuantumToChar(GetPixelBlack(image,p));
break;
}
case IndexQuantum:
{
*q=ScaleQuantumToChar(ClampToQuantum(GetPixelIntensity(image,p)));
break;
}
default:
break;
}
q++;
}
p+=GetPixelChannels(image);
}
}
}
static void ExportDoublePixel(Image *image,const RectangleInfo *roi,
const char *magick_restrict map,const QuantumType *quantum_map,void *pixels,
ExceptionInfo *exception)
{
register const Quantum
*magick_restrict p;
register double
*magick_restrict q;
register ssize_t
x;
size_t
length;
ssize_t
y;
q=(double *) pixels;
if (LocaleCompare(map,"BGR") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=(double) (QuantumScale*GetPixelBlue(image,p));
*q++=(double) (QuantumScale*GetPixelGreen(image,p));
*q++=(double) (QuantumScale*GetPixelRed(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"BGRA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=(double) (QuantumScale*GetPixelBlue(image,p));
*q++=(double) (QuantumScale*GetPixelGreen(image,p));
*q++=(double) (QuantumScale*GetPixelRed(image,p));
*q++=(double) (QuantumScale*GetPixelAlpha(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"BGRP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=(double) (QuantumScale*GetPixelBlue(image,p));
*q++=(double) (QuantumScale*GetPixelGreen(image,p));
*q++=(double) (QuantumScale*GetPixelRed(image,p));
*q++=0.0;
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"I") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=(double) (QuantumScale*GetPixelIntensity(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGB") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=(double) (QuantumScale*GetPixelRed(image,p));
*q++=(double) (QuantumScale*GetPixelGreen(image,p));
*q++=(double) (QuantumScale*GetPixelBlue(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGBA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=(double) (QuantumScale*GetPixelRed(image,p));
*q++=(double) (QuantumScale*GetPixelGreen(image,p));
*q++=(double) (QuantumScale*GetPixelBlue(image,p));
*q++=(double) (QuantumScale*GetPixelAlpha(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGBP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=(double) (QuantumScale*GetPixelRed(image,p));
*q++=(double) (QuantumScale*GetPixelGreen(image,p));
*q++=(double) (QuantumScale*GetPixelBlue(image,p));
*q++=0.0;
p+=GetPixelChannels(image);
}
}
return;
}
length=strlen(map);
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) length; i++)
{
*q=0;
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
*q=(double) (QuantumScale*GetPixelRed(image,p));
break;
}
case GreenQuantum:
case MagentaQuantum:
{
*q=(double) (QuantumScale*GetPixelGreen(image,p));
break;
}
case BlueQuantum:
case YellowQuantum:
{
*q=(double) (QuantumScale*GetPixelBlue(image,p));
break;
}
case AlphaQuantum:
{
*q=(double) (QuantumScale*GetPixelAlpha(image,p));
break;
}
case OpacityQuantum:
{
*q=(double) (QuantumScale*GetPixelAlpha(image,p));
break;
}
case BlackQuantum:
{
if (image->colorspace == CMYKColorspace)
*q=(double) (QuantumScale*
GetPixelBlack(image,p));
break;
}
case IndexQuantum:
{
*q=(double) (QuantumScale*GetPixelIntensity(image,p));
break;
}
default:
*q=0;
}
q++;
}
p+=GetPixelChannels(image);
}
}
}
static void ExportFloatPixel(Image *image,const RectangleInfo *roi,
const char *magick_restrict map,const QuantumType *quantum_map,void *pixels,
ExceptionInfo *exception)
{
register const Quantum
*magick_restrict p;
register float
*magick_restrict q;
register ssize_t
x;
size_t
length;
ssize_t
y;
q=(float *) pixels;
if (LocaleCompare(map,"BGR") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=(float) (QuantumScale*GetPixelBlue(image,p));
*q++=(float) (QuantumScale*GetPixelGreen(image,p));
*q++=(float) (QuantumScale*GetPixelRed(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"BGRA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=(float) (QuantumScale*GetPixelBlue(image,p));
*q++=(float) (QuantumScale*GetPixelGreen(image,p));
*q++=(float) (QuantumScale*GetPixelRed(image,p));
*q++=(float) (QuantumScale*GetPixelAlpha(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"BGRP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=(float) (QuantumScale*GetPixelBlue(image,p));
*q++=(float) (QuantumScale*GetPixelGreen(image,p));
*q++=(float) (QuantumScale*GetPixelRed(image,p));
*q++=0.0;
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"I") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=(float) (QuantumScale*GetPixelIntensity(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGB") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=(float) (QuantumScale*GetPixelRed(image,p));
*q++=(float) (QuantumScale*GetPixelGreen(image,p));
*q++=(float) (QuantumScale*GetPixelBlue(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGBA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=(float) (QuantumScale*GetPixelRed(image,p));
*q++=(float) (QuantumScale*GetPixelGreen(image,p));
*q++=(float) (QuantumScale*GetPixelBlue(image,p));
*q++=(float) (QuantumScale*GetPixelAlpha(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGBP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=(float) (QuantumScale*GetPixelRed(image,p));
*q++=(float) (QuantumScale*GetPixelGreen(image,p));
*q++=(float) (QuantumScale*GetPixelBlue(image,p));
*q++=0.0;
p+=GetPixelChannels(image);
}
}
return;
}
length=strlen(map);
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) length; i++)
{
*q=0;
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
*q=(float) (QuantumScale*GetPixelRed(image,p));
break;
}
case GreenQuantum:
case MagentaQuantum:
{
*q=(float) (QuantumScale*GetPixelGreen(image,p));
break;
}
case BlueQuantum:
case YellowQuantum:
{
*q=(float) (QuantumScale*GetPixelBlue(image,p));
break;
}
case AlphaQuantum:
{
*q=(float) (QuantumScale*((Quantum) (GetPixelAlpha(image,p))));
break;
}
case OpacityQuantum:
{
*q=(float) (QuantumScale*GetPixelAlpha(image,p));
break;
}
case BlackQuantum:
{
if (image->colorspace == CMYKColorspace)
*q=(float) (QuantumScale* GetPixelBlack(image,p));
break;
}
case IndexQuantum:
{
*q=(float) (QuantumScale*GetPixelIntensity(image,p));
break;
}
default:
*q=0;
}
q++;
}
p+=GetPixelChannels(image);
}
}
}
static void ExportLongPixel(Image *image,const RectangleInfo *roi,
const char *magick_restrict map,const QuantumType *quantum_map,void *pixels,
ExceptionInfo *exception)
{
register const Quantum
*magick_restrict p;
register ssize_t
x;
register unsigned int
*magick_restrict q;
size_t
length;
ssize_t
y;
q=(unsigned int *) pixels;
if (LocaleCompare(map,"BGR") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToLong(GetPixelBlue(image,p));
*q++=ScaleQuantumToLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLong(GetPixelRed(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"BGRA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToLong(GetPixelBlue(image,p));
*q++=ScaleQuantumToLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLong(GetPixelRed(image,p));
*q++=ScaleQuantumToLong(GetPixelAlpha(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"BGRP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToLong(GetPixelBlue(image,p));
*q++=ScaleQuantumToLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLong(GetPixelRed(image,p));
*q++=0;
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"I") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToLong(ClampToQuantum(GetPixelIntensity(image,p)));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGB") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToLong(GetPixelRed(image,p));
*q++=ScaleQuantumToLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLong(GetPixelBlue(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGBA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToLong(GetPixelRed(image,p));
*q++=ScaleQuantumToLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLong(GetPixelBlue(image,p));
*q++=ScaleQuantumToLong(GetPixelAlpha(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGBP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToLong(GetPixelRed(image,p));
*q++=ScaleQuantumToLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLong(GetPixelBlue(image,p));
*q++=0;
p+=GetPixelChannels(image);
}
}
return;
}
length=strlen(map);
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) length; i++)
{
*q=0;
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
*q=ScaleQuantumToLong(GetPixelRed(image,p));
break;
}
case GreenQuantum:
case MagentaQuantum:
{
*q=ScaleQuantumToLong(GetPixelGreen(image,p));
break;
}
case BlueQuantum:
case YellowQuantum:
{
*q=ScaleQuantumToLong(GetPixelBlue(image,p));
break;
}
case AlphaQuantum:
{
*q=ScaleQuantumToLong(GetPixelAlpha(image,p));
break;
}
case OpacityQuantum:
{
*q=ScaleQuantumToLong(GetPixelAlpha(image,p));
break;
}
case BlackQuantum:
{
if (image->colorspace == CMYKColorspace)
*q=ScaleQuantumToLong(GetPixelBlack(image,p));
break;
}
case IndexQuantum:
{
*q=ScaleQuantumToLong(ClampToQuantum(GetPixelIntensity(image,p)));
break;
}
default:
break;
}
q++;
}
p+=GetPixelChannels(image);
}
}
}
static void ExportLongLongPixel(Image *image,const RectangleInfo *roi,
const char *magick_restrict map,const QuantumType *quantum_map,void *pixels,
ExceptionInfo *exception)
{
register const Quantum
*magick_restrict p;
register ssize_t
x;
register MagickSizeType
*magick_restrict q;
size_t
length;
ssize_t
y;
q=(MagickSizeType *) pixels;
if (LocaleCompare(map,"BGR") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToLongLong(GetPixelBlue(image,p));
*q++=ScaleQuantumToLongLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLongLong(GetPixelRed(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"BGRA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToLongLong(GetPixelBlue(image,p));
*q++=ScaleQuantumToLongLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLongLong(GetPixelRed(image,p));
*q++=ScaleQuantumToLongLong(GetPixelAlpha(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"BGRP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToLongLong(GetPixelBlue(image,p));
*q++=ScaleQuantumToLongLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLongLong(GetPixelRed(image,p));
*q++=0;
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"I") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToLongLong(ClampToQuantum(
GetPixelIntensity(image,p)));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGB") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToLongLong(GetPixelRed(image,p));
*q++=ScaleQuantumToLongLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLongLong(GetPixelBlue(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGBA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToLongLong(GetPixelRed(image,p));
*q++=ScaleQuantumToLongLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLongLong(GetPixelBlue(image,p));
*q++=ScaleQuantumToLongLong(GetPixelAlpha(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGBP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToLongLong(GetPixelRed(image,p));
*q++=ScaleQuantumToLongLong(GetPixelGreen(image,p));
*q++=ScaleQuantumToLongLong(GetPixelBlue(image,p));
*q++=0;
p+=GetPixelChannels(image);
}
}
return;
}
length=strlen(map);
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) length; i++)
{
*q=0;
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
*q=ScaleQuantumToLongLong(GetPixelRed(image,p));
break;
}
case GreenQuantum:
case MagentaQuantum:
{
*q=ScaleQuantumToLongLong(GetPixelGreen(image,p));
break;
}
case BlueQuantum:
case YellowQuantum:
{
*q=ScaleQuantumToLongLong(GetPixelBlue(image,p));
break;
}
case AlphaQuantum:
{
*q=ScaleQuantumToLongLong(GetPixelAlpha(image,p));
break;
}
case OpacityQuantum:
{
*q=ScaleQuantumToLongLong(GetPixelAlpha(image,p));
break;
}
case BlackQuantum:
{
if (image->colorspace == CMYKColorspace)
*q=ScaleQuantumToLongLong(GetPixelBlack(image,p));
break;
}
case IndexQuantum:
{
*q=ScaleQuantumToLongLong(ClampToQuantum(
GetPixelIntensity(image,p)));
break;
}
default:
break;
}
q++;
}
p+=GetPixelChannels(image);
}
}
}
static void ExportQuantumPixel(Image *image,const RectangleInfo *roi,
const char *magick_restrict map,const QuantumType *quantum_map,void *pixels,
ExceptionInfo *exception)
{
register const Quantum
*magick_restrict p;
register Quantum
*magick_restrict q;
register ssize_t
x;
size_t
length;
ssize_t
y;
q=(Quantum *) pixels;
if (LocaleCompare(map,"BGR") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=GetPixelBlue(image,p);
*q++=GetPixelGreen(image,p);
*q++=GetPixelRed(image,p);
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"BGRA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=GetPixelBlue(image,p);
*q++=GetPixelGreen(image,p);
*q++=GetPixelRed(image,p);
*q++=(Quantum) (GetPixelAlpha(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"BGRP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=GetPixelBlue(image,p);
*q++=GetPixelGreen(image,p);
*q++=GetPixelRed(image,p);
*q++=(Quantum) 0;
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"I") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ClampToQuantum(GetPixelIntensity(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGB") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=GetPixelRed(image,p);
*q++=GetPixelGreen(image,p);
*q++=GetPixelBlue(image,p);
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGBA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=GetPixelRed(image,p);
*q++=GetPixelGreen(image,p);
*q++=GetPixelBlue(image,p);
*q++=(Quantum) (GetPixelAlpha(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGBP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=GetPixelRed(image,p);
*q++=GetPixelGreen(image,p);
*q++=GetPixelBlue(image,p);
*q++=(Quantum) 0;
p+=GetPixelChannels(image);
}
}
return;
}
length=strlen(map);
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) length; i++)
{
*q=(Quantum) 0;
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
*q=GetPixelRed(image,p);
break;
}
case GreenQuantum:
case MagentaQuantum:
{
*q=GetPixelGreen(image,p);
break;
}
case BlueQuantum:
case YellowQuantum:
{
*q=GetPixelBlue(image,p);
break;
}
case AlphaQuantum:
{
*q=GetPixelAlpha(image,p);
break;
}
case OpacityQuantum:
{
*q=GetPixelAlpha(image,p);
break;
}
case BlackQuantum:
{
if (image->colorspace == CMYKColorspace)
*q=GetPixelBlack(image,p);
break;
}
case IndexQuantum:
{
*q=ClampToQuantum(GetPixelIntensity(image,p));
break;
}
default:
{
*q=(Quantum) 0;
break;
}
}
q++;
}
p+=GetPixelChannels(image);
}
}
}
static void ExportShortPixel(Image *image,const RectangleInfo *roi,
const char *magick_restrict map,const QuantumType *quantum_map,void *pixels,
ExceptionInfo *exception)
{
register const Quantum
*magick_restrict p;
register ssize_t
x;
register unsigned short
*magick_restrict q;
size_t
length;
ssize_t
y;
q=(unsigned short *) pixels;
if (LocaleCompare(map,"BGR") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToShort(GetPixelBlue(image,p));
*q++=ScaleQuantumToShort(GetPixelGreen(image,p));
*q++=ScaleQuantumToShort(GetPixelRed(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"BGRA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToShort(GetPixelBlue(image,p));
*q++=ScaleQuantumToShort(GetPixelGreen(image,p));
*q++=ScaleQuantumToShort(GetPixelRed(image,p));
*q++=ScaleQuantumToShort(GetPixelAlpha(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"BGRP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToShort(GetPixelBlue(image,p));
*q++=ScaleQuantumToShort(GetPixelGreen(image,p));
*q++=ScaleQuantumToShort(GetPixelRed(image,p));
*q++=0;
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"I") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToShort(ClampToQuantum(GetPixelIntensity(image,p)));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGB") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToShort(GetPixelRed(image,p));
*q++=ScaleQuantumToShort(GetPixelGreen(image,p));
*q++=ScaleQuantumToShort(GetPixelBlue(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGBA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToShort(GetPixelRed(image,p));
*q++=ScaleQuantumToShort(GetPixelGreen(image,p));
*q++=ScaleQuantumToShort(GetPixelBlue(image,p));
*q++=ScaleQuantumToShort(GetPixelAlpha(image,p));
p+=GetPixelChannels(image);
}
}
return;
}
if (LocaleCompare(map,"RGBP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
*q++=ScaleQuantumToShort(GetPixelRed(image,p));
*q++=ScaleQuantumToShort(GetPixelGreen(image,p));
*q++=ScaleQuantumToShort(GetPixelBlue(image,p));
*q++=0;
p+=GetPixelChannels(image);
}
}
return;
}
length=strlen(map);
for (y=0; y < (ssize_t) roi->height; y++)
{
p=GetVirtualPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) length; i++)
{
*q=0;
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
*q=ScaleQuantumToShort(GetPixelRed(image,p));
break;
}
case GreenQuantum:
case MagentaQuantum:
{
*q=ScaleQuantumToShort(GetPixelGreen(image,p));
break;
}
case BlueQuantum:
case YellowQuantum:
{
*q=ScaleQuantumToShort(GetPixelBlue(image,p));
break;
}
case AlphaQuantum:
{
*q=ScaleQuantumToShort(GetPixelAlpha(image,p));
break;
}
case OpacityQuantum:
{
*q=ScaleQuantumToShort(GetPixelAlpha(image,p));
break;
}
case BlackQuantum:
{
if (image->colorspace == CMYKColorspace)
*q=ScaleQuantumToShort(GetPixelBlack(image,p));
break;
}
case IndexQuantum:
{
*q=ScaleQuantumToShort(ClampToQuantum(GetPixelIntensity(image,p)));
break;
}
default:
break;
}
q++;
}
p+=GetPixelChannels(image);
}
}
}
MagickExport MagickBooleanType ExportImagePixels(Image *image,const ssize_t x,
const ssize_t y,const size_t width,const size_t height,const char *map,
const StorageType type,void *pixels,ExceptionInfo *exception)
{
QuantumType
*quantum_map;
RectangleInfo
roi;
register ssize_t
i;
size_t
length;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
length=strlen(map);
quantum_map=(QuantumType *) AcquireQuantumMemory(length,sizeof(*quantum_map));
if (quantum_map == (QuantumType *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
return(MagickFalse);
}
for (i=0; i < (ssize_t) length; i++)
{
switch (map[i])
{
case 'A':
case 'a':
{
quantum_map[i]=AlphaQuantum;
break;
}
case 'B':
case 'b':
{
quantum_map[i]=BlueQuantum;
break;
}
case 'C':
case 'c':
{
quantum_map[i]=CyanQuantum;
if (image->colorspace == CMYKColorspace)
break;
quantum_map=(QuantumType *) RelinquishMagickMemory(quantum_map);
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",map);
return(MagickFalse);
}
case 'g':
case 'G':
{
quantum_map[i]=GreenQuantum;
break;
}
case 'I':
case 'i':
{
quantum_map[i]=IndexQuantum;
break;
}
case 'K':
case 'k':
{
quantum_map[i]=BlackQuantum;
if (image->colorspace == CMYKColorspace)
break;
quantum_map=(QuantumType *) RelinquishMagickMemory(quantum_map);
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",map);
return(MagickFalse);
}
case 'M':
case 'm':
{
quantum_map[i]=MagentaQuantum;
if (image->colorspace == CMYKColorspace)
break;
quantum_map=(QuantumType *) RelinquishMagickMemory(quantum_map);
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",map);
return(MagickFalse);
}
case 'o':
case 'O':
{
quantum_map[i]=OpacityQuantum;
break;
}
case 'P':
case 'p':
{
quantum_map[i]=UndefinedQuantum;
break;
}
case 'R':
case 'r':
{
quantum_map[i]=RedQuantum;
break;
}
case 'Y':
case 'y':
{
quantum_map[i]=YellowQuantum;
if (image->colorspace == CMYKColorspace)
break;
quantum_map=(QuantumType *) RelinquishMagickMemory(quantum_map);
(void) ThrowMagickException(exception,GetMagickModule(),ImageError,
"ColorSeparatedImageRequired","`%s'",map);
return(MagickFalse);
}
default:
{
quantum_map=(QuantumType *) RelinquishMagickMemory(quantum_map);
(void) ThrowMagickException(exception,GetMagickModule(),OptionError,
"UnrecognizedPixelMap","`%s'",map);
return(MagickFalse);
}
}
}
roi.width=width;
roi.height=height;
roi.x=x;
roi.y=y;
switch (type)
{
case CharPixel:
{
ExportCharPixel(image,&roi,map,quantum_map,pixels,exception);
break;
}
case DoublePixel:
{
ExportDoublePixel(image,&roi,map,quantum_map,pixels,exception);
break;
}
case FloatPixel:
{
ExportFloatPixel(image,&roi,map,quantum_map,pixels,exception);
break;
}
case LongPixel:
{
ExportLongPixel(image,&roi,map,quantum_map,pixels,exception);
break;
}
case LongLongPixel:
{
ExportLongLongPixel(image,&roi,map,quantum_map,pixels,exception);
break;
}
case QuantumPixel:
{
ExportQuantumPixel(image,&roi,map,quantum_map,pixels,exception);
break;
}
case ShortPixel:
{
ExportShortPixel(image,&roi,map,quantum_map,pixels,exception);
break;
}
default:
{
quantum_map=(QuantumType *) RelinquishMagickMemory(quantum_map);
(void) ThrowMagickException(exception,GetMagickModule(),OptionError,
"UnrecognizedPixelMap","`%s'",map);
break;
}
}
quantum_map=(QuantumType *) RelinquishMagickMemory(quantum_map);
return(MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t P i x e l I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetPixelInfo() initializes the PixelInfo structure.
%
% The format of the GetPixelInfo method is:
%
% GetPixelInfo(const Image *image,PixelInfo *pixel)
%
% A description of each parameter follows:
%
% o image: the image. (optional - may be NULL)
%
% o pixel: Specifies a pointer to a PixelInfo structure.
%
*/
MagickExport void GetPixelInfo(const Image *image,PixelInfo *pixel)
{
pixel->storage_class=DirectClass;
pixel->colorspace=sRGBColorspace;
pixel->alpha_trait=UndefinedPixelTrait;
pixel->fuzz=0.0;
pixel->depth=MAGICKCORE_QUANTUM_DEPTH;
pixel->red=0.0;
pixel->green=0.0;
pixel->blue=0.0;
pixel->black=0.0;
pixel->alpha=(double) OpaqueAlpha;
pixel->index=0.0;
pixel->count=0;
pixel->fuzz=0.0;
if (image == (const Image *) NULL)
return;
pixel->storage_class=image->storage_class;
pixel->colorspace=image->colorspace;
pixel->alpha_trait=image->alpha_trait;
pixel->depth=image->depth;
pixel->fuzz=image->fuzz;
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t P i x e l I n d o I n t e n s i t y %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetPixelInfoIntensity() returns a single sample intensity value from the red,
% green, and blue components of a pixel based on the selected method:
%
% Rec601Luma 0.298839R' + 0.586811G' + 0.114350B'
% Rec601Luminance 0.298839R + 0.586811G + 0.114350B
% Rec709Luma 0.212656R' + 0.715158G' + 0.072186B'
% Rec709Luminance 0.212656R + 0.715158G + 0.072186B
% Brightness max(R', G', B')
% Lightness (min(R', G', B') + max(R', G', B')) / 2.0
%
% MS (R^2 + G^2 + B^2) / 3.0
% RMS sqrt((R^2 + G^2 + B^2) / 3.0
% Average (R + G + B') / 3.0
%
% The format of the GetPixelInfoIntensity method is:
%
% MagickRealType GetPixelInfoIntensity(const Image *image,
% const Quantum *pixel)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o pixel: Specifies a pointer to a Quantum structure.
%
*/
MagickExport MagickRealType GetPixelInfoIntensity(
const Image *magick_restrict image,const PixelInfo *magick_restrict pixel)
{
MagickRealType
blue,
green,
red,
intensity;
PixelIntensityMethod
method;
method=Rec709LumaPixelIntensityMethod;
if (image != (const Image *) NULL)
method=image->intensity;
red=pixel->red;
green=pixel->green;
blue=pixel->blue;
switch (method)
{
case AveragePixelIntensityMethod:
{
intensity=(red+green+blue)/3.0;
break;
}
case BrightnessPixelIntensityMethod:
{
intensity=MagickMax(MagickMax(red,green),blue);
break;
}
case LightnessPixelIntensityMethod:
{
intensity=(MagickMin(MagickMin(red,green),blue)+
MagickMax(MagickMax(red,green),blue))/2.0;
break;
}
case MSPixelIntensityMethod:
{
intensity=(MagickRealType) (((double) red*red+green*green+blue*blue)/
(3.0*QuantumRange));
break;
}
case Rec601LumaPixelIntensityMethod:
{
if (pixel->colorspace == RGBColorspace)
{
red=EncodePixelGamma(red);
green=EncodePixelGamma(green);
blue=EncodePixelGamma(blue);
}
intensity=0.298839*red+0.586811*green+0.114350*blue;
break;
}
case Rec601LuminancePixelIntensityMethod:
{
if (pixel->colorspace == sRGBColorspace)
{
red=DecodePixelGamma(red);
green=DecodePixelGamma(green);
blue=DecodePixelGamma(blue);
}
intensity=0.298839*red+0.586811*green+0.114350*blue;
break;
}
case Rec709LumaPixelIntensityMethod:
default:
{
if (pixel->colorspace == RGBColorspace)
{
red=EncodePixelGamma(red);
green=EncodePixelGamma(green);
blue=EncodePixelGamma(blue);
}
intensity=0.212656*red+0.715158*green+0.072186*blue;
break;
}
case Rec709LuminancePixelIntensityMethod:
{
if (pixel->colorspace == sRGBColorspace)
{
red=DecodePixelGamma(red);
green=DecodePixelGamma(green);
blue=DecodePixelGamma(blue);
}
intensity=0.212656*red+0.715158*green+0.072186*blue;
break;
}
case RMSPixelIntensityMethod:
{
intensity=(MagickRealType) (sqrt((double) red*red+green*green+blue*blue)/
sqrt(3.0));
break;
}
}
return(intensity);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t P i x e l I n t e n s i t y %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetPixelIntensity() returns a single sample intensity value from the red,
% green, and blue components of a pixel based on the selected method:
%
% Rec601Luma 0.298839R' + 0.586811G' + 0.114350B'
% Rec601Luminance 0.298839R + 0.586811G + 0.114350B
% Rec709Luma 0.212656R' + 0.715158G' + 0.072186B'
% Rec709Luminance 0.212656R + 0.715158G + 0.072186B
% Brightness max(R', G', B')
% Lightness (min(R', G', B') + max(R', G', B')) / 2.0
%
% MS (R^2 + G^2 + B^2) / 3.0
% RMS sqrt((R^2 + G^2 + B^2) / 3.0
% Average (R + G + B') / 3.0
%
% The format of the GetPixelIntensity method is:
%
% MagickRealType GetPixelIntensity(const Image *image,
% const Quantum *pixel)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o pixel: Specifies a pointer to a Quantum structure.
%
*/
MagickExport MagickRealType GetPixelIntensity(const Image *magick_restrict image,
const Quantum *magick_restrict pixel)
{
MagickRealType
blue,
green,
red,
intensity;
red=GetPixelRed(image,pixel);
green=GetPixelGreen(image,pixel);
blue=GetPixelBlue(image,pixel);
switch (image->intensity)
{
case AveragePixelIntensityMethod:
{
intensity=(red+green+blue)/3.0;
break;
}
case BrightnessPixelIntensityMethod:
{
intensity=MagickMax(MagickMax(red,green),blue);
break;
}
case LightnessPixelIntensityMethod:
{
intensity=(MagickMin(MagickMin(red,green),blue)+
MagickMax(MagickMax(red,green),blue))/2.0;
break;
}
case MSPixelIntensityMethod:
{
intensity=(MagickRealType) (((double) red*red+green*green+blue*blue)/
(3.0*QuantumRange));
break;
}
case Rec601LumaPixelIntensityMethod:
{
if (image->colorspace == RGBColorspace)
{
red=EncodePixelGamma(red);
green=EncodePixelGamma(green);
blue=EncodePixelGamma(blue);
}
intensity=0.298839*red+0.586811*green+0.114350*blue;
break;
}
case Rec601LuminancePixelIntensityMethod:
{
if (image->colorspace == sRGBColorspace)
{
red=DecodePixelGamma(red);
green=DecodePixelGamma(green);
blue=DecodePixelGamma(blue);
}
intensity=0.298839*red+0.586811*green+0.114350*blue;
break;
}
case Rec709LumaPixelIntensityMethod:
default:
{
if (image->colorspace == RGBColorspace)
{
red=EncodePixelGamma(red);
green=EncodePixelGamma(green);
blue=EncodePixelGamma(blue);
}
intensity=0.212656*red+0.715158*green+0.072186*blue;
break;
}
case Rec709LuminancePixelIntensityMethod:
{
if (image->colorspace == sRGBColorspace)
{
red=DecodePixelGamma(red);
green=DecodePixelGamma(green);
blue=DecodePixelGamma(blue);
}
intensity=0.212656*red+0.715158*green+0.072186*blue;
break;
}
case RMSPixelIntensityMethod:
{
intensity=(MagickRealType) (sqrt((double) red*red+green*green+blue*blue)/
sqrt(3.0));
break;
}
}
return(intensity);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I m p o r t I m a g e P i x e l s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ImportImagePixels() accepts pixel data and stores in the image at the
% location you specify. The method returns MagickTrue on success otherwise
% MagickFalse if an error is encountered. The pixel data can be either char,
% Quantum, short int, unsigned int, unsigned long long, float, or double in
% the order specified by map.
%
% Suppose your want to upload the first scanline of a 640x480 image from
% character data in red-green-blue order:
%
% ImportImagePixels(image,0,0,640,1,"RGB",CharPixel,pixels);
%
% The format of the ImportImagePixels method is:
%
% MagickBooleanType ImportImagePixels(Image *image,const ssize_t x,
% const ssize_t y,const size_t width,const size_t height,
% const char *map,const StorageType type,const void *pixels,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o x,y,width,height: These values define the perimeter
% of a region of pixels you want to define.
%
% o map: This string reflects the expected ordering of the pixel array.
% It can be any combination or order of R = red, G = green, B = blue,
% A = alpha (0 is transparent), O = opacity (0 is opaque), C = cyan,
% Y = yellow, M = magenta, K = black, I = intensity (for grayscale),
% P = pad.
%
% o type: Define the data type of the pixels. Float and double types are
% normalized to [0..1] otherwise [0..QuantumRange]. Choose from these
% types: CharPixel (char *), DoublePixel (double *), FloatPixel (float *),
% LongPixel (unsigned int *), LongLongPixel (unsigned long long *),
% QuantumPixel (Quantum *), or ShortPixel (unsigned short *).
%
% o pixels: This array of values contain the pixel components as defined by
% map and type. You must preallocate this array where the expected
% length varies depending on the values of width, height, map, and type.
%
% o exception: return any errors or warnings in this structure.
%
*/
static void ImportCharPixel(Image *image,const RectangleInfo *roi,
const char *magick_restrict map,const QuantumType *quantum_map,
const void *pixels,ExceptionInfo *exception)
{
register const unsigned char
*magick_restrict p;
register Quantum
*magick_restrict q;
register ssize_t
x;
size_t
length;
ssize_t
y;
p=(const unsigned char *) pixels;
if (LocaleCompare(map,"BGR") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,ScaleCharToQuantum(*p++),q);
SetPixelGreen(image,ScaleCharToQuantum(*p++),q);
SetPixelRed(image,ScaleCharToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"BGRA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,ScaleCharToQuantum(*p++),q);
SetPixelGreen(image,ScaleCharToQuantum(*p++),q);
SetPixelRed(image,ScaleCharToQuantum(*p++),q);
SetPixelAlpha(image,ScaleCharToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"BGRO") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,ScaleCharToQuantum(*p++),q);
SetPixelGreen(image,ScaleCharToQuantum(*p++),q);
SetPixelRed(image,ScaleCharToQuantum(*p++),q);
SetPixelAlpha(image,ScaleCharToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"BGRP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,ScaleCharToQuantum(*p++),q);
SetPixelGreen(image,ScaleCharToQuantum(*p++),q);
SetPixelRed(image,ScaleCharToQuantum(*p++),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"I") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelGray(image,ScaleCharToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGB") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,ScaleCharToQuantum(*p++),q);
SetPixelGreen(image,ScaleCharToQuantum(*p++),q);
SetPixelBlue(image,ScaleCharToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGBA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,ScaleCharToQuantum(*p++),q);
SetPixelGreen(image,ScaleCharToQuantum(*p++),q);
SetPixelBlue(image,ScaleCharToQuantum(*p++),q);
SetPixelAlpha(image,ScaleCharToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGBO") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,ScaleCharToQuantum(*p++),q);
SetPixelGreen(image,ScaleCharToQuantum(*p++),q);
SetPixelBlue(image,ScaleCharToQuantum(*p++),q);
SetPixelAlpha(image,ScaleCharToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGBP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,ScaleCharToQuantum(*p++),q);
SetPixelGreen(image,ScaleCharToQuantum(*p++),q);
SetPixelBlue(image,ScaleCharToQuantum(*p++),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
length=strlen(map);
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) length; i++)
{
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
SetPixelRed(image,ScaleCharToQuantum(*p),q);
break;
}
case GreenQuantum:
case MagentaQuantum:
{
SetPixelGreen(image,ScaleCharToQuantum(*p),q);
break;
}
case BlueQuantum:
case YellowQuantum:
{
SetPixelBlue(image,ScaleCharToQuantum(*p),q);
break;
}
case AlphaQuantum:
{
SetPixelAlpha(image,ScaleCharToQuantum(*p),q);
break;
}
case OpacityQuantum:
{
SetPixelAlpha(image,ScaleCharToQuantum(*p),q);
break;
}
case BlackQuantum:
{
SetPixelBlack(image,ScaleCharToQuantum(*p),q);
break;
}
case IndexQuantum:
{
SetPixelGray(image,ScaleCharToQuantum(*p),q);
break;
}
default:
break;
}
p++;
}
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
}
static void ImportDoublePixel(Image *image,const RectangleInfo *roi,
const char *magick_restrict map,const QuantumType *quantum_map,
const void *pixels,ExceptionInfo *exception)
{
register const double
*magick_restrict p;
register Quantum
*magick_restrict q;
register ssize_t
x;
size_t
length;
ssize_t
y;
p=(const double *) pixels;
if (LocaleCompare(map,"BGR") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelGreen(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelRed(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"BGRA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelGreen(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelRed(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelAlpha(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"BGRP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelGreen(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelRed(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"I") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelGray(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGB") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelGreen(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelBlue(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGBA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelGreen(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelBlue(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelAlpha(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGBP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelGreen(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelBlue(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
length=strlen(map);
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) length; i++)
{
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
SetPixelRed(image,ClampToQuantum(QuantumRange*(*p)),q);
break;
}
case GreenQuantum:
case MagentaQuantum:
{
SetPixelGreen(image,ClampToQuantum(QuantumRange*(*p)),q);
break;
}
case BlueQuantum:
case YellowQuantum:
{
SetPixelBlue(image,ClampToQuantum(QuantumRange*(*p)),q);
break;
}
case AlphaQuantum:
{
SetPixelAlpha(image,ClampToQuantum(QuantumRange*(*p)),q);
break;
}
case OpacityQuantum:
{
SetPixelAlpha(image,ClampToQuantum(QuantumRange*(*p)),q);
break;
}
case BlackQuantum:
{
SetPixelBlack(image,ClampToQuantum(QuantumRange*(*p)),q);
break;
}
case IndexQuantum:
{
SetPixelGray(image,ClampToQuantum(QuantumRange*(*p)),q);
break;
}
default:
break;
}
p++;
}
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
}
static void ImportFloatPixel(Image *image,const RectangleInfo *roi,
const char *magick_restrict map,const QuantumType *quantum_map,
const void *pixels,ExceptionInfo *exception)
{
register const float
*magick_restrict p;
register Quantum
*magick_restrict q;
register ssize_t
x;
size_t
length;
ssize_t
y;
p=(const float *) pixels;
if (LocaleCompare(map,"BGR") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelGreen(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelRed(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"BGRA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelGreen(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelRed(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelAlpha(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"BGRP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelGreen(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelRed(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"I") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelGray(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGB") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelGreen(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelBlue(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGBA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelGreen(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelBlue(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelAlpha(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGBP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelGreen(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
SetPixelBlue(image,ClampToQuantum(QuantumRange*(*p)),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
length=strlen(map);
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) length; i++)
{
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
SetPixelRed(image,ClampToQuantum(QuantumRange*(*p)),q);
break;
}
case GreenQuantum:
case MagentaQuantum:
{
SetPixelGreen(image,ClampToQuantum(QuantumRange*(*p)),q);
break;
}
case BlueQuantum:
case YellowQuantum:
{
SetPixelBlue(image,ClampToQuantum(QuantumRange*(*p)),q);
break;
}
case AlphaQuantum:
{
SetPixelAlpha(image,ClampToQuantum(QuantumRange*(*p)),q);
break;
}
case OpacityQuantum:
{
SetPixelAlpha(image,ClampToQuantum(QuantumRange*(*p)),q);
break;
}
case BlackQuantum:
{
SetPixelBlack(image,ClampToQuantum(QuantumRange*(*p)),q);
break;
}
case IndexQuantum:
{
SetPixelGray(image,ClampToQuantum(QuantumRange*(*p)),q);
break;
}
default:
break;
}
p++;
}
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
}
static void ImportLongPixel(Image *image,const RectangleInfo *roi,
const char *magick_restrict map,const QuantumType *quantum_map,
const void *pixels,ExceptionInfo *exception)
{
register const unsigned int
*magick_restrict p;
register Quantum
*magick_restrict q;
register ssize_t
x;
size_t
length;
ssize_t
y;
p=(const unsigned int *) pixels;
if (LocaleCompare(map,"BGR") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,ScaleLongToQuantum(*p++),q);
SetPixelGreen(image,ScaleLongToQuantum(*p++),q);
SetPixelRed(image,ScaleLongToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"BGRA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,ScaleLongToQuantum(*p++),q);
SetPixelGreen(image,ScaleLongToQuantum(*p++),q);
SetPixelRed(image,ScaleLongToQuantum(*p++),q);
SetPixelAlpha(image,ScaleLongToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"BGRP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,ScaleLongToQuantum(*p++),q);
SetPixelGreen(image,ScaleLongToQuantum(*p++),q);
SetPixelRed(image,ScaleLongToQuantum(*p++),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"I") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelGray(image,ScaleLongToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGB") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,ScaleLongToQuantum(*p++),q);
SetPixelGreen(image,ScaleLongToQuantum(*p++),q);
SetPixelBlue(image,ScaleLongToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGBA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,ScaleLongToQuantum(*p++),q);
SetPixelGreen(image,ScaleLongToQuantum(*p++),q);
SetPixelBlue(image,ScaleLongToQuantum(*p++),q);
SetPixelAlpha(image,ScaleLongToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGBP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,ScaleLongToQuantum(*p++),q);
SetPixelGreen(image,ScaleLongToQuantum(*p++),q);
SetPixelBlue(image,ScaleLongToQuantum(*p++),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
length=strlen(map);
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) length; i++)
{
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
SetPixelRed(image,ScaleLongToQuantum(*p),q);
break;
}
case GreenQuantum:
case MagentaQuantum:
{
SetPixelGreen(image,ScaleLongToQuantum(*p),q);
break;
}
case BlueQuantum:
case YellowQuantum:
{
SetPixelBlue(image,ScaleLongToQuantum(*p),q);
break;
}
case AlphaQuantum:
{
SetPixelAlpha(image,ScaleLongToQuantum(*p),q);
break;
}
case OpacityQuantum:
{
SetPixelAlpha(image,ScaleLongToQuantum(*p),q);
break;
}
case BlackQuantum:
{
SetPixelBlack(image,ScaleLongToQuantum(*p),q);
break;
}
case IndexQuantum:
{
SetPixelGray(image,ScaleLongToQuantum(*p),q);
break;
}
default:
break;
}
p++;
}
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
}
static void ImportLongLongPixel(Image *image,const RectangleInfo *roi,
const char *magick_restrict map,const QuantumType *quantum_map,
const void *pixels,ExceptionInfo *exception)
{
register const MagickSizeType
*magick_restrict p;
register Quantum
*magick_restrict q;
register ssize_t
x;
size_t
length;
ssize_t
y;
p=(const MagickSizeType *) pixels;
if (LocaleCompare(map,"BGR") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,ScaleLongLongToQuantum(*p++),q);
SetPixelGreen(image,ScaleLongLongToQuantum(*p++),q);
SetPixelRed(image,ScaleLongLongToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"BGRA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,ScaleLongLongToQuantum(*p++),q);
SetPixelGreen(image,ScaleLongLongToQuantum(*p++),q);
SetPixelRed(image,ScaleLongLongToQuantum(*p++),q);
SetPixelAlpha(image,ScaleLongLongToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"BGRP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,ScaleLongLongToQuantum(*p++),q);
SetPixelGreen(image,ScaleLongLongToQuantum(*p++),q);
SetPixelRed(image,ScaleLongLongToQuantum(*p++),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"I") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelGray(image,ScaleLongLongToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGB") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,ScaleLongLongToQuantum(*p++),q);
SetPixelGreen(image,ScaleLongLongToQuantum(*p++),q);
SetPixelBlue(image,ScaleLongLongToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGBA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,ScaleLongLongToQuantum(*p++),q);
SetPixelGreen(image,ScaleLongLongToQuantum(*p++),q);
SetPixelBlue(image,ScaleLongLongToQuantum(*p++),q);
SetPixelAlpha(image,ScaleLongLongToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGBP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,ScaleLongLongToQuantum(*p++),q);
SetPixelGreen(image,ScaleLongLongToQuantum(*p++),q);
SetPixelBlue(image,ScaleLongLongToQuantum(*p++),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
length=strlen(map);
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) length; i++)
{
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
SetPixelRed(image,ScaleLongLongToQuantum(*p),q);
break;
}
case GreenQuantum:
case MagentaQuantum:
{
SetPixelGreen(image,ScaleLongLongToQuantum(*p),q);
break;
}
case BlueQuantum:
case YellowQuantum:
{
SetPixelBlue(image,ScaleLongLongToQuantum(*p),q);
break;
}
case AlphaQuantum:
{
SetPixelAlpha(image,ScaleLongLongToQuantum(*p),q);
break;
}
case OpacityQuantum:
{
SetPixelAlpha(image,ScaleLongLongToQuantum(*p),q);
break;
}
case BlackQuantum:
{
SetPixelBlack(image,ScaleLongLongToQuantum(*p),q);
break;
}
case IndexQuantum:
{
SetPixelGray(image,ScaleLongLongToQuantum(*p),q);
break;
}
default:
break;
}
p++;
}
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
}
static void ImportQuantumPixel(Image *image,const RectangleInfo *roi,
const char *magick_restrict map,const QuantumType *quantum_map,
const void *pixels,ExceptionInfo *exception)
{
register const Quantum
*magick_restrict p;
register Quantum
*magick_restrict q;
register ssize_t
x;
size_t
length;
ssize_t
y;
p=(const Quantum *) pixels;
if (LocaleCompare(map,"BGR") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,*p++,q);
SetPixelGreen(image,*p++,q);
SetPixelRed(image,*p++,q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"BGRA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,*p++,q);
SetPixelGreen(image,*p++,q);
SetPixelRed(image,*p++,q);
SetPixelAlpha(image,*p++,q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"BGRP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,*p++,q);
SetPixelGreen(image,*p++,q);
SetPixelRed(image,*p++,q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"I") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelGray(image,*p++,q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGB") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,*p++,q);
SetPixelGreen(image,*p++,q);
SetPixelBlue(image,*p++,q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGBA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,*p++,q);
SetPixelGreen(image,*p++,q);
SetPixelBlue(image,*p++,q);
SetPixelAlpha(image,*p++,q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGBP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,*p++,q);
SetPixelGreen(image,*p++,q);
SetPixelBlue(image,*p++,q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
length=strlen(map);
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) length; i++)
{
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
SetPixelRed(image,*p,q);
break;
}
case GreenQuantum:
case MagentaQuantum:
{
SetPixelGreen(image,*p,q);
break;
}
case BlueQuantum:
case YellowQuantum:
{
SetPixelBlue(image,*p,q);
break;
}
case AlphaQuantum:
{
SetPixelAlpha(image,*p,q);
break;
}
case OpacityQuantum:
{
SetPixelAlpha(image,*p,q);
break;
}
case BlackQuantum:
{
SetPixelBlack(image,*p,q);
break;
}
case IndexQuantum:
{
SetPixelGray(image,*p,q);
break;
}
default:
break;
}
p++;
}
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
}
static void ImportShortPixel(Image *image,const RectangleInfo *roi,
const char *magick_restrict map,const QuantumType *quantum_map,
const void *pixels,ExceptionInfo *exception)
{
register const unsigned short
*magick_restrict p;
register Quantum
*magick_restrict q;
register ssize_t
x;
size_t
length;
ssize_t
y;
p=(const unsigned short *) pixels;
if (LocaleCompare(map,"BGR") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,ScaleShortToQuantum(*p++),q);
SetPixelGreen(image,ScaleShortToQuantum(*p++),q);
SetPixelRed(image,ScaleShortToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"BGRA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,ScaleShortToQuantum(*p++),q);
SetPixelGreen(image,ScaleShortToQuantum(*p++),q);
SetPixelRed(image,ScaleShortToQuantum(*p++),q);
SetPixelAlpha(image,ScaleShortToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"BGRP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelBlue(image,ScaleShortToQuantum(*p++),q);
SetPixelGreen(image,ScaleShortToQuantum(*p++),q);
SetPixelRed(image,ScaleShortToQuantum(*p++),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"I") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelGray(image,ScaleShortToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGB") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,ScaleShortToQuantum(*p++),q);
SetPixelGreen(image,ScaleShortToQuantum(*p++),q);
SetPixelBlue(image,ScaleShortToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGBA") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,ScaleShortToQuantum(*p++),q);
SetPixelGreen(image,ScaleShortToQuantum(*p++),q);
SetPixelBlue(image,ScaleShortToQuantum(*p++),q);
SetPixelAlpha(image,ScaleShortToQuantum(*p++),q);
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
if (LocaleCompare(map,"RGBP") == 0)
{
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
SetPixelRed(image,ScaleShortToQuantum(*p++),q);
SetPixelGreen(image,ScaleShortToQuantum(*p++),q);
SetPixelBlue(image,ScaleShortToQuantum(*p++),q);
p++;
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
return;
}
length=strlen(map);
for (y=0; y < (ssize_t) roi->height; y++)
{
q=GetAuthenticPixels(image,roi->x,roi->y+y,roi->width,1,exception);
if (q == (Quantum *) NULL)
break;
for (x=0; x < (ssize_t) roi->width; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) length; i++)
{
switch (quantum_map[i])
{
case RedQuantum:
case CyanQuantum:
{
SetPixelRed(image,ScaleShortToQuantum(*p),q);
break;
}
case GreenQuantum:
case MagentaQuantum:
{
SetPixelGreen(image,ScaleShortToQuantum(*p),q);
break;
}
case BlueQuantum:
case YellowQuantum:
{
SetPixelBlue(image,ScaleShortToQuantum(*p),q);
break;
}
case AlphaQuantum:
{
SetPixelAlpha(image,ScaleShortToQuantum(*p),q);
break;
}
case OpacityQuantum:
{
SetPixelAlpha(image,ScaleShortToQuantum(*p),q);
break;
}
case BlackQuantum:
{
SetPixelBlack(image,ScaleShortToQuantum(*p),q);
break;
}
case IndexQuantum:
{
SetPixelGray(image,ScaleShortToQuantum(*p),q);
break;
}
default:
break;
}
p++;
}
q+=GetPixelChannels(image);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
}
}
MagickExport MagickBooleanType ImportImagePixels(Image *image,const ssize_t x,
const ssize_t y,const size_t width,const size_t height,const char *map,
const StorageType type,const void *pixels,ExceptionInfo *exception)
{
QuantumType
*quantum_map;
RectangleInfo
roi;
register ssize_t
i;
size_t
length;
/*
Allocate image structure.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
length=strlen(map);
quantum_map=(QuantumType *) AcquireQuantumMemory(length,sizeof(*quantum_map));
if (quantum_map == (QuantumType *) NULL)
ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
image->filename);
for (i=0; i < (ssize_t) length; i++)
{
switch (map[i])
{
case 'a':
case 'A':
{
quantum_map[i]=AlphaQuantum;
image->alpha_trait=BlendPixelTrait;
break;
}
case 'B':
case 'b':
{
quantum_map[i]=BlueQuantum;
break;
}
case 'C':
case 'c':
{
quantum_map[i]=CyanQuantum;
(void) SetImageColorspace(image,CMYKColorspace,exception);
break;
}
case 'g':
case 'G':
{
quantum_map[i]=GreenQuantum;
break;
}
case 'K':
case 'k':
{
quantum_map[i]=BlackQuantum;
(void) SetImageColorspace(image,CMYKColorspace,exception);
break;
}
case 'I':
case 'i':
{
quantum_map[i]=IndexQuantum;
(void) SetImageColorspace(image,GRAYColorspace,exception);
break;
}
case 'm':
case 'M':
{
quantum_map[i]=MagentaQuantum;
(void) SetImageColorspace(image,CMYKColorspace,exception);
break;
}
case 'O':
case 'o':
{
quantum_map[i]=OpacityQuantum;
image->alpha_trait=BlendPixelTrait;
break;
}
case 'P':
case 'p':
{
quantum_map[i]=UndefinedQuantum;
break;
}
case 'R':
case 'r':
{
quantum_map[i]=RedQuantum;
break;
}
case 'Y':
case 'y':
{
quantum_map[i]=YellowQuantum;
(void) SetImageColorspace(image,CMYKColorspace,exception);
break;
}
default:
{
quantum_map=(QuantumType *) RelinquishMagickMemory(quantum_map);
(void) ThrowMagickException(exception,GetMagickModule(),OptionError,
"UnrecognizedPixelMap","`%s'",map);
return(MagickFalse);
}
}
}
if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse)
return(MagickFalse);
/*
Transfer the pixels from the pixel data to the image.
*/
roi.width=width;
roi.height=height;
roi.x=x;
roi.y=y;
switch (type)
{
case CharPixel:
{
ImportCharPixel(image,&roi,map,quantum_map,pixels,exception);
break;
}
case DoublePixel:
{
ImportDoublePixel(image,&roi,map,quantum_map,pixels,exception);
break;
}
case FloatPixel:
{
ImportFloatPixel(image,&roi,map,quantum_map,pixels,exception);
break;
}
case LongPixel:
{
ImportLongPixel(image,&roi,map,quantum_map,pixels,exception);
break;
}
case LongLongPixel:
{
ImportLongLongPixel(image,&roi,map,quantum_map,pixels,exception);
break;
}
case QuantumPixel:
{
ImportQuantumPixel(image,&roi,map,quantum_map,pixels,exception);
break;
}
case ShortPixel:
{
ImportShortPixel(image,&roi,map,quantum_map,pixels,exception);
break;
}
default:
{
quantum_map=(QuantumType *) RelinquishMagickMemory(quantum_map);
(void) ThrowMagickException(exception,GetMagickModule(),OptionError,
"UnrecognizedStorageType","`%d'",type);
break;
}
}
quantum_map=(QuantumType *) RelinquishMagickMemory(quantum_map);
return(MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ I n i t i a l i z e P i x e l C h a n n e l M a p %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% InitializePixelChannelMap() defines the standard pixel component map.
%
% The format of the InitializePixelChannelMap() method is:
%
% void InitializePixelChannelMap(Image *image)
%
% A description of each parameter follows:
%
% o image: the image.
%
*/
static void LogPixelChannels(const Image *image)
{
register ssize_t
i;
(void) LogMagickEvent(PixelEvent,GetMagickModule(),"%s[%.20g]",
image->filename,(double) image->number_channels);
for (i=0; i < (ssize_t) image->number_channels; i++)
{
char
traits[MagickPathExtent];
const char
*name;
PixelChannel
channel;
switch (GetPixelChannelChannel(image,i))
{
case RedPixelChannel:
{
name="red";
if (image->colorspace == CMYKColorspace)
name="cyan";
if (image->colorspace == GRAYColorspace)
name="gray";
break;
}
case GreenPixelChannel:
{
name="green";
if (image->colorspace == CMYKColorspace)
name="magenta";
break;
}
case BluePixelChannel:
{
name="blue";
if (image->colorspace == CMYKColorspace)
name="yellow";
break;
}
case BlackPixelChannel:
{
name="black";
if (image->storage_class == PseudoClass)
name="index";
break;
}
case IndexPixelChannel:
{
name="index";
break;
}
case AlphaPixelChannel:
{
name="alpha";
break;
}
case ReadMaskPixelChannel:
{
name="read-mask";
break;
}
case WriteMaskPixelChannel:
{
name="write-mask";
break;
}
case MetaPixelChannel:
{
name="meta";
break;
}
default:
name="undefined";
}
channel=GetPixelChannelChannel(image,i);
*traits='\0';
if ((GetPixelChannelTraits(image,channel) & UpdatePixelTrait) != 0)
(void) ConcatenateMagickString(traits,"update,",MagickPathExtent);
if ((GetPixelChannelTraits(image,channel) & BlendPixelTrait) != 0)
(void) ConcatenateMagickString(traits,"blend,",MagickPathExtent);
if ((GetPixelChannelTraits(image,channel) & CopyPixelTrait) != 0)
(void) ConcatenateMagickString(traits,"copy,",MagickPathExtent);
if (*traits == '\0')
(void) ConcatenateMagickString(traits,"undefined,",MagickPathExtent);
traits[strlen(traits)-1]='\0';
(void) LogMagickEvent(PixelEvent,GetMagickModule()," %.20g: %s (%s)",
(double) i,name,traits);
}
}
MagickExport void InitializePixelChannelMap(Image *image)
{
PixelTrait
trait;
register ssize_t
i;
ssize_t
n;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
(void) ResetMagickMemory(image->channel_map,0,MaxPixelChannels*
sizeof(*image->channel_map));
trait=UpdatePixelTrait;
if (image->alpha_trait != UndefinedPixelTrait)
trait=(PixelTrait) (trait | BlendPixelTrait);
n=0;
if (image->colorspace == GRAYColorspace)
{
SetPixelChannelAttributes(image,BluePixelChannel,trait,n);
SetPixelChannelAttributes(image,GreenPixelChannel,trait,n);
SetPixelChannelAttributes(image,RedPixelChannel,trait,n++);
}
else
{
SetPixelChannelAttributes(image,RedPixelChannel,trait,n++);
SetPixelChannelAttributes(image,GreenPixelChannel,trait,n++);
SetPixelChannelAttributes(image,BluePixelChannel,trait,n++);
}
if (image->colorspace == CMYKColorspace)
SetPixelChannelAttributes(image,BlackPixelChannel,trait,n++);
if (image->alpha_trait != UndefinedPixelTrait)
SetPixelChannelAttributes(image,AlphaPixelChannel,CopyPixelTrait,n++);
if (image->storage_class == PseudoClass)
SetPixelChannelAttributes(image,IndexPixelChannel,CopyPixelTrait,n++);
if (image->read_mask != MagickFalse)
SetPixelChannelAttributes(image,ReadMaskPixelChannel,CopyPixelTrait,n++);
if (image->write_mask != MagickFalse)
SetPixelChannelAttributes(image,WriteMaskPixelChannel,CopyPixelTrait,n++);
assert((n+image->number_meta_channels) < MaxPixelChannels);
for (i=0; i < (ssize_t) image->number_meta_channels; i++)
SetPixelChannelAttributes(image,(PixelChannel) (MetaPixelChannel+i),
CopyPixelTrait,n++);
image->number_channels=(size_t) n;
if (image->debug != MagickFalse)
LogPixelChannels(image);
SetImageChannelMask(image,image->channel_mask);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I n t e r p o l a t e P i x e l C h a n n e l %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% InterpolatePixelChannel() applies a pixel interpolation method between a
% floating point coordinate and the pixels surrounding that coordinate. No
% pixel area resampling, or scaling of the result is performed.
%
% Interpolation is restricted to just the specified channel.
%
% The format of the InterpolatePixelChannel method is:
%
% MagickBooleanType InterpolatePixelChannel(const Image *image,
% const CacheView *image_view,const PixelChannel channel,
% const PixelInterpolateMethod method,const double x,const double y,
% double *pixel,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o image_view: the image view.
%
% o channel: the pixel channel to interpolate.
%
% o method: the pixel color interpolation method.
%
% o x,y: A double representing the current (x,y) position of the pixel.
%
% o pixel: return the interpolated pixel here.
%
% o exception: return any errors or warnings in this structure.
%
*/
static inline void CatromWeights(const double x,double (*weights)[4])
{
double
alpha,
beta,
gamma;
/*
Nicolas Robidoux' 10 flops (4* + 5- + 1+) refactoring of the computation
of the standard four 1D Catmull-Rom weights. The sampling location is
assumed between the second and third input pixel locations, and x is the
position relative to the second input pixel location. Formulas originally
derived for the VIPS (Virtual Image Processing System) library.
*/
alpha=(double) 1.0-x;
beta=(double) (-0.5)*x*alpha;
(*weights)[0]=alpha*beta;
(*weights)[3]=x*beta;
/*
The following computation of the inner weights from the outer ones work
for all Keys cubics.
*/
gamma=(*weights)[3]-(*weights)[0];
(*weights)[1]=alpha-(*weights)[0]+gamma;
(*weights)[2]=x-(*weights)[3]-gamma;
}
static inline void SplineWeights(const double x,double (*weights)[4])
{
double
alpha,
beta;
/*
Nicolas Robidoux' 12 flops (6* + 5- + 1+) refactoring of the computation
of the standard four 1D cubic B-spline smoothing weights. The sampling
location is assumed between the second and third input pixel locations,
and x is the position relative to the second input pixel location.
*/
alpha=(double) 1.0-x;
(*weights)[3]=(double) (1.0/6.0)*x*x*x;
(*weights)[0]=(double) (1.0/6.0)*alpha*alpha*alpha;
beta=(*weights)[3]-(*weights)[0];
(*weights)[1]=alpha-(*weights)[0]+beta;
(*weights)[2]=x-(*weights)[3]-beta;
}
static inline double MeshInterpolate(const PointInfo *delta,const double p,
const double x,const double y)
{
return(delta->x*x+delta->y*y+(1.0-delta->x-delta->y)*p);
}
/*
static inline ssize_t NearestNeighbor(const double x)
{
if (x >= 0.0)
return((ssize_t) (x+0.5));
return((ssize_t) (x-0.5));
}
*/
MagickExport MagickBooleanType InterpolatePixelChannel(const Image *image,
const CacheView *image_view,const PixelChannel channel,
const PixelInterpolateMethod method,const double x,const double y,
double *pixel,ExceptionInfo *exception)
{
double
alpha[16],
gamma,
pixels[16];
MagickBooleanType
status;
PixelInterpolateMethod
interpolate;
PixelTrait
traits;
register const Quantum
*p;
register ssize_t
i;
ssize_t
x_offset,
y_offset;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
assert(image_view != (CacheView *) NULL);
status=MagickTrue;
*pixel=0.0;
traits=GetPixelChannelTraits(image,channel);
x_offset=(ssize_t) floor(x);
y_offset=(ssize_t) floor(y);
interpolate=method;
if (interpolate == UndefinedInterpolatePixel)
interpolate=image->interpolate;
switch (interpolate)
{
case AverageInterpolatePixel: /* nearest 4 neighbours */
case Average9InterpolatePixel: /* nearest 9 neighbours */
case Average16InterpolatePixel: /* nearest 16 neighbours */
{
ssize_t
count;
count=2; /* size of the area to average - default nearest 4 */
if (interpolate == Average9InterpolatePixel)
{
count=3;
x_offset=(ssize_t) (floor(x+0.5)-1);
y_offset=(ssize_t) (floor(y+0.5)-1);
}
else
if (interpolate == Average16InterpolatePixel)
{
count=4;
x_offset--;
y_offset--;
}
p=GetCacheViewVirtualPixels(image_view,x_offset,y_offset,(size_t) count,
(size_t) count,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
count*=count; /* Number of pixels to average */
if ((traits & BlendPixelTrait) == 0)
for (i=0; i < (ssize_t) count; i++)
{
alpha[i]=1.0;
pixels[i]=(double) p[i*GetPixelChannels(image)+channel];
}
else
for (i=0; i < (ssize_t) count; i++)
{
alpha[i]=QuantumScale*GetPixelAlpha(image,p+i*
GetPixelChannels(image));
pixels[i]=alpha[i]*p[i*GetPixelChannels(image)+channel];
}
for (i=0; i < (ssize_t) count; i++)
{
gamma=PerceptibleReciprocal(alpha[i])/count;
*pixel+=gamma*pixels[i];
}
break;
}
case BilinearInterpolatePixel:
default:
{
PointInfo
delta,
epsilon;
p=GetCacheViewVirtualPixels(image_view,x_offset,y_offset,2,2,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
if ((traits & BlendPixelTrait) == 0)
for (i=0; i < 4; i++)
{
alpha[i]=1.0;
pixels[i]=(double) p[i*GetPixelChannels(image)+channel];
}
else
for (i=0; i < 4; i++)
{
alpha[i]=QuantumScale*GetPixelAlpha(image,p+i*
GetPixelChannels(image));
pixels[i]=alpha[i]*p[i*GetPixelChannels(image)+channel];
}
delta.x=x-x_offset;
delta.y=y-y_offset;
epsilon.x=1.0-delta.x;
epsilon.y=1.0-delta.y;
gamma=((epsilon.y*(epsilon.x*alpha[0]+delta.x*alpha[1])+delta.y*
(epsilon.x*alpha[2]+delta.x*alpha[3])));
gamma=PerceptibleReciprocal(gamma);
*pixel=gamma*(epsilon.y*(epsilon.x*pixels[0]+delta.x*pixels[1])+delta.y*
(epsilon.x*pixels[2]+delta.x*pixels[3]));
break;
}
case BlendInterpolatePixel:
{
p=GetCacheViewVirtualPixels(image_view,x_offset,y_offset,2,2,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
if ((traits & BlendPixelTrait) == 0)
for (i=0; i < 4; i++)
{
alpha[i]=1.0;
pixels[i]=(MagickRealType) p[i*GetPixelChannels(image)+channel];
}
else
for (i=0; i < 4; i++)
{
alpha[i]=QuantumScale*GetPixelAlpha(image,p+i*
GetPixelChannels(image));
pixels[i]=alpha[i]*p[i*GetPixelChannels(image)+channel];
}
gamma=1.0; /* number of pixels blended together (its variable) */
for (i=0; i <= 1L; i++) {
if ((y-y_offset) >= 0.75)
{
alpha[i]=alpha[i+2]; /* take right pixels */
pixels[i]=pixels[i+2];
}
else
if ((y-y_offset) > 0.25)
{
gamma=2.0; /* blend both pixels in row */
alpha[i]+=alpha[i+2]; /* add up alpha weights */
pixels[i]+=pixels[i+2];
}
}
if ((x-x_offset) >= 0.75)
{
alpha[0]=alpha[1]; /* take bottom row blend */
pixels[0]=pixels[1];
}
else
if ((x-x_offset) > 0.25)
{
gamma*=2.0; /* blend both rows */
alpha[0]+=alpha[1]; /* add up alpha weights */
pixels[0]+=pixels[1];
}
if (channel != AlphaPixelChannel)
gamma=PerceptibleReciprocal(alpha[0]); /* (color) 1/alpha_weights */
else
gamma=PerceptibleReciprocal(gamma); /* (alpha) 1/number_of_pixels */
*pixel=gamma*pixels[0];
break;
}
case CatromInterpolatePixel:
{
double
cx[4],
cy[4];
p=GetCacheViewVirtualPixels(image_view,x_offset-1,y_offset-1,4,4,
exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
if ((traits & BlendPixelTrait) == 0)
for (i=0; i < 16; i++)
{
alpha[i]=1.0;
pixels[i]=(double) p[i*GetPixelChannels(image)+channel];
}
else
for (i=0; i < 16; i++)
{
alpha[i]=QuantumScale*GetPixelAlpha(image,p+i*
GetPixelChannels(image));
pixels[i]=alpha[i]*p[i*GetPixelChannels(image)+channel];
}
CatromWeights((double) (x-x_offset),&cx);
CatromWeights((double) (y-y_offset),&cy);
gamma=(channel == AlphaPixelChannel ? (double) 1.0 :
PerceptibleReciprocal(cy[0]*(cx[0]*alpha[0]+cx[1]*alpha[1]+cx[2]*
alpha[2]+cx[3]*alpha[3])+cy[1]*(cx[0]*alpha[4]+cx[1]*alpha[5]+cx[2]*
alpha[6]+cx[3]*alpha[7])+cy[2]*(cx[0]*alpha[8]+cx[1]*alpha[9]+cx[2]*
alpha[10]+cx[3]*alpha[11])+cy[3]*(cx[0]*alpha[12]+cx[1]*alpha[13]+
cx[2]*alpha[14]+cx[3]*alpha[15])));
*pixel=gamma*(cy[0]*(cx[0]*pixels[0]+cx[1]*pixels[1]+cx[2]*pixels[2]+
cx[3]*pixels[3])+cy[1]*(cx[0]*pixels[4]+cx[1]*pixels[5]+cx[2]*
pixels[6]+cx[3]*pixels[7])+cy[2]*(cx[0]*pixels[8]+cx[1]*pixels[9]+
cx[2]*pixels[10]+cx[3]*pixels[11])+cy[3]*(cx[0]*pixels[12]+cx[1]*
pixels[13]+cx[2]*pixels[14]+cx[3]*pixels[15]));
break;
}
case IntegerInterpolatePixel:
{
p=GetCacheViewVirtualPixels(image_view,x_offset,y_offset,1,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
*pixel=(double) GetPixelChannel(image,channel,p);
break;
}
case NearestInterpolatePixel:
{
x_offset=(ssize_t) floor(x+0.5);
y_offset=(ssize_t) floor(y+0.5);
p=GetCacheViewVirtualPixels(image_view,x_offset,y_offset,1,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
*pixel=(double) GetPixelChannel(image,channel,p);
break;
}
case MeshInterpolatePixel:
{
PointInfo
delta,
luminance;
p=GetCacheViewVirtualPixels(image_view,x_offset,y_offset,2,2,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
if ((traits & BlendPixelTrait) == 0)
for (i=0; i < 4; i++)
{
alpha[i]=1.0;
pixels[i]=(double) p[i*GetPixelChannels(image)+channel];
}
else
for (i=0; i < 4; i++)
{
alpha[i]=QuantumScale*GetPixelAlpha(image,p+i*
GetPixelChannels(image));
pixels[i]=alpha[i]*p[i*GetPixelChannels(image)+channel];
}
delta.x=x-x_offset;
delta.y=y-y_offset;
luminance.x=GetPixelLuma(image,p)-(double)
GetPixelLuma(image,p+3*GetPixelChannels(image));
luminance.y=GetPixelLuma(image,p+GetPixelChannels(image))-(double)
GetPixelLuma(image,p+2*GetPixelChannels(image));
if (fabs(luminance.x) < fabs(luminance.y))
{
/*
Diagonal 0-3 NW-SE.
*/
if (delta.x <= delta.y)
{
/*
Bottom-left triangle (pixel: 2, diagonal: 0-3).
*/
delta.y=1.0-delta.y;
gamma=MeshInterpolate(&delta,alpha[2],alpha[3],alpha[0]);
gamma=PerceptibleReciprocal(gamma);
*pixel=gamma*MeshInterpolate(&delta,pixels[2],pixels[3],
pixels[0]);
}
else
{
/*
Top-right triangle (pixel: 1, diagonal: 0-3).
*/
delta.x=1.0-delta.x;
gamma=MeshInterpolate(&delta,alpha[1],alpha[0],alpha[3]);
gamma=PerceptibleReciprocal(gamma);
*pixel=gamma*MeshInterpolate(&delta,pixels[1],pixels[0],
pixels[3]);
}
}
else
{
/*
Diagonal 1-2 NE-SW.
*/
if (delta.x <= (1.0-delta.y))
{
/*
Top-left triangle (pixel: 0, diagonal: 1-2).
*/
gamma=MeshInterpolate(&delta,alpha[0],alpha[1],alpha[2]);
gamma=PerceptibleReciprocal(gamma);
*pixel=gamma*MeshInterpolate(&delta,pixels[0],pixels[1],
pixels[2]);
}
else
{
/*
Bottom-right triangle (pixel: 3, diagonal: 1-2).
*/
delta.x=1.0-delta.x;
delta.y=1.0-delta.y;
gamma=MeshInterpolate(&delta,alpha[3],alpha[2],alpha[1]);
gamma=PerceptibleReciprocal(gamma);
*pixel=gamma*MeshInterpolate(&delta,pixels[3],pixels[2],
pixels[1]);
}
}
break;
}
case SplineInterpolatePixel:
{
double
cx[4],
cy[4];
p=GetCacheViewVirtualPixels(image_view,x_offset-1,y_offset-1,4,4,
exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
if ((traits & BlendPixelTrait) == 0)
for (i=0; i < 16; i++)
{
alpha[i]=1.0;
pixels[i]=(double) p[i*GetPixelChannels(image)+channel];
}
else
for (i=0; i < 16; i++)
{
alpha[i]=QuantumScale*GetPixelAlpha(image,p+i*
GetPixelChannels(image));
pixels[i]=alpha[i]*p[i*GetPixelChannels(image)+channel];
}
SplineWeights((double) (x-x_offset),&cx);
SplineWeights((double) (y-y_offset),&cy);
gamma=(channel == AlphaPixelChannel ? (double) 1.0 :
PerceptibleReciprocal(cy[0]*(cx[0]*alpha[0]+cx[1]*alpha[1]+cx[2]*
alpha[2]+cx[3]*alpha[3])+cy[1]*(cx[0]*alpha[4]+cx[1]*alpha[5]+cx[2]*
alpha[6]+cx[3]*alpha[7])+cy[2]*(cx[0]*alpha[8]+cx[1]*alpha[9]+cx[2]*
alpha[10]+cx[3]*alpha[11])+cy[3]*(cx[0]*alpha[12]+cx[1]*alpha[13]+
cx[2]*alpha[14]+cx[3]*alpha[15])));
*pixel=gamma*(cy[0]*(cx[0]*pixels[0]+cx[1]*pixels[1]+cx[2]*pixels[2]+
cx[3]*pixels[3])+cy[1]*(cx[0]*pixels[4]+cx[1]*pixels[5]+cx[2]*
pixels[6]+cx[3]*pixels[7])+cy[2]*(cx[0]*pixels[8]+cx[1]*pixels[9]+
cx[2]*pixels[10]+cx[3]*pixels[11])+cy[3]*(cx[0]*pixels[12]+cx[1]*
pixels[13]+cx[2]*pixels[14]+cx[3]*pixels[15]));
break;
}
}
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I n t e r p o l a t e P i x e l C h a n n e l s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% InterpolatePixelChannels() applies a pixel interpolation method between a
% floating point coordinate and the pixels surrounding that coordinate. No
% pixel area resampling, or scaling of the result is performed.
%
% Interpolation is restricted to just the current channel setting of the
% destination image into which the color is to be stored
%
% The format of the InterpolatePixelChannels method is:
%
% MagickBooleanType InterpolatePixelChannels(const Image *source,
% const CacheView *source_view,const Image *destination,
% const PixelInterpolateMethod method,const double x,const double y,
% Quantum *pixel,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o source: the source.
%
% o source_view: the source view.
%
% o destination: the destination image, for the interpolated color
%
% o method: the pixel color interpolation method.
%
% o x,y: A double representing the current (x,y) position of the pixel.
%
% o pixel: return the interpolated pixel here.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType InterpolatePixelChannels(const Image *source,
const CacheView *source_view,const Image *destination,
const PixelInterpolateMethod method,const double x,const double y,
Quantum *pixel,ExceptionInfo *exception)
{
MagickBooleanType
status;
double
alpha[16],
gamma,
pixels[16];
register const Quantum
*p;
register ssize_t
i;
ssize_t
x_offset,
y_offset;
PixelInterpolateMethod
interpolate;
assert(source != (Image *) NULL);
assert(source->signature == MagickCoreSignature);
assert(source_view != (CacheView *) NULL);
status=MagickTrue;
x_offset=(ssize_t) floor(x);
y_offset=(ssize_t) floor(y);
interpolate=method;
if (interpolate == UndefinedInterpolatePixel)
interpolate=source->interpolate;
switch (interpolate)
{
case AverageInterpolatePixel: /* nearest 4 neighbours */
case Average9InterpolatePixel: /* nearest 9 neighbours */
case Average16InterpolatePixel: /* nearest 16 neighbours */
{
ssize_t
count;
count=2; /* size of the area to average - default nearest 4 */
if (interpolate == Average9InterpolatePixel)
{
count=3;
x_offset=(ssize_t) (floor(x+0.5)-1);
y_offset=(ssize_t) (floor(y+0.5)-1);
}
else
if (interpolate == Average16InterpolatePixel)
{
count=4;
x_offset--;
y_offset--;
}
p=GetCacheViewVirtualPixels(source_view,x_offset,y_offset,(size_t) count,
(size_t) count,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
count*=count; /* Number of pixels to average */
for (i=0; i < (ssize_t) GetPixelChannels(source); i++)
{
double
sum;
register ssize_t
j;
PixelChannel channel=GetPixelChannelChannel(source,i);
PixelTrait traits=GetPixelChannelTraits(source,channel);
PixelTrait destination_traits=GetPixelChannelTraits(destination,
channel);
if ((traits == UndefinedPixelTrait) ||
(destination_traits == UndefinedPixelTrait))
continue;
for (j=0; j < (ssize_t) count; j++)
pixels[j]=(double) p[j*GetPixelChannels(source)+i];
sum=0.0;
if ((traits & BlendPixelTrait) == 0)
{
for (j=0; j < (ssize_t) count; j++)
sum+=pixels[j];
sum/=count;
SetPixelChannel(destination,channel,ClampToQuantum(sum),pixel);
continue;
}
for (j=0; j < (ssize_t) count; j++)
{
alpha[j]=QuantumScale*GetPixelAlpha(source,p+j*
GetPixelChannels(source));
pixels[j]*=alpha[j];
gamma=PerceptibleReciprocal(alpha[j]);
sum+=gamma*pixels[j];
}
sum/=count;
SetPixelChannel(destination,channel,ClampToQuantum(sum),pixel);
}
break;
}
case BilinearInterpolatePixel:
default:
{
p=GetCacheViewVirtualPixels(source_view,x_offset,y_offset,2,2,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (i=0; i < (ssize_t) GetPixelChannels(source); i++)
{
PointInfo
delta,
epsilon;
PixelChannel channel=GetPixelChannelChannel(source,i);
PixelTrait traits=GetPixelChannelTraits(source,channel);
PixelTrait destination_traits=GetPixelChannelTraits(destination,
channel);
if ((traits == UndefinedPixelTrait) ||
(destination_traits == UndefinedPixelTrait))
continue;
delta.x=x-x_offset;
delta.y=y-y_offset;
epsilon.x=1.0-delta.x;
epsilon.y=1.0-delta.y;
pixels[0]=(double) p[i];
pixels[1]=(double) p[GetPixelChannels(source)+i];
pixels[2]=(double) p[2*GetPixelChannels(source)+i];
pixels[3]=(double) p[3*GetPixelChannels(source)+i];
if ((traits & BlendPixelTrait) == 0)
{
gamma=((epsilon.y*(epsilon.x+delta.x)+delta.y*(epsilon.x+delta.x)));
gamma=PerceptibleReciprocal(gamma);
SetPixelChannel(destination,channel,ClampToQuantum(gamma*(epsilon.y*
(epsilon.x*pixels[0]+delta.x*pixels[1])+delta.y*(epsilon.x*
pixels[2]+delta.x*pixels[3]))),pixel);
continue;
}
alpha[0]=QuantumScale*GetPixelAlpha(source,p);
alpha[1]=QuantumScale*GetPixelAlpha(source,p+GetPixelChannels(source));
alpha[2]=QuantumScale*GetPixelAlpha(source,p+2*
GetPixelChannels(source));
alpha[3]=QuantumScale*GetPixelAlpha(source,p+3*
GetPixelChannels(source));
pixels[0]*=alpha[0];
pixels[1]*=alpha[1];
pixels[2]*=alpha[2];
pixels[3]*=alpha[3];
gamma=((epsilon.y*(epsilon.x*alpha[0]+delta.x*alpha[1])+delta.y*
(epsilon.x*alpha[2]+delta.x*alpha[3])));
gamma=PerceptibleReciprocal(gamma);
SetPixelChannel(destination,channel,ClampToQuantum(gamma*(epsilon.y*
(epsilon.x*pixels[0]+delta.x*pixels[1])+delta.y*(epsilon.x*pixels[2]+
delta.x*pixels[3]))),pixel);
}
break;
}
case BlendInterpolatePixel:
{
p=GetCacheViewVirtualPixels(source_view,x_offset,y_offset,2,2,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (i=0; i < (ssize_t) GetPixelChannels(source); i++)
{
register ssize_t
j;
PixelChannel channel=GetPixelChannelChannel(source,i);
PixelTrait traits=GetPixelChannelTraits(source,channel);
PixelTrait destination_traits=GetPixelChannelTraits(destination,
channel);
if ((traits == UndefinedPixelTrait) ||
(destination_traits == UndefinedPixelTrait))
continue;
if ((traits & BlendPixelTrait) == 0)
for (j=0; j < 4; j++)
{
alpha[j]=1.0;
pixels[j]=(MagickRealType) p[j*GetPixelChannels(source)+channel];
}
else
for (j=0; j < 4; j++)
{
alpha[j]=QuantumScale*GetPixelAlpha(source,p+j*
GetPixelChannels(source));
pixels[j]=alpha[j]*p[j*GetPixelChannels(source)+channel];
}
gamma=1.0; /* number of pixels blended together (its variable) */
for (j=0; j <= 1L; j++)
{
if ((y-y_offset) >= 0.75)
{
alpha[j]=alpha[j+2]; /* take right pixels */
pixels[j]=pixels[j+2];
}
else
if ((y-y_offset) > 0.25)
{
gamma=2.0; /* blend both pixels in row */
alpha[j]+=alpha[j+2]; /* add up alpha weights */
pixels[j]+=pixels[j+2];
}
}
if ((x-x_offset) >= 0.75)
{
alpha[0]=alpha[1]; /* take bottom row blend */
pixels[0]=pixels[1];
}
else
if ((x-x_offset) > 0.25)
{
gamma*=2.0; /* blend both rows */
alpha[0]+=alpha[1]; /* add up alpha weights */
pixels[0]+=pixels[1];
}
if ((traits & BlendPixelTrait) == 0)
gamma=PerceptibleReciprocal(alpha[0]); /* (color) 1/alpha_weights */
else
gamma=PerceptibleReciprocal(gamma); /* (alpha) 1/number_of_pixels */
SetPixelChannel(destination,channel,ClampToQuantum(gamma*pixels[0]),
pixel);
}
break;
}
case CatromInterpolatePixel:
{
double
cx[4],
cy[4];
p=GetCacheViewVirtualPixels(source_view,x_offset-1,y_offset-1,4,4,
exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (i=0; i < (ssize_t) GetPixelChannels(source); i++)
{
register ssize_t
j;
PixelChannel channel=GetPixelChannelChannel(source,i);
PixelTrait traits=GetPixelChannelTraits(source,channel);
PixelTrait destination_traits=GetPixelChannelTraits(destination,
channel);
if ((traits == UndefinedPixelTrait) ||
(destination_traits == UndefinedPixelTrait))
continue;
if ((traits & BlendPixelTrait) == 0)
for (j=0; j < 16; j++)
{
alpha[j]=1.0;
pixels[j]=(double) p[j*GetPixelChannels(source)+i];
}
else
for (j=0; j < 16; j++)
{
alpha[j]=QuantumScale*GetPixelAlpha(source,p+j*
GetPixelChannels(source));
pixels[j]=alpha[j]*p[j*GetPixelChannels(source)+i];
}
CatromWeights((double) (x-x_offset),&cx);
CatromWeights((double) (y-y_offset),&cy);
gamma=((traits & BlendPixelTrait) ? (double) (1.0) :
PerceptibleReciprocal(cy[0]*(cx[0]*alpha[0]+cx[1]*alpha[1]+cx[2]*
alpha[2]+cx[3]*alpha[3])+cy[1]*(cx[0]*alpha[4]+cx[1]*alpha[5]+cx[2]*
alpha[6]+cx[3]*alpha[7])+cy[2]*(cx[0]*alpha[8]+cx[1]*alpha[9]+cx[2]*
alpha[10]+cx[3]*alpha[11])+cy[3]*(cx[0]*alpha[12]+cx[1]*alpha[13]+
cx[2]*alpha[14]+cx[3]*alpha[15])));
SetPixelChannel(destination,channel,ClampToQuantum(gamma*(cy[0]*(cx[0]*
pixels[0]+cx[1]*pixels[1]+cx[2]*pixels[2]+cx[3]*pixels[3])+cy[1]*
(cx[0]*pixels[4]+cx[1]*pixels[5]+cx[2]*pixels[6]+cx[3]*pixels[7])+
cy[2]*(cx[0]*pixels[8]+cx[1]*pixels[9]+cx[2]*pixels[10]+cx[3]*
pixels[11])+cy[3]*(cx[0]*pixels[12]+cx[1]*pixels[13]+cx[2]*
pixels[14]+cx[3]*pixels[15]))),pixel);
}
break;
}
case IntegerInterpolatePixel:
{
p=GetCacheViewVirtualPixels(source_view,x_offset,y_offset,1,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (i=0; i < (ssize_t) GetPixelChannels(source); i++)
{
PixelChannel channel=GetPixelChannelChannel(source,i);
PixelTrait traits=GetPixelChannelTraits(source,channel);
PixelTrait destination_traits=GetPixelChannelTraits(destination,
channel);
if ((traits == UndefinedPixelTrait) ||
(destination_traits == UndefinedPixelTrait))
continue;
SetPixelChannel(destination,channel,p[i],pixel);
}
break;
}
case NearestInterpolatePixel:
{
x_offset=(ssize_t) floor(x+0.5);
y_offset=(ssize_t) floor(y+0.5);
p=GetCacheViewVirtualPixels(source_view,x_offset,y_offset,1,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (i=0; i < (ssize_t) GetPixelChannels(source); i++)
{
PixelChannel channel=GetPixelChannelChannel(source,i);
PixelTrait traits=GetPixelChannelTraits(source,channel);
PixelTrait destination_traits=GetPixelChannelTraits(destination,
channel);
if ((traits == UndefinedPixelTrait) ||
(destination_traits == UndefinedPixelTrait))
continue;
SetPixelChannel(destination,channel,p[i],pixel);
}
break;
}
case MeshInterpolatePixel:
{
p=GetCacheViewVirtualPixels(source_view,x_offset,y_offset,2,2,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (i=0; i < (ssize_t) GetPixelChannels(source); i++)
{
PointInfo
delta,
luminance;
PixelChannel channel=GetPixelChannelChannel(source,i);
PixelTrait traits=GetPixelChannelTraits(source,channel);
PixelTrait destination_traits=GetPixelChannelTraits(destination,
channel);
if ((traits == UndefinedPixelTrait) ||
(destination_traits == UndefinedPixelTrait))
continue;
pixels[0]=(double) p[i];
pixels[1]=(double) p[GetPixelChannels(source)+i];
pixels[2]=(double) p[2*GetPixelChannels(source)+i];
pixels[3]=(double) p[3*GetPixelChannels(source)+i];
if ((traits & BlendPixelTrait) == 0)
{
alpha[0]=1.0;
alpha[1]=1.0;
alpha[2]=1.0;
alpha[3]=1.0;
}
else
{
alpha[0]=QuantumScale*GetPixelAlpha(source,p);
alpha[1]=QuantumScale*GetPixelAlpha(source,p+
GetPixelChannels(source));
alpha[2]=QuantumScale*GetPixelAlpha(source,p+2*
GetPixelChannels(source));
alpha[3]=QuantumScale*GetPixelAlpha(source,p+3*
GetPixelChannels(source));
}
delta.x=x-x_offset;
delta.y=y-y_offset;
luminance.x=fabs((double) (GetPixelLuma(source,p)-
GetPixelLuma(source,p+3*GetPixelChannels(source))));
luminance.y=fabs((double) (GetPixelLuma(source,p+
GetPixelChannels(source))-GetPixelLuma(source,p+2*
GetPixelChannels(source))));
if (luminance.x < luminance.y)
{
/*
Diagonal 0-3 NW-SE.
*/
if (delta.x <= delta.y)
{
/*
Bottom-left triangle (pixel: 2, diagonal: 0-3).
*/
delta.y=1.0-delta.y;
gamma=MeshInterpolate(&delta,alpha[2],alpha[3],alpha[0]);
gamma=PerceptibleReciprocal(gamma);
SetPixelChannel(destination,channel,ClampToQuantum(gamma*
MeshInterpolate(&delta,pixels[2],pixels[3],pixels[0])),pixel);
}
else
{
/*
Top-right triangle (pixel: 1, diagonal: 0-3).
*/
delta.x=1.0-delta.x;
gamma=MeshInterpolate(&delta,alpha[1],alpha[0],alpha[3]);
gamma=PerceptibleReciprocal(gamma);
SetPixelChannel(destination,channel,ClampToQuantum(gamma*
MeshInterpolate(&delta,pixels[1],pixels[0],pixels[3])),pixel);
}
}
else
{
/*
Diagonal 1-2 NE-SW.
*/
if (delta.x <= (1.0-delta.y))
{
/*
Top-left triangle (pixel: 0, diagonal: 1-2).
*/
gamma=MeshInterpolate(&delta,alpha[0],alpha[1],alpha[2]);
gamma=PerceptibleReciprocal(gamma);
SetPixelChannel(destination,channel,ClampToQuantum(gamma*
MeshInterpolate(&delta,pixels[0],pixels[1],pixels[2])),pixel);
}
else
{
/*
Bottom-right triangle (pixel: 3, diagonal: 1-2).
*/
delta.x=1.0-delta.x;
delta.y=1.0-delta.y;
gamma=MeshInterpolate(&delta,alpha[3],alpha[2],alpha[1]);
gamma=PerceptibleReciprocal(gamma);
SetPixelChannel(destination,channel,ClampToQuantum(gamma*
MeshInterpolate(&delta,pixels[3],pixels[2],pixels[1])),pixel);
}
}
}
break;
}
case SplineInterpolatePixel:
{
double
cx[4],
cy[4];
p=GetCacheViewVirtualPixels(source_view,x_offset-1,y_offset-1,4,4,
exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (i=0; i < (ssize_t) GetPixelChannels(source); i++)
{
register ssize_t
j;
PixelChannel channel=GetPixelChannelChannel(source,i);
PixelTrait traits=GetPixelChannelTraits(source,channel);
PixelTrait destination_traits=GetPixelChannelTraits(destination,
channel);
if ((traits == UndefinedPixelTrait) ||
(destination_traits == UndefinedPixelTrait))
continue;
if ((traits & BlendPixelTrait) == 0)
for (j=0; j < 16; j++)
{
alpha[j]=1.0;
pixels[j]=(double) p[j*GetPixelChannels(source)+i];
}
else
for (j=0; j < 16; j++)
{
alpha[j]=QuantumScale*GetPixelAlpha(source,p+j*
GetPixelChannels(source));
pixels[j]=alpha[j]*p[j*GetPixelChannels(source)+i];
}
SplineWeights((double) (x-x_offset),&cx);
SplineWeights((double) (y-y_offset),&cy);
gamma=((traits & BlendPixelTrait) ? (double) (1.0) :
PerceptibleReciprocal(cy[0]*(cx[0]*alpha[0]+cx[1]*alpha[1]+cx[2]*
alpha[2]+cx[3]*alpha[3])+cy[1]*(cx[0]*alpha[4]+cx[1]*alpha[5]+cx[2]*
alpha[6]+cx[3]*alpha[7])+cy[2]*(cx[0]*alpha[8]+cx[1]*alpha[9]+cx[2]*
alpha[10]+cx[3]*alpha[11])+cy[3]*(cx[0]*alpha[12]+cx[1]*alpha[13]+
cx[2]*alpha[14]+cx[3]*alpha[15])));
SetPixelChannel(destination,channel,ClampToQuantum(gamma*(cy[0]*(cx[0]*
pixels[0]+cx[1]*pixels[1]+cx[2]*pixels[2]+cx[3]*pixels[3])+cy[1]*
(cx[0]*pixels[4]+cx[1]*pixels[5]+cx[2]*pixels[6]+cx[3]*pixels[7])+
cy[2]*(cx[0]*pixels[8]+cx[1]*pixels[9]+cx[2]*pixels[10]+cx[3]*
pixels[11])+cy[3]*(cx[0]*pixels[12]+cx[1]*pixels[13]+cx[2]*
pixels[14]+cx[3]*pixels[15]))),pixel);
}
break;
}
}
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I n t e r p o l a t e P i x e l I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% InterpolatePixelInfo() applies a pixel interpolation method between a
% floating point coordinate and the pixels surrounding that coordinate. No
% pixel area resampling, or scaling of the result is performed.
%
% Interpolation is restricted to just RGBKA channels.
%
% The format of the InterpolatePixelInfo method is:
%
% MagickBooleanType InterpolatePixelInfo(const Image *image,
% const CacheView *image_view,const PixelInterpolateMethod method,
% const double x,const double y,PixelInfo *pixel,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o image_view: the image view.
%
% o method: the pixel color interpolation method.
%
% o x,y: A double representing the current (x,y) position of the pixel.
%
% o pixel: return the interpolated pixel here.
%
% o exception: return any errors or warnings in this structure.
%
*/
static inline void AlphaBlendPixelInfo(const Image *image,
const Quantum *pixel,PixelInfo *pixel_info,double *alpha)
{
if (image->alpha_trait == UndefinedPixelTrait)
{
*alpha=1.0;
pixel_info->red=(double) GetPixelRed(image,pixel);
pixel_info->green=(double) GetPixelGreen(image,pixel);
pixel_info->blue=(double) GetPixelBlue(image,pixel);
pixel_info->black=0.0;
if (image->colorspace == CMYKColorspace)
pixel_info->black=(double) GetPixelBlack(image,pixel);
pixel_info->alpha=(double) GetPixelAlpha(image,pixel);
return;
}
*alpha=QuantumScale*GetPixelAlpha(image,pixel);
pixel_info->red=(*alpha*GetPixelRed(image,pixel));
pixel_info->green=(*alpha*GetPixelGreen(image,pixel));
pixel_info->blue=(*alpha*GetPixelBlue(image,pixel));
pixel_info->black=0.0;
if (image->colorspace == CMYKColorspace)
pixel_info->black=(*alpha*GetPixelBlack(image,pixel));
pixel_info->alpha=(double) GetPixelAlpha(image,pixel);
}
MagickExport MagickBooleanType InterpolatePixelInfo(const Image *image,
const CacheView *image_view,const PixelInterpolateMethod method,
const double x,const double y,PixelInfo *pixel,ExceptionInfo *exception)
{
MagickBooleanType
status;
double
alpha[16],
gamma;
PixelInfo
pixels[16];
register const Quantum
*p;
register ssize_t
i;
ssize_t
x_offset,
y_offset;
PixelInterpolateMethod
interpolate;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
assert(image_view != (CacheView *) NULL);
status=MagickTrue;
x_offset=(ssize_t) floor(x);
y_offset=(ssize_t) floor(y);
interpolate=method;
if (interpolate == UndefinedInterpolatePixel)
interpolate=image->interpolate;
(void) ResetMagickMemory(&pixels,0,sizeof(pixels));
switch (interpolate)
{
case AverageInterpolatePixel: /* nearest 4 neighbours */
case Average9InterpolatePixel: /* nearest 9 neighbours */
case Average16InterpolatePixel: /* nearest 16 neighbours */
{
ssize_t
count;
count=2; /* size of the area to average - default nearest 4 */
if (interpolate == Average9InterpolatePixel)
{
count=3;
x_offset=(ssize_t) (floor(x+0.5)-1);
y_offset=(ssize_t) (floor(y+0.5)-1);
}
else if (interpolate == Average16InterpolatePixel)
{
count=4;
x_offset--;
y_offset--;
}
p=GetCacheViewVirtualPixels(image_view,x_offset,y_offset,(size_t) count,
(size_t) count,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
pixel->red=0.0;
pixel->green=0.0;
pixel->blue=0.0;
pixel->black=0.0;
pixel->alpha=0.0;
count*=count; /* number of pixels - square of size */
for (i=0; i < (ssize_t) count; i++)
{
AlphaBlendPixelInfo(image,p,pixels,alpha);
gamma=PerceptibleReciprocal(alpha[0]);
pixel->red+=gamma*pixels[0].red;
pixel->green+=gamma*pixels[0].green;
pixel->blue+=gamma*pixels[0].blue;
pixel->black+=gamma*pixels[0].black;
pixel->alpha+=pixels[0].alpha;
p += GetPixelChannels(image);
}
gamma=1.0/count; /* average weighting of each pixel in area */
pixel->red*=gamma;
pixel->green*=gamma;
pixel->blue*=gamma;
pixel->black*=gamma;
pixel->alpha*=gamma;
break;
}
case BackgroundInterpolatePixel:
{
*pixel=image->background_color; /* Copy PixelInfo Structure */
break;
}
case BilinearInterpolatePixel:
default:
{
PointInfo
delta,
epsilon;
p=GetCacheViewVirtualPixels(image_view,x_offset,y_offset,2,2,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (i=0; i < 4L; i++)
AlphaBlendPixelInfo(image,p+i*GetPixelChannels(image),pixels+i,alpha+i);
delta.x=x-x_offset;
delta.y=y-y_offset;
epsilon.x=1.0-delta.x;
epsilon.y=1.0-delta.y;
gamma=((epsilon.y*(epsilon.x*alpha[0]+delta.x*alpha[1])+delta.y*
(epsilon.x*alpha[2]+delta.x*alpha[3])));
gamma=PerceptibleReciprocal(gamma);
pixel->red=gamma*(epsilon.y*(epsilon.x*pixels[0].red+delta.x*
pixels[1].red)+delta.y*(epsilon.x*pixels[2].red+delta.x*pixels[3].red));
pixel->green=gamma*(epsilon.y*(epsilon.x*pixels[0].green+delta.x*
pixels[1].green)+delta.y*(epsilon.x*pixels[2].green+delta.x*
pixels[3].green));
pixel->blue=gamma*(epsilon.y*(epsilon.x*pixels[0].blue+delta.x*
pixels[1].blue)+delta.y*(epsilon.x*pixels[2].blue+delta.x*
pixels[3].blue));
if (image->colorspace == CMYKColorspace)
pixel->black=gamma*(epsilon.y*(epsilon.x*pixels[0].black+delta.x*
pixels[1].black)+delta.y*(epsilon.x*pixels[2].black+delta.x*
pixels[3].black));
gamma=((epsilon.y*(epsilon.x+delta.x)+delta.y*(epsilon.x+delta.x)));
gamma=PerceptibleReciprocal(gamma);
pixel->alpha=gamma*(epsilon.y*(epsilon.x*pixels[0].alpha+delta.x*
pixels[1].alpha)+delta.y*(epsilon.x*pixels[2].alpha+delta.x*
pixels[3].alpha));
break;
}
case BlendInterpolatePixel:
{
p=GetCacheViewVirtualPixels(image_view,x_offset,y_offset,2,2,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (i=0; i < 4L; i++)
{
GetPixelInfoPixel(image,p+i*GetPixelChannels(image),pixels+i);
AlphaBlendPixelInfo(image,p+i*GetPixelChannels(image),pixels+i,alpha+i);
}
gamma=1.0; /* number of pixels blended together (its variable) */
for (i=0; i <= 1L; i++)
{
if ((y-y_offset) >= 0.75)
{
alpha[i]=alpha[i+2]; /* take right pixels */
pixels[i]=pixels[i+2];
}
else
if ((y-y_offset) > 0.25)
{
gamma=2.0; /* blend both pixels in row */
alpha[i]+=alpha[i+2]; /* add up alpha weights */
pixels[i].red+=pixels[i+2].red;
pixels[i].green+=pixels[i+2].green;
pixels[i].blue+=pixels[i+2].blue;
pixels[i].black+=pixels[i+2].black;
pixels[i].alpha+=pixels[i+2].alpha;
}
}
if ((x-x_offset) >= 0.75)
{
alpha[0]=alpha[1];
pixels[0]=pixels[1];
}
else
if ((x-x_offset) > 0.25)
{
gamma*=2.0; /* blend both rows */
alpha[0]+= alpha[1]; /* add up alpha weights */
pixels[0].red+=pixels[1].red;
pixels[0].green+=pixels[1].green;
pixels[0].blue+=pixels[1].blue;
pixels[0].black+=pixels[1].black;
pixels[0].alpha+=pixels[1].alpha;
}
gamma=1.0/gamma;
alpha[0]=PerceptibleReciprocal(alpha[0]);
pixel->red=alpha[0]*pixels[0].red;
pixel->green=alpha[0]*pixels[0].green; /* divide by sum of alpha */
pixel->blue=alpha[0]*pixels[0].blue;
pixel->black=alpha[0]*pixels[0].black;
pixel->alpha=gamma*pixels[0].alpha; /* divide by number of pixels */
break;
}
case CatromInterpolatePixel:
{
double
cx[4],
cy[4];
p=GetCacheViewVirtualPixels(image_view,x_offset-1,y_offset-1,4,4,
exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (i=0; i < 16L; i++)
AlphaBlendPixelInfo(image,p+i*GetPixelChannels(image),pixels+i,alpha+i);
CatromWeights((double) (x-x_offset),&cx);
CatromWeights((double) (y-y_offset),&cy);
pixel->red=(cy[0]*(cx[0]*pixels[0].red+cx[1]*pixels[1].red+cx[2]*
pixels[2].red+cx[3]*pixels[3].red)+cy[1]*(cx[0]*pixels[4].red+cx[1]*
pixels[5].red+cx[2]*pixels[6].red+cx[3]*pixels[7].red)+cy[2]*(cx[0]*
pixels[8].red+cx[1]*pixels[9].red+cx[2]*pixels[10].red+cx[3]*
pixels[11].red)+cy[3]*(cx[0]*pixels[12].red+cx[1]*pixels[13].red+cx[2]*
pixels[14].red+cx[3]*pixels[15].red));
pixel->green=(cy[0]*(cx[0]*pixels[0].green+cx[1]*pixels[1].green+cx[2]*
pixels[2].green+cx[3]*pixels[3].green)+cy[1]*(cx[0]*pixels[4].green+
cx[1]*pixels[5].green+cx[2]*pixels[6].green+cx[3]*pixels[7].green)+
cy[2]*(cx[0]*pixels[8].green+cx[1]*pixels[9].green+cx[2]*
pixels[10].green+cx[3]*pixels[11].green)+cy[3]*(cx[0]*
pixels[12].green+cx[1]*pixels[13].green+cx[2]*pixels[14].green+cx[3]*
pixels[15].green));
pixel->blue=(cy[0]*(cx[0]*pixels[0].blue+cx[1]*pixels[1].blue+cx[2]*
pixels[2].blue+cx[3]*pixels[3].blue)+cy[1]*(cx[0]*pixels[4].blue+cx[1]*
pixels[5].blue+cx[2]*pixels[6].blue+cx[3]*pixels[7].blue)+cy[2]*(cx[0]*
pixels[8].blue+cx[1]*pixels[9].blue+cx[2]*pixels[10].blue+cx[3]*
pixels[11].blue)+cy[3]*(cx[0]*pixels[12].blue+cx[1]*pixels[13].blue+
cx[2]*pixels[14].blue+cx[3]*pixels[15].blue));
if (image->colorspace == CMYKColorspace)
pixel->black=(cy[0]*(cx[0]*pixels[0].black+cx[1]*pixels[1].black+cx[2]*
pixels[2].black+cx[3]*pixels[3].black)+cy[1]*(cx[0]*pixels[4].black+
cx[1]*pixels[5].black+cx[2]*pixels[6].black+cx[3]*pixels[7].black)+
cy[2]*(cx[0]*pixels[8].black+cx[1]*pixels[9].black+cx[2]*
pixels[10].black+cx[3]*pixels[11].black)+cy[3]*(cx[0]*
pixels[12].black+cx[1]*pixels[13].black+cx[2]*pixels[14].black+cx[3]*
pixels[15].black));
pixel->alpha=(cy[0]*(cx[0]*pixels[0].alpha+cx[1]*pixels[1].alpha+cx[2]*
pixels[2].alpha+cx[3]*pixels[3].alpha)+cy[1]*(cx[0]*pixels[4].alpha+
cx[1]*pixels[5].alpha+cx[2]*pixels[6].alpha+cx[3]*pixels[7].alpha)+
cy[2]*(cx[0]*pixels[8].alpha+cx[1]*pixels[9].alpha+cx[2]*
pixels[10].alpha+cx[3]*pixels[11].alpha)+cy[3]*(cx[0]*pixels[12].alpha+
cx[1]*pixels[13].alpha+cx[2]*pixels[14].alpha+cx[3]*pixels[15].alpha));
break;
}
case IntegerInterpolatePixel:
{
p=GetCacheViewVirtualPixels(image_view,x_offset,y_offset,1,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
GetPixelInfoPixel(image,p,pixel);
break;
}
case MeshInterpolatePixel:
{
PointInfo
delta,
luminance;
p=GetCacheViewVirtualPixels(image_view,x_offset,y_offset,2,2,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
delta.x=x-x_offset;
delta.y=y-y_offset;
luminance.x=GetPixelLuma(image,p)-(double)
GetPixelLuma(image,p+3*GetPixelChannels(image));
luminance.y=GetPixelLuma(image,p+GetPixelChannels(image))-(double)
GetPixelLuma(image,p+2*GetPixelChannels(image));
AlphaBlendPixelInfo(image,p,pixels+0,alpha+0);
AlphaBlendPixelInfo(image,p+GetPixelChannels(image),pixels+1,alpha+1);
AlphaBlendPixelInfo(image,p+2*GetPixelChannels(image),pixels+2,alpha+2);
AlphaBlendPixelInfo(image,p+3*GetPixelChannels(image),pixels+3,alpha+3);
if (fabs(luminance.x) < fabs(luminance.y))
{
/*
Diagonal 0-3 NW-SE.
*/
if (delta.x <= delta.y)
{
/*
Bottom-left triangle (pixel: 2, diagonal: 0-3).
*/
delta.y=1.0-delta.y;
gamma=MeshInterpolate(&delta,alpha[2],alpha[3],alpha[0]);
gamma=PerceptibleReciprocal(gamma);
pixel->red=gamma*MeshInterpolate(&delta,pixels[2].red,
pixels[3].red,pixels[0].red);
pixel->green=gamma*MeshInterpolate(&delta,pixels[2].green,
pixels[3].green,pixels[0].green);
pixel->blue=gamma*MeshInterpolate(&delta,pixels[2].blue,
pixels[3].blue,pixels[0].blue);
if (image->colorspace == CMYKColorspace)
pixel->black=gamma*MeshInterpolate(&delta,pixels[2].black,
pixels[3].black,pixels[0].black);
gamma=MeshInterpolate(&delta,1.0,1.0,1.0);
pixel->alpha=gamma*MeshInterpolate(&delta,pixels[2].alpha,
pixels[3].alpha,pixels[0].alpha);
}
else
{
/*
Top-right triangle (pixel:1 , diagonal: 0-3).
*/
delta.x=1.0-delta.x;
gamma=MeshInterpolate(&delta,alpha[1],alpha[0],alpha[3]);
gamma=PerceptibleReciprocal(gamma);
pixel->red=gamma*MeshInterpolate(&delta,pixels[1].red,
pixels[0].red,pixels[3].red);
pixel->green=gamma*MeshInterpolate(&delta,pixels[1].green,
pixels[0].green,pixels[3].green);
pixel->blue=gamma*MeshInterpolate(&delta,pixels[1].blue,
pixels[0].blue,pixels[3].blue);
if (image->colorspace == CMYKColorspace)
pixel->black=gamma*MeshInterpolate(&delta,pixels[1].black,
pixels[0].black,pixels[3].black);
gamma=MeshInterpolate(&delta,1.0,1.0,1.0);
pixel->alpha=gamma*MeshInterpolate(&delta,pixels[1].alpha,
pixels[0].alpha,pixels[3].alpha);
}
}
else
{
/*
Diagonal 1-2 NE-SW.
*/
if (delta.x <= (1.0-delta.y))
{
/*
Top-left triangle (pixel: 0, diagonal: 1-2).
*/
gamma=MeshInterpolate(&delta,alpha[0],alpha[1],alpha[2]);
gamma=PerceptibleReciprocal(gamma);
pixel->red=gamma*MeshInterpolate(&delta,pixels[0].red,
pixels[1].red,pixels[2].red);
pixel->green=gamma*MeshInterpolate(&delta,pixels[0].green,
pixels[1].green,pixels[2].green);
pixel->blue=gamma*MeshInterpolate(&delta,pixels[0].blue,
pixels[1].blue,pixels[2].blue);
if (image->colorspace == CMYKColorspace)
pixel->black=gamma*MeshInterpolate(&delta,pixels[0].black,
pixels[1].black,pixels[2].black);
gamma=MeshInterpolate(&delta,1.0,1.0,1.0);
pixel->alpha=gamma*MeshInterpolate(&delta,pixels[0].alpha,
pixels[1].alpha,pixels[2].alpha);
}
else
{
/*
Bottom-right triangle (pixel: 3, diagonal: 1-2).
*/
delta.x=1.0-delta.x;
delta.y=1.0-delta.y;
gamma=MeshInterpolate(&delta,alpha[3],alpha[2],alpha[1]);
gamma=PerceptibleReciprocal(gamma);
pixel->red=gamma*MeshInterpolate(&delta,pixels[3].red,
pixels[2].red,pixels[1].red);
pixel->green=gamma*MeshInterpolate(&delta,pixels[3].green,
pixels[2].green,pixels[1].green);
pixel->blue=gamma*MeshInterpolate(&delta,pixels[3].blue,
pixels[2].blue,pixels[1].blue);
if (image->colorspace == CMYKColorspace)
pixel->black=gamma*MeshInterpolate(&delta,pixels[3].black,
pixels[2].black,pixels[1].black);
gamma=MeshInterpolate(&delta,1.0,1.0,1.0);
pixel->alpha=gamma*MeshInterpolate(&delta,pixels[3].alpha,
pixels[2].alpha,pixels[1].alpha);
}
}
break;
}
case NearestInterpolatePixel:
{
x_offset=(ssize_t) floor(x+0.5);
y_offset=(ssize_t) floor(y+0.5);
p=GetCacheViewVirtualPixels(image_view,x_offset,y_offset,1,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
GetPixelInfoPixel(image,p,pixel);
break;
}
case SplineInterpolatePixel:
{
double
cx[4],
cy[4];
p=GetCacheViewVirtualPixels(image_view,x_offset-1,y_offset-1,4,4,
exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (i=0; i < 16L; i++)
AlphaBlendPixelInfo(image,p+i*GetPixelChannels(image),pixels+i,alpha+i);
SplineWeights((double) (x-x_offset),&cx);
SplineWeights((double) (y-y_offset),&cy);
pixel->red=(cy[0]*(cx[0]*pixels[0].red+cx[1]*pixels[1].red+cx[2]*
pixels[2].red+cx[3]*pixels[3].red)+cy[1]*(cx[0]*pixels[4].red+cx[1]*
pixels[5].red+cx[2]*pixels[6].red+cx[3]*pixels[7].red)+cy[2]*(cx[0]*
pixels[8].red+cx[1]*pixels[9].red+cx[2]*pixels[10].red+cx[3]*
pixels[11].red)+cy[3]*(cx[0]*pixels[12].red+cx[1]*pixels[13].red+cx[2]*
pixels[14].red+cx[3]*pixels[15].red));
pixel->green=(cy[0]*(cx[0]*pixels[0].green+cx[1]*pixels[1].green+cx[2]*
pixels[2].green+cx[3]*pixels[3].green)+cy[1]*(cx[0]*pixels[4].green+
cx[1]*pixels[5].green+cx[2]*pixels[6].green+cx[3]*pixels[7].green)+
cy[2]*(cx[0]*pixels[8].green+cx[1]*pixels[9].green+cx[2]*
pixels[10].green+cx[3]*pixels[11].green)+cy[3]*(cx[0]*pixels[12].green+
cx[1]*pixels[13].green+cx[2]*pixels[14].green+cx[3]*pixels[15].green));
pixel->blue=(cy[0]*(cx[0]*pixels[0].blue+cx[1]*pixels[1].blue+cx[2]*
pixels[2].blue+cx[3]*pixels[3].blue)+cy[1]*(cx[0]*pixels[4].blue+cx[1]*
pixels[5].blue+cx[2]*pixels[6].blue+cx[3]*pixels[7].blue)+cy[2]*(cx[0]*
pixels[8].blue+cx[1]*pixels[9].blue+cx[2]*pixels[10].blue+cx[3]*
pixels[11].blue)+cy[3]*(cx[0]*pixels[12].blue+cx[1]*pixels[13].blue+
cx[2]*pixels[14].blue+cx[3]*pixels[15].blue));
if (image->colorspace == CMYKColorspace)
pixel->black=(cy[0]*(cx[0]*pixels[0].black+cx[1]*pixels[1].black+cx[2]*
pixels[2].black+cx[3]*pixels[3].black)+cy[1]*(cx[0]*pixels[4].black+
cx[1]*pixels[5].black+cx[2]*pixels[6].black+cx[3]*pixels[7].black)+
cy[2]*(cx[0]*pixels[8].black+cx[1]*pixels[9].black+cx[2]*
pixels[10].black+cx[3]*pixels[11].black)+cy[3]*(cx[0]*
pixels[12].black+cx[1]*pixels[13].black+cx[2]*pixels[14].black+cx[3]*
pixels[15].black));
pixel->alpha=(cy[0]*(cx[0]*pixels[0].alpha+cx[1]*pixels[1].alpha+cx[2]*
pixels[2].alpha+cx[3]*pixels[3].alpha)+cy[1]*(cx[0]*pixels[4].alpha+
cx[1]*pixels[5].alpha+cx[2]*pixels[6].alpha+cx[3]*pixels[7].alpha)+
cy[2]*(cx[0]*pixels[8].alpha+cx[1]*pixels[9].alpha+cx[2]*
pixels[10].alpha+cx[3]*pixels[11].alpha)+cy[3]*(cx[0]*pixels[12].alpha+
cx[1]*pixels[13].alpha+cx[2]*pixels[14].alpha+cx[3]*pixels[15].alpha));
break;
}
}
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ I s F u z z y E q u i v a l e n c e P i x e l %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% IsFuzzyEquivalencePixel() returns MagickTrue if the distance between two
% pixels is less than the specified distance in a linear three (or four)
% dimensional color space.
%
% The format of the IsFuzzyEquivalencePixel method is:
%
% void IsFuzzyEquivalencePixel(const Image *source,const Quantum *p,
% const Image *destination,const Quantum *q)
%
% A description of each parameter follows:
%
% o source: the source image.
%
% o p: Pixel p.
%
% o destination: the destination image.
%
% o q: Pixel q.
%
*/
MagickExport MagickBooleanType IsFuzzyEquivalencePixel(const Image *source,
const Quantum *p,const Image *destination,const Quantum *q)
{
double
fuzz,
pixel;
register double
distance,
scale;
fuzz=GetFuzzyColorDistance(source,destination);
scale=1.0;
distance=0.0;
if (source->alpha_trait != UndefinedPixelTrait ||
destination->alpha_trait != UndefinedPixelTrait)
{
/*
Transparencies are involved - set alpha distance
*/
pixel=GetPixelAlpha(source,p)-(double) GetPixelAlpha(destination,q);
distance=pixel*pixel;
if (distance > fuzz)
return(MagickFalse);
/*
Generate a alpha scaling factor to generate a 4D cone on colorspace
Note that if one color is transparent, distance has no color component.
*/
if (source->alpha_trait != UndefinedPixelTrait)
scale=QuantumScale*GetPixelAlpha(source,p);
if (destination->alpha_trait != UndefinedPixelTrait)
scale*=QuantumScale*GetPixelAlpha(destination,q);
if (scale <= MagickEpsilon)
return(MagickTrue);
}
/*
RGB or CMY color cube
*/
distance*=3.0; /* rescale appropriately */
fuzz*=3.0;
pixel=GetPixelRed(source,p)-(double) GetPixelRed(destination,q);
if ((source->colorspace == HSLColorspace) ||
(source->colorspace == HSBColorspace) ||
(source->colorspace == HWBColorspace))
{
/*
Compute an arc distance for hue. It should be a vector angle of
'S'/'W' length with 'L'/'B' forming appropriate cones.
*/
if (fabs((double) pixel) > (QuantumRange/2))
pixel-=QuantumRange;
pixel*=2;
}
distance+=scale*pixel*pixel;
if (distance > fuzz)
return(MagickFalse);
pixel=GetPixelGreen(source,p)-(double) GetPixelGreen(destination,q);
distance+=scale*pixel*pixel;
if (distance > fuzz)
return(MagickFalse);
pixel=GetPixelBlue(source,p)-(double) GetPixelBlue(destination,q);
distance+=scale*pixel*pixel;
if (distance > fuzz)
return(MagickFalse);
return(MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ I s F u z z y E q u i v a l e n c e P i x e l I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% IsFuzzyEquivalencePixelInfo() returns true if the distance between two
% colors is less than the specified distance in a linear three (or four)
% dimensional color space.
%
% This implements the equivalent of:
% fuzz < sqrt(color_distance^2 * u.a*v.a + alpha_distance^2)
%
% Which produces a multi-dimensional cone for that colorspace along the
% transparency vector.
%
% For example for an RGB:
% color_distance^2 = ( (u.r-v.r)^2 + (u.g-v.g)^2 + (u.b-v.b)^2 ) / 3
%
% See http://www.imagemagick.org/Usage/bugs/fuzz_distance/
%
% Hue colorspace distances need more work. Hue is not a distance, it is an
% angle!
%
% A check that q is in the same color space as p should be made and the
% appropriate mapping made. -- Anthony Thyssen 8 December 2010
%
% The format of the IsFuzzyEquivalencePixelInfo method is:
%
% MagickBooleanType IsFuzzyEquivalencePixelInfo(const PixelInfo *p,
% const PixelInfo *q)
%
% A description of each parameter follows:
%
% o p: Pixel p.
%
% o q: Pixel q.
%
*/
MagickExport MagickBooleanType IsFuzzyEquivalencePixelInfo(const PixelInfo *p,
const PixelInfo *q)
{
double
fuzz,
pixel;
register double
scale,
distance;
fuzz=(double) MagickMax(MagickMax(p->fuzz,q->fuzz),(MagickRealType)
MagickSQ1_2);
fuzz*=fuzz;
scale=1.0;
distance=0.0;
if ((p->alpha_trait != UndefinedPixelTrait) ||
(q->alpha_trait != UndefinedPixelTrait))
{
/*
Transparencies are involved - set alpha distance.
*/
pixel=(p->alpha_trait != UndefinedPixelTrait ? p->alpha : OpaqueAlpha)-
(q->alpha_trait != UndefinedPixelTrait ? q->alpha : OpaqueAlpha);
distance=pixel*pixel;
if (distance > fuzz)
return(MagickFalse);
/*
Generate a alpha scaling factor to generate a 4D cone on colorspace.
If one color is transparent, distance has no color component.
*/
if (p->alpha_trait != UndefinedPixelTrait)
scale=(QuantumScale*p->alpha);
if (q->alpha_trait != UndefinedPixelTrait)
scale*=(QuantumScale*q->alpha);
if (scale <= MagickEpsilon )
return(MagickTrue);
}
/*
CMYK create a CMY cube with a multi-dimensional cone toward black.
*/
if (p->colorspace == CMYKColorspace)
{
pixel=p->black-q->black;
distance+=pixel*pixel*scale;
if (distance > fuzz)
return(MagickFalse);
scale*=(double) (QuantumScale*(QuantumRange-p->black));
scale*=(double) (QuantumScale*(QuantumRange-q->black));
}
/*
RGB or CMY color cube.
*/
distance*=3.0; /* rescale appropriately */
fuzz*=3.0;
pixel=p->red-q->red;
if ((p->colorspace == HSLColorspace) || (p->colorspace == HSBColorspace) ||
(p->colorspace == HWBColorspace))
{
/*
This calculates a arc distance for hue-- it should be a vector
angle of 'S'/'W' length with 'L'/'B' forming appropriate cones.
In other words this is a hack - Anthony.
*/
if (fabs((double) pixel) > (QuantumRange/2))
pixel-=QuantumRange;
pixel*=2;
}
distance+=pixel*pixel*scale;
if (distance > fuzz)
return(MagickFalse);
pixel=p->green-q->green;
distance+=pixel*pixel*scale;
if (distance > fuzz)
return(MagickFalse);
pixel=p->blue-q->blue;
distance+=pixel*pixel*scale;
if (distance > fuzz)
return(MagickFalse);
return(MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S e t P i x e l C h a n n e l M a s k %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SetPixelChannelMask() sets the pixel channel map from the specified channel
% mask.
%
% The format of the SetPixelChannelMask method is:
%
% ChannelType SetPixelChannelMask(Image *image,
% const ChannelType channel_mask)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel_mask: the channel mask.
%
*/
MagickExport ChannelType SetPixelChannelMask(Image *image,
const ChannelType channel_mask)
{
#define GetChannelBit(mask,bit) (((size_t) (mask) >> (size_t) (bit)) & 0x01)
ChannelType
mask;
register ssize_t
i;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(PixelEvent,GetMagickModule(),"%s[%08x]",
image->filename,channel_mask);
mask=image->channel_mask;
image->channel_mask=channel_mask;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel=GetPixelChannelChannel(image,i);
if (GetChannelBit(channel_mask,channel) == 0)
{
SetPixelChannelTraits(image,channel,CopyPixelTrait);
continue;
}
if (channel == AlphaPixelChannel)
{
if ((image->alpha_trait & CopyPixelTrait) != 0)
{
SetPixelChannelTraits(image,channel,CopyPixelTrait);
continue;
}
SetPixelChannelTraits(image,channel,UpdatePixelTrait);
continue;
}
if (image->alpha_trait != UndefinedPixelTrait)
{
SetPixelChannelTraits(image,channel,(const PixelTrait)
(UpdatePixelTrait | BlendPixelTrait));
continue;
}
SetPixelChannelTraits(image,channel,UpdatePixelTrait);
}
if (image->storage_class == PseudoClass)
SetPixelChannelTraits(image,IndexPixelChannel,CopyPixelTrait);
if (image->read_mask != MagickFalse)
SetPixelChannelTraits(image,ReadMaskPixelChannel,CopyPixelTrait);
if (image->write_mask != MagickFalse)
SetPixelChannelTraits(image,WriteMaskPixelChannel,CopyPixelTrait);
if (image->debug != MagickFalse)
LogPixelChannels(image);
return(mask);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S e t P i x e l M e t a C h a n n e l s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SetPixelMetaChannels() sets the image meta channels.
%
% The format of the SetPixelMetaChannels method is:
%
% MagickBooleanType SetPixelMetaChannels(Image *image,
% const size_t number_meta_channels,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o number_meta_channels: the number of meta channels.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType SetPixelMetaChannels(Image *image,
const size_t number_meta_channels,ExceptionInfo *exception)
{
image->number_meta_channels=number_meta_channels;
return(SyncImagePixelCache(image,exception));
}