blob: b10224faaa3e5f731eadec63b76b51dea7e8a8fb [file] [log] [blame]
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% SSSSS TTTTT AAA TTTTT IIIII SSSSS TTTTT IIIII CCCC %
% SS T A A T I SS T I C %
% SSS T AAAAA T I SSS T I C %
% SS T A A T I SS T I C %
% SSSSS T A A T IIIII SSSSS T IIIII CCCC %
% %
% %
% MagickCore Image Statistical Methods %
% %
% Software Design %
% Cristy %
% July 1992 %
% %
% %
% Copyright 1999-2016 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% http://www.imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
*/
/*
Include declarations.
*/
#include "MagickCore/studio.h"
#include "MagickCore/property.h"
#include "MagickCore/animate.h"
#include "MagickCore/blob.h"
#include "MagickCore/blob-private.h"
#include "MagickCore/cache.h"
#include "MagickCore/cache-private.h"
#include "MagickCore/cache-view.h"
#include "MagickCore/client.h"
#include "MagickCore/color.h"
#include "MagickCore/color-private.h"
#include "MagickCore/colorspace.h"
#include "MagickCore/colorspace-private.h"
#include "MagickCore/composite.h"
#include "MagickCore/composite-private.h"
#include "MagickCore/compress.h"
#include "MagickCore/constitute.h"
#include "MagickCore/display.h"
#include "MagickCore/draw.h"
#include "MagickCore/enhance.h"
#include "MagickCore/exception.h"
#include "MagickCore/exception-private.h"
#include "MagickCore/gem.h"
#include "MagickCore/gem-private.h"
#include "MagickCore/geometry.h"
#include "MagickCore/list.h"
#include "MagickCore/image-private.h"
#include "MagickCore/magic.h"
#include "MagickCore/magick.h"
#include "MagickCore/memory_.h"
#include "MagickCore/module.h"
#include "MagickCore/monitor.h"
#include "MagickCore/monitor-private.h"
#include "MagickCore/option.h"
#include "MagickCore/paint.h"
#include "MagickCore/pixel-accessor.h"
#include "MagickCore/profile.h"
#include "MagickCore/quantize.h"
#include "MagickCore/quantum-private.h"
#include "MagickCore/random_.h"
#include "MagickCore/random-private.h"
#include "MagickCore/resource_.h"
#include "MagickCore/segment.h"
#include "MagickCore/semaphore.h"
#include "MagickCore/signature-private.h"
#include "MagickCore/statistic.h"
#include "MagickCore/string_.h"
#include "MagickCore/thread-private.h"
#include "MagickCore/timer.h"
#include "MagickCore/utility.h"
#include "MagickCore/version.h"
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% E v a l u a t e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% EvaluateImage() applies a value to the image with an arithmetic, relational,
% or logical operator to an image. Use these operations to lighten or darken
% an image, to increase or decrease contrast in an image, or to produce the
% "negative" of an image.
%
% The format of the EvaluateImage method is:
%
% MagickBooleanType EvaluateImage(Image *image,
% const MagickEvaluateOperator op,const double value,
% ExceptionInfo *exception)
% MagickBooleanType EvaluateImages(Image *images,
% const MagickEvaluateOperator op,const double value,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o op: A channel op.
%
% o value: A value value.
%
% o exception: return any errors or warnings in this structure.
%
*/
typedef struct _PixelChannels
{
double
channel[CompositePixelChannel];
} PixelChannels;
static PixelChannels **DestroyPixelThreadSet(PixelChannels **pixels)
{
register ssize_t
i;
assert(pixels != (PixelChannels **) NULL);
for (i=0; i < (ssize_t) GetMagickResourceLimit(ThreadResource); i++)
if (pixels[i] != (PixelChannels *) NULL)
pixels[i]=(PixelChannels *) RelinquishMagickMemory(pixels[i]);
pixels=(PixelChannels **) RelinquishMagickMemory(pixels);
return(pixels);
}
static PixelChannels **AcquirePixelThreadSet(const Image *image,
const size_t number_images)
{
register ssize_t
i;
PixelChannels
**pixels;
size_t
length,
number_threads;
number_threads=(size_t) GetMagickResourceLimit(ThreadResource);
pixels=(PixelChannels **) AcquireQuantumMemory(number_threads,
sizeof(*pixels));
if (pixels == (PixelChannels **) NULL)
return((PixelChannels **) NULL);
(void) ResetMagickMemory(pixels,0,number_threads*sizeof(*pixels));
for (i=0; i < (ssize_t) number_threads; i++)
{
register ssize_t
j;
length=image->columns;
if (length < number_images)
length=number_images;
pixels[i]=(PixelChannels *) AcquireQuantumMemory(length,sizeof(**pixels));
if (pixels[i] == (PixelChannels *) NULL)
return(DestroyPixelThreadSet(pixels));
for (j=0; j < (ssize_t) length; j++)
{
register ssize_t
k;
for (k=0; k < MaxPixelChannels; k++)
pixels[i][j].channel[k]=0.0;
}
}
return(pixels);
}
static inline double EvaluateMax(const double x,const double y)
{
if (x > y)
return(x);
return(y);
}
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
static int IntensityCompare(const void *x,const void *y)
{
const PixelChannels
*color_1,
*color_2;
double
distance;
register ssize_t
i;
color_1=(const PixelChannels *) x;
color_2=(const PixelChannels *) y;
distance=0.0;
for (i=0; i < MaxPixelChannels; i++)
distance+=color_1->channel[i]-(double) color_2->channel[i];
return(distance < 0 ? -1 : distance > 0 ? 1 : 0);
}
#if defined(__cplusplus) || defined(c_plusplus)
}
#endif
static double ApplyEvaluateOperator(RandomInfo *random_info,const Quantum pixel,
const MagickEvaluateOperator op,const double value)
{
double
result;
result=0.0;
switch (op)
{
case UndefinedEvaluateOperator:
break;
case AbsEvaluateOperator:
{
result=(double) fabs((double) (pixel+value));
break;
}
case AddEvaluateOperator:
{
result=(double) (pixel+value);
break;
}
case AddModulusEvaluateOperator:
{
/*
This returns a 'floored modulus' of the addition which is a positive
result. It differs from % or fmod() that returns a 'truncated modulus'
result, where floor() is replaced by trunc() and could return a
negative result (which is clipped).
*/
result=pixel+value;
result-=(QuantumRange+1.0)*floor((double) result/(QuantumRange+1.0));
break;
}
case AndEvaluateOperator:
{
result=(double) ((size_t) pixel & (size_t) (value+0.5));
break;
}
case CosineEvaluateOperator:
{
result=(double) (QuantumRange*(0.5*cos((double) (2.0*MagickPI*
QuantumScale*pixel*value))+0.5));
break;
}
case DivideEvaluateOperator:
{
result=pixel/(value == 0.0 ? 1.0 : value);
break;
}
case ExponentialEvaluateOperator:
{
result=(double) (QuantumRange*exp((double) (value*QuantumScale*pixel)));
break;
}
case GaussianNoiseEvaluateOperator:
{
result=(double) GenerateDifferentialNoise(random_info,pixel,
GaussianNoise,value);
break;
}
case ImpulseNoiseEvaluateOperator:
{
result=(double) GenerateDifferentialNoise(random_info,pixel,ImpulseNoise,
value);
break;
}
case LaplacianNoiseEvaluateOperator:
{
result=(double) GenerateDifferentialNoise(random_info,pixel,
LaplacianNoise,value);
break;
}
case LeftShiftEvaluateOperator:
{
result=(double) ((size_t) pixel << (size_t) (value+0.5));
break;
}
case LogEvaluateOperator:
{
if ((QuantumScale*pixel) >= MagickEpsilon)
result=(double) (QuantumRange*log((double) (QuantumScale*value*pixel+
1.0))/log((double) (value+1.0)));
break;
}
case MaxEvaluateOperator:
{
result=(double) EvaluateMax((double) pixel,value);
break;
}
case MeanEvaluateOperator:
{
result=(double) (pixel+value);
break;
}
case MedianEvaluateOperator:
{
result=(double) (pixel+value);
break;
}
case MinEvaluateOperator:
{
result=(double) MagickMin((double) pixel,value);
break;
}
case MultiplicativeNoiseEvaluateOperator:
{
result=(double) GenerateDifferentialNoise(random_info,pixel,
MultiplicativeGaussianNoise,value);
break;
}
case MultiplyEvaluateOperator:
{
result=(double) (value*pixel);
break;
}
case OrEvaluateOperator:
{
result=(double) ((size_t) pixel | (size_t) (value+0.5));
break;
}
case PoissonNoiseEvaluateOperator:
{
result=(double) GenerateDifferentialNoise(random_info,pixel,PoissonNoise,
value);
break;
}
case PowEvaluateOperator:
{
result=(double) (QuantumRange*pow((double) (QuantumScale*pixel),(double)
value));
break;
}
case RightShiftEvaluateOperator:
{
result=(double) ((size_t) pixel >> (size_t) (value+0.5));
break;
}
case RootMeanSquareEvaluateOperator:
{
result=(double) (pixel*pixel+value);
break;
}
case SetEvaluateOperator:
{
result=value;
break;
}
case SineEvaluateOperator:
{
result=(double) (QuantumRange*(0.5*sin((double) (2.0*MagickPI*
QuantumScale*pixel*value))+0.5));
break;
}
case SubtractEvaluateOperator:
{
result=(double) (pixel-value);
break;
}
case SumEvaluateOperator:
{
result=(double) (pixel+value);
break;
}
case ThresholdEvaluateOperator:
{
result=(double) (((double) pixel <= value) ? 0 : QuantumRange);
break;
}
case ThresholdBlackEvaluateOperator:
{
result=(double) (((double) pixel <= value) ? 0 : pixel);
break;
}
case ThresholdWhiteEvaluateOperator:
{
result=(double) (((double) pixel > value) ? QuantumRange : pixel);
break;
}
case UniformNoiseEvaluateOperator:
{
result=(double) GenerateDifferentialNoise(random_info,pixel,UniformNoise,
value);
break;
}
case XorEvaluateOperator:
{
result=(double) ((size_t) pixel ^ (size_t) (value+0.5));
break;
}
}
return(result);
}
MagickExport Image *EvaluateImages(const Image *images,
const MagickEvaluateOperator op,ExceptionInfo *exception)
{
#define EvaluateImageTag "Evaluate/Image"
CacheView
*evaluate_view;
Image
*image;
MagickBooleanType
status;
MagickOffsetType
progress;
PixelChannels
**magick_restrict evaluate_pixels;
RandomInfo
**magick_restrict random_info;
size_t
number_images;
ssize_t
y;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
unsigned long
key;
#endif
assert(images != (Image *) NULL);
assert(images->signature == MagickCoreSignature);
if (images->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",images->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
image=CloneImage(images,images->columns,images->rows,MagickTrue,
exception);
if (image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse)
{
image=DestroyImage(image);
return((Image *) NULL);
}
number_images=GetImageListLength(images);
evaluate_pixels=AcquirePixelThreadSet(images,number_images);
if (evaluate_pixels == (PixelChannels **) NULL)
{
image=DestroyImage(image);
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",images->filename);
return((Image *) NULL);
}
/*
Evaluate image pixels.
*/
status=MagickTrue;
progress=0;
random_info=AcquireRandomInfoThreadSet();
evaluate_view=AcquireAuthenticCacheView(image,exception);
if (op == MedianEvaluateOperator)
{
#if defined(MAGICKCORE_OPENMP_SUPPORT)
key=GetRandomSecretKey(random_info[0]);
#pragma omp parallel for schedule(static,4) shared(progress,status) \
magick_threads(image,images,image->rows,key == ~0UL)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
CacheView
*image_view;
const Image
*next;
const int
id = GetOpenMPThreadId();
register PixelChannels
*evaluate_pixel;
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
q=QueueCacheViewAuthenticPixels(evaluate_view,0,y,image->columns,1,
exception);
if (q == (Quantum *) NULL)
{
status=MagickFalse;
continue;
}
evaluate_pixel=evaluate_pixels[id];
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
j,
k;
for (j=0; j < (ssize_t) number_images; j++)
for (k=0; k < MaxPixelChannels; k++)
evaluate_pixel[j].channel[k]=0.0;
next=images;
for (j=0; j < (ssize_t) number_images; j++)
{
register const Quantum
*p;
register ssize_t
i;
image_view=AcquireVirtualCacheView(next,exception);
p=GetCacheViewVirtualPixels(image_view,x,y,1,1,exception);
if (p == (const Quantum *) NULL)
{
image_view=DestroyCacheView(image_view);
break;
}
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel=GetPixelChannelChannel(image,i);
PixelTrait evaluate_traits=GetPixelChannelTraits(image,channel);
PixelTrait traits=GetPixelChannelTraits(next,channel);
if ((traits == UndefinedPixelTrait) ||
(evaluate_traits == UndefinedPixelTrait))
continue;
if ((evaluate_traits & UpdatePixelTrait) == 0)
continue;
evaluate_pixel[j].channel[i]=ApplyEvaluateOperator(
random_info[id],GetPixelChannel(image,channel,p),op,
evaluate_pixel[j].channel[i]);
}
image_view=DestroyCacheView(image_view);
next=GetNextImageInList(next);
}
qsort((void *) evaluate_pixel,number_images,sizeof(*evaluate_pixel),
IntensityCompare);
for (k=0; k < (ssize_t) GetPixelChannels(image); k++)
q[k]=ClampToQuantum(evaluate_pixel[j/2].channel[k]);
q+=GetPixelChannels(image);
}
if (SyncCacheViewAuthenticPixels(evaluate_view,exception) == MagickFalse)
status=MagickFalse;
if (images->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_EvaluateImages)
#endif
proceed=SetImageProgress(images,EvaluateImageTag,progress++,
image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
}
else
{
#if defined(MAGICKCORE_OPENMP_SUPPORT)
key=GetRandomSecretKey(random_info[0]);
#pragma omp parallel for schedule(static,4) shared(progress,status) \
magick_threads(image,images,image->rows,key == ~0UL)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
CacheView
*image_view;
const Image
*next;
const int
id = GetOpenMPThreadId();
register ssize_t
i,
x;
register PixelChannels
*evaluate_pixel;
register Quantum
*magick_restrict q;
ssize_t
j;
if (status == MagickFalse)
continue;
q=QueueCacheViewAuthenticPixels(evaluate_view,0,y,image->columns,1,
exception);
if (q == (Quantum *) NULL)
{
status=MagickFalse;
continue;
}
evaluate_pixel=evaluate_pixels[id];
for (j=0; j < (ssize_t) image->columns; j++)
for (i=0; i < MaxPixelChannels; i++)
evaluate_pixel[j].channel[i]=0.0;
next=images;
for (j=0; j < (ssize_t) number_images; j++)
{
register const Quantum
*p;
image_view=AcquireVirtualCacheView(next,exception);
p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception);
if (p == (const Quantum *) NULL)
{
image_view=DestroyCacheView(image_view);
break;
}
for (x=0; x < (ssize_t) next->columns; x++)
{
register ssize_t
i;
if (GetPixelReadMask(next,p) == 0)
{
p+=GetPixelChannels(next);
continue;
}
for (i=0; i < (ssize_t) GetPixelChannels(next); i++)
{
PixelChannel channel=GetPixelChannelChannel(image,i);
PixelTrait traits=GetPixelChannelTraits(next,channel);
PixelTrait evaluate_traits=GetPixelChannelTraits(image,channel);
if ((traits == UndefinedPixelTrait) ||
(evaluate_traits == UndefinedPixelTrait))
continue;
if ((traits & UpdatePixelTrait) == 0)
continue;
evaluate_pixel[x].channel[i]=ApplyEvaluateOperator(
random_info[id],GetPixelChannel(image,channel,p),j == 0 ?
AddEvaluateOperator : op,evaluate_pixel[x].channel[i]);
}
p+=GetPixelChannels(next);
}
image_view=DestroyCacheView(image_view);
next=GetNextImageInList(next);
}
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
switch (op)
{
case MeanEvaluateOperator:
{
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
evaluate_pixel[x].channel[i]/=(double) number_images;
break;
}
case MultiplyEvaluateOperator:
{
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
register ssize_t
j;
for (j=0; j < (ssize_t) (number_images-1); j++)
evaluate_pixel[x].channel[i]*=QuantumScale;
}
break;
}
case RootMeanSquareEvaluateOperator:
{
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
evaluate_pixel[x].channel[i]=sqrt(evaluate_pixel[x].channel[i]/
number_images);
break;
}
default:
break;
}
}
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
if (GetPixelReadMask(image,q) == 0)
{
q+=GetPixelChannels(image);
continue;
}
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel=GetPixelChannelChannel(image,i);
PixelTrait traits=GetPixelChannelTraits(image,channel);
if (traits == UndefinedPixelTrait)
continue;
if ((traits & UpdatePixelTrait) == 0)
continue;
q[i]=ClampToQuantum(evaluate_pixel[x].channel[i]);
}
q+=GetPixelChannels(image);
}
if (SyncCacheViewAuthenticPixels(evaluate_view,exception) == MagickFalse)
status=MagickFalse;
if (images->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_EvaluateImages)
#endif
proceed=SetImageProgress(images,EvaluateImageTag,progress++,
image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
}
evaluate_view=DestroyCacheView(evaluate_view);
evaluate_pixels=DestroyPixelThreadSet(evaluate_pixels);
random_info=DestroyRandomInfoThreadSet(random_info);
if (status == MagickFalse)
image=DestroyImage(image);
return(image);
}
MagickExport MagickBooleanType EvaluateImage(Image *image,
const MagickEvaluateOperator op,const double value,ExceptionInfo *exception)
{
CacheView
*image_view;
MagickBooleanType
status;
MagickOffsetType
progress;
RandomInfo
**magick_restrict random_info;
ssize_t
y;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
unsigned long
key;
#endif
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse)
return(MagickFalse);
status=MagickTrue;
progress=0;
random_info=AcquireRandomInfoThreadSet();
image_view=AcquireAuthenticCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
key=GetRandomSecretKey(random_info[0]);
#pragma omp parallel for schedule(static,4) shared(progress,status) \
magick_threads(image,image,image->rows,key == ~0UL)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
const int
id = GetOpenMPThreadId();
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (Quantum *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
double
result;
register ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel=GetPixelChannelChannel(image,i);
PixelTrait traits=GetPixelChannelTraits(image,channel);
if (traits == UndefinedPixelTrait)
continue;
if (((traits & CopyPixelTrait) != 0) ||
(GetPixelReadMask(image,q) == 0))
continue;
result=ApplyEvaluateOperator(random_info[id],q[i],op,value);
if (op == MeanEvaluateOperator)
result/=2.0;
q[i]=ClampToQuantum(result);
}
q+=GetPixelChannels(image);
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_EvaluateImage)
#endif
proceed=SetImageProgress(image,EvaluateImageTag,progress++,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
random_info=DestroyRandomInfoThreadSet(random_info);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% F u n c t i o n I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% FunctionImage() applies a value to the image with an arithmetic, relational,
% or logical operator to an image. Use these operations to lighten or darken
% an image, to increase or decrease contrast in an image, or to produce the
% "negative" of an image.
%
% The format of the FunctionImage method is:
%
% MagickBooleanType FunctionImage(Image *image,
% const MagickFunction function,const ssize_t number_parameters,
% const double *parameters,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o function: A channel function.
%
% o parameters: one or more parameters.
%
% o exception: return any errors or warnings in this structure.
%
*/
static Quantum ApplyFunction(Quantum pixel,const MagickFunction function,
const size_t number_parameters,const double *parameters,
ExceptionInfo *exception)
{
double
result;
register ssize_t
i;
(void) exception;
result=0.0;
switch (function)
{
case PolynomialFunction:
{
/*
Polynomial: polynomial constants, highest to lowest order (e.g. c0*x^3+
c1*x^2+c2*x+c3).
*/
result=0.0;
for (i=0; i < (ssize_t) number_parameters; i++)
result=result*QuantumScale*pixel+parameters[i];
result*=QuantumRange;
break;
}
case SinusoidFunction:
{
double
amplitude,
bias,
frequency,
phase;
/*
Sinusoid: frequency, phase, amplitude, bias.
*/
frequency=(number_parameters >= 1) ? parameters[0] : 1.0;
phase=(number_parameters >= 2) ? parameters[1] : 0.0;
amplitude=(number_parameters >= 3) ? parameters[2] : 0.5;
bias=(number_parameters >= 4) ? parameters[3] : 0.5;
result=(double) (QuantumRange*(amplitude*sin((double) (2.0*
MagickPI*(frequency*QuantumScale*pixel+phase/360.0)))+bias));
break;
}
case ArcsinFunction:
{
double
bias,
center,
range,
width;
/*
Arcsin (peged at range limits for invalid results): width, center,
range, and bias.
*/
width=(number_parameters >= 1) ? parameters[0] : 1.0;
center=(number_parameters >= 2) ? parameters[1] : 0.5;
range=(number_parameters >= 3) ? parameters[2] : 1.0;
bias=(number_parameters >= 4) ? parameters[3] : 0.5;
result=2.0/width*(QuantumScale*pixel-center);
if ( result <= -1.0 )
result=bias-range/2.0;
else
if (result >= 1.0)
result=bias+range/2.0;
else
result=(double) (range/MagickPI*asin((double) result)+bias);
result*=QuantumRange;
break;
}
case ArctanFunction:
{
double
center,
bias,
range,
slope;
/*
Arctan: slope, center, range, and bias.
*/
slope=(number_parameters >= 1) ? parameters[0] : 1.0;
center=(number_parameters >= 2) ? parameters[1] : 0.5;
range=(number_parameters >= 3) ? parameters[2] : 1.0;
bias=(number_parameters >= 4) ? parameters[3] : 0.5;
result=(double) (MagickPI*slope*(QuantumScale*pixel-center));
result=(double) (QuantumRange*(range/MagickPI*atan((double)
result)+bias));
break;
}
case UndefinedFunction:
break;
}
return(ClampToQuantum(result));
}
MagickExport MagickBooleanType FunctionImage(Image *image,
const MagickFunction function,const size_t number_parameters,
const double *parameters,ExceptionInfo *exception)
{
#define FunctionImageTag "Function/Image "
CacheView
*image_view;
MagickBooleanType
status;
MagickOffsetType
progress;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse)
return(MagickFalse);
status=MagickTrue;
progress=0;
image_view=AcquireAuthenticCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status) \
magick_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (Quantum *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
if (GetPixelReadMask(image,q) == 0)
{
q+=GetPixelChannels(image);
continue;
}
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel=GetPixelChannelChannel(image,i);
PixelTrait traits=GetPixelChannelTraits(image,channel);
if (traits == UndefinedPixelTrait)
continue;
if ((traits & UpdatePixelTrait) == 0)
continue;
q[i]=ApplyFunction(q[i],function,number_parameters,parameters,
exception);
}
q+=GetPixelChannels(image);
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_FunctionImage)
#endif
proceed=SetImageProgress(image,FunctionImageTag,progress++,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e E n t r o p y %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageEntropy() returns the entropy of one or more image channels.
%
% The format of the GetImageEntropy method is:
%
% MagickBooleanType GetImageEntropy(const Image *image,double *entropy,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o entropy: the average entropy of the selected channels.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType GetImageEntropy(const Image *image,
double *entropy,ExceptionInfo *exception)
{
double
area;
ChannelStatistics
*channel_statistics;
register ssize_t
i;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
channel_statistics=GetImageStatistics(image,exception);
if (channel_statistics == (ChannelStatistics *) NULL)
return(MagickFalse);
area=0.0;
channel_statistics[CompositePixelChannel].entropy=0.0;
channel_statistics[CompositePixelChannel].standard_deviation=0.0;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel=GetPixelChannelChannel(image,i);
PixelTrait traits=GetPixelChannelTraits(image,channel);
if (traits == UndefinedPixelTrait)
continue;
if ((traits & UpdatePixelTrait) == 0)
continue;
channel_statistics[CompositePixelChannel].entropy+=
channel_statistics[i].entropy;
area++;
}
if (area > MagickEpsilon)
{
channel_statistics[CompositePixelChannel].entropy/=area;
channel_statistics[CompositePixelChannel].standard_deviation=
sqrt(channel_statistics[CompositePixelChannel].standard_deviation/area);
}
*entropy=channel_statistics[CompositePixelChannel].entropy;
channel_statistics=(ChannelStatistics *) RelinquishMagickMemory(
channel_statistics);
return(MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e E x t r e m a %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageExtrema() returns the extrema of one or more image channels.
%
% The format of the GetImageExtrema method is:
%
% MagickBooleanType GetImageExtrema(const Image *image,size_t *minima,
% size_t *maxima,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o minima: the minimum value in the channel.
%
% o maxima: the maximum value in the channel.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType GetImageExtrema(const Image *image,
size_t *minima,size_t *maxima,ExceptionInfo *exception)
{
double
max,
min;
MagickBooleanType
status;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
status=GetImageRange(image,&min,&max,exception);
*minima=(size_t) ceil(min-0.5);
*maxima=(size_t) floor(max+0.5);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e K u r t o s i s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageKurtosis() returns the kurtosis and skewness of one or more image
% channels.
%
% The format of the GetImageKurtosis method is:
%
% MagickBooleanType GetImageKurtosis(const Image *image,double *kurtosis,
% double *skewness,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o kurtosis: the kurtosis of the channel.
%
% o skewness: the skewness of the channel.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType GetImageKurtosis(const Image *image,
double *kurtosis,double *skewness,ExceptionInfo *exception)
{
CacheView
*image_view;
double
area,
mean,
standard_deviation,
sum_squares,
sum_cubes,
sum_fourth_power;
MagickBooleanType
status;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
status=MagickTrue;
*kurtosis=0.0;
*skewness=0.0;
area=0.0;
mean=0.0;
standard_deviation=0.0;
sum_squares=0.0;
sum_cubes=0.0;
sum_fourth_power=0.0;
image_view=AcquireVirtualCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(status) \
magick_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
register const Quantum
*magick_restrict p;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
if (GetPixelReadMask(image,p) == 0)
{
p+=GetPixelChannels(image);
continue;
}
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel=GetPixelChannelChannel(image,i);
PixelTrait traits=GetPixelChannelTraits(image,channel);
if (traits == UndefinedPixelTrait)
continue;
if ((traits & UpdatePixelTrait) == 0)
continue;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_GetImageKurtosis)
#endif
{
mean+=p[i];
sum_squares+=(double) p[i]*p[i];
sum_cubes+=(double) p[i]*p[i]*p[i];
sum_fourth_power+=(double) p[i]*p[i]*p[i]*p[i];
area++;
}
}
p+=GetPixelChannels(image);
}
}
image_view=DestroyCacheView(image_view);
if (area != 0.0)
{
mean/=area;
sum_squares/=area;
sum_cubes/=area;
sum_fourth_power/=area;
}
standard_deviation=sqrt(sum_squares-(mean*mean));
if (standard_deviation != 0.0)
{
*kurtosis=sum_fourth_power-4.0*mean*sum_cubes+6.0*mean*mean*sum_squares-
3.0*mean*mean*mean*mean;
*kurtosis/=standard_deviation*standard_deviation*standard_deviation*
standard_deviation;
*kurtosis-=3.0;
*skewness=sum_cubes-3.0*mean*sum_squares+2.0*mean*mean*mean;
*skewness/=standard_deviation*standard_deviation*standard_deviation;
}
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e M e a n %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageMean() returns the mean and standard deviation of one or more image
% channels.
%
% The format of the GetImageMean method is:
%
% MagickBooleanType GetImageMean(const Image *image,double *mean,
% double *standard_deviation,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o mean: the average value in the channel.
%
% o standard_deviation: the standard deviation of the channel.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType GetImageMean(const Image *image,double *mean,
double *standard_deviation,ExceptionInfo *exception)
{
double
area;
ChannelStatistics
*channel_statistics;
register ssize_t
i;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
channel_statistics=GetImageStatistics(image,exception);
if (channel_statistics == (ChannelStatistics *) NULL)
return(MagickFalse);
area=0.0;
channel_statistics[CompositePixelChannel].mean=0.0;
channel_statistics[CompositePixelChannel].standard_deviation=0.0;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel=GetPixelChannelChannel(image,i);
PixelTrait traits=GetPixelChannelTraits(image,channel);
if (traits == UndefinedPixelTrait)
continue;
if ((traits & UpdatePixelTrait) == 0)
continue;
channel_statistics[CompositePixelChannel].mean+=channel_statistics[i].mean;
channel_statistics[CompositePixelChannel].standard_deviation+=
channel_statistics[i].variance-channel_statistics[i].mean*
channel_statistics[i].mean;
area++;
}
if (area > MagickEpsilon)
{
channel_statistics[CompositePixelChannel].mean/=area;
channel_statistics[CompositePixelChannel].standard_deviation=
sqrt(channel_statistics[CompositePixelChannel].standard_deviation/area);
}
*mean=channel_statistics[CompositePixelChannel].mean;
*standard_deviation=
channel_statistics[CompositePixelChannel].standard_deviation;
channel_statistics=(ChannelStatistics *) RelinquishMagickMemory(
channel_statistics);
return(MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e M o m e n t s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageMoments() returns the normalized moments of one or more image
% channels.
%
% The format of the GetImageMoments method is:
%
% ChannelMoments *GetImageMoments(const Image *image,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
static size_t GetImageChannels(const Image *image)
{
register ssize_t
i;
size_t
channels;
channels=0;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel=GetPixelChannelChannel(image,i);
PixelTrait traits=GetPixelChannelTraits(image,channel);
if ((traits & UpdatePixelTrait) != 0)
channels++;
}
return((size_t) (channels == 0 ? 1 : channels));
}
MagickExport ChannelMoments *GetImageMoments(const Image *image,
ExceptionInfo *exception)
{
#define MaxNumberImageMoments 8
CacheView
*image_view;
ChannelMoments
*channel_moments;
double
M00[MaxPixelChannels+1],
M01[MaxPixelChannels+1],
M02[MaxPixelChannels+1],
M03[MaxPixelChannels+1],
M10[MaxPixelChannels+1],
M11[MaxPixelChannels+1],
M12[MaxPixelChannels+1],
M20[MaxPixelChannels+1],
M21[MaxPixelChannels+1],
M22[MaxPixelChannels+1],
M30[MaxPixelChannels+1];
PointInfo
centroid[MaxPixelChannels+1];
ssize_t
channel,
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
channel_moments=(ChannelMoments *) AcquireQuantumMemory(MaxPixelChannels+1,
sizeof(*channel_moments));
if (channel_moments == (ChannelMoments *) NULL)
return(channel_moments);
(void) ResetMagickMemory(channel_moments,0,(MaxPixelChannels+1)*
sizeof(*channel_moments));
(void) ResetMagickMemory(centroid,0,sizeof(centroid));
(void) ResetMagickMemory(M00,0,sizeof(M00));
(void) ResetMagickMemory(M01,0,sizeof(M01));
(void) ResetMagickMemory(M02,0,sizeof(M02));
(void) ResetMagickMemory(M03,0,sizeof(M03));
(void) ResetMagickMemory(M10,0,sizeof(M10));
(void) ResetMagickMemory(M11,0,sizeof(M11));
(void) ResetMagickMemory(M12,0,sizeof(M12));
(void) ResetMagickMemory(M20,0,sizeof(M20));
(void) ResetMagickMemory(M21,0,sizeof(M21));
(void) ResetMagickMemory(M22,0,sizeof(M22));
(void) ResetMagickMemory(M30,0,sizeof(M30));
image_view=AcquireVirtualCacheView(image,exception);
for (y=0; y < (ssize_t) image->rows; y++)
{
register const Quantum
*magick_restrict p;
register ssize_t
x;
/*
Compute center of mass (centroid).
*/
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
if (GetPixelReadMask(image,p) == 0)
{
p+=GetPixelChannels(image);
continue;
}
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel=GetPixelChannelChannel(image,i);
PixelTrait traits=GetPixelChannelTraits(image,channel);
if (traits == UndefinedPixelTrait)
continue;
if ((traits & UpdatePixelTrait) == 0)
continue;
M00[channel]+=QuantumScale*p[i];
M00[MaxPixelChannels]+=QuantumScale*p[i];
M10[channel]+=x*QuantumScale*p[i];
M10[MaxPixelChannels]+=x*QuantumScale*p[i];
M01[channel]+=y*QuantumScale*p[i];
M01[MaxPixelChannels]+=y*QuantumScale*p[i];
}
p+=GetPixelChannels(image);
}
}
for (channel=0; channel <= MaxPixelChannels; channel++)
{
/*
Compute center of mass (centroid).
*/
if (M00[channel] < MagickEpsilon)
{
M00[channel]+=MagickEpsilon;
centroid[channel].x=(double) image->columns/2.0;
centroid[channel].y=(double) image->rows/2.0;
continue;
}
M00[channel]+=MagickEpsilon;
centroid[channel].x=M10[channel]/M00[channel];
centroid[channel].y=M01[channel]/M00[channel];
}
for (y=0; y < (ssize_t) image->rows; y++)
{
register const Quantum
*magick_restrict p;
register ssize_t
x;
/*
Compute the image moments.
*/
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
if (GetPixelReadMask(image,p) == 0)
{
p+=GetPixelChannels(image);
continue;
}
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel=GetPixelChannelChannel(image,i);
PixelTrait traits=GetPixelChannelTraits(image,channel);
if (traits == UndefinedPixelTrait)
continue;
if ((traits & UpdatePixelTrait) == 0)
continue;
M11[channel]+=(x-centroid[channel].x)*(y-centroid[channel].y)*
QuantumScale*p[i];
M11[MaxPixelChannels]+=(x-centroid[channel].x)*(y-centroid[channel].y)*
QuantumScale*p[i];
M20[channel]+=(x-centroid[channel].x)*(x-centroid[channel].x)*
QuantumScale*p[i];
M20[MaxPixelChannels]+=(x-centroid[channel].x)*(x-centroid[channel].x)*
QuantumScale*p[i];
M02[channel]+=(y-centroid[channel].y)*(y-centroid[channel].y)*
QuantumScale*p[i];
M02[MaxPixelChannels]+=(y-centroid[channel].y)*(y-centroid[channel].y)*
QuantumScale*p[i];
M21[channel]+=(x-centroid[channel].x)*(x-centroid[channel].x)*
(y-centroid[channel].y)*QuantumScale*p[i];
M21[MaxPixelChannels]+=(x-centroid[channel].x)*(x-centroid[channel].x)*
(y-centroid[channel].y)*QuantumScale*p[i];
M12[channel]+=(x-centroid[channel].x)*(y-centroid[channel].y)*
(y-centroid[channel].y)*QuantumScale*p[i];
M12[MaxPixelChannels]+=(x-centroid[channel].x)*(y-centroid[channel].y)*
(y-centroid[channel].y)*QuantumScale*p[i];
M22[channel]+=(x-centroid[channel].x)*(x-centroid[channel].x)*
(y-centroid[channel].y)*(y-centroid[channel].y)*QuantumScale*p[i];
M22[MaxPixelChannels]+=(x-centroid[channel].x)*(x-centroid[channel].x)*
(y-centroid[channel].y)*(y-centroid[channel].y)*QuantumScale*p[i];
M30[channel]+=(x-centroid[channel].x)*(x-centroid[channel].x)*
(x-centroid[channel].x)*QuantumScale*p[i];
M30[MaxPixelChannels]+=(x-centroid[channel].x)*(x-centroid[channel].x)*
(x-centroid[channel].x)*QuantumScale*p[i];
M03[channel]+=(y-centroid[channel].y)*(y-centroid[channel].y)*
(y-centroid[channel].y)*QuantumScale*p[i];
M03[MaxPixelChannels]+=(y-centroid[channel].y)*(y-centroid[channel].y)*
(y-centroid[channel].y)*QuantumScale*p[i];
}
p+=GetPixelChannels(image);
}
}
M00[MaxPixelChannels]/=GetImageChannels(image);
M01[MaxPixelChannels]/=GetImageChannels(image);
M02[MaxPixelChannels]/=GetImageChannels(image);
M03[MaxPixelChannels]/=GetImageChannels(image);
M10[MaxPixelChannels]/=GetImageChannels(image);
M11[MaxPixelChannels]/=GetImageChannels(image);
M12[MaxPixelChannels]/=GetImageChannels(image);
M20[MaxPixelChannels]/=GetImageChannels(image);
M21[MaxPixelChannels]/=GetImageChannels(image);
M22[MaxPixelChannels]/=GetImageChannels(image);
M30[MaxPixelChannels]/=GetImageChannels(image);
for (channel=0; channel <= MaxPixelChannels; channel++)
{
/*
Compute elliptical angle, major and minor axes, eccentricity, & intensity.
*/
channel_moments[channel].centroid=centroid[channel];
channel_moments[channel].ellipse_axis.x=sqrt((2.0/M00[channel])*
((M20[channel]+M02[channel])+sqrt(4.0*M11[channel]*M11[channel]+
(M20[channel]-M02[channel])*(M20[channel]-M02[channel]))));
channel_moments[channel].ellipse_axis.y=sqrt((2.0/M00[channel])*
((M20[channel]+M02[channel])-sqrt(4.0*M11[channel]*M11[channel]+
(M20[channel]-M02[channel])*(M20[channel]-M02[channel]))));
channel_moments[channel].ellipse_angle=RadiansToDegrees(0.5*atan(2.0*
M11[channel]/(M20[channel]-M02[channel]+MagickEpsilon)));
channel_moments[channel].ellipse_eccentricity=sqrt(1.0-(
channel_moments[channel].ellipse_axis.y/
(channel_moments[channel].ellipse_axis.x+MagickEpsilon)));
channel_moments[channel].ellipse_intensity=M00[channel]/
(MagickPI*channel_moments[channel].ellipse_axis.x*
channel_moments[channel].ellipse_axis.y+MagickEpsilon);
}
for (channel=0; channel <= MaxPixelChannels; channel++)
{
/*
Normalize image moments.
*/
M10[channel]=0.0;
M01[channel]=0.0;
M11[channel]/=pow(M00[channel],1.0+(1.0+1.0)/2.0);
M20[channel]/=pow(M00[channel],1.0+(2.0+0.0)/2.0);
M02[channel]/=pow(M00[channel],1.0+(0.0+2.0)/2.0);
M21[channel]/=pow(M00[channel],1.0+(2.0+1.0)/2.0);
M12[channel]/=pow(M00[channel],1.0+(1.0+2.0)/2.0);
M22[channel]/=pow(M00[channel],1.0+(2.0+2.0)/2.0);
M30[channel]/=pow(M00[channel],1.0+(3.0+0.0)/2.0);
M03[channel]/=pow(M00[channel],1.0+(0.0+3.0)/2.0);
M00[channel]=1.0;
}
image_view=DestroyCacheView(image_view);
for (channel=0; channel <= MaxPixelChannels; channel++)
{
/*
Compute Hu invariant moments.
*/
channel_moments[channel].invariant[0]=M20[channel]+M02[channel];
channel_moments[channel].invariant[1]=(M20[channel]-M02[channel])*
(M20[channel]-M02[channel])+4.0*M11[channel]*M11[channel];
channel_moments[channel].invariant[2]=(M30[channel]-3.0*M12[channel])*
(M30[channel]-3.0*M12[channel])+(3.0*M21[channel]-M03[channel])*
(3.0*M21[channel]-M03[channel]);
channel_moments[channel].invariant[3]=(M30[channel]+M12[channel])*
(M30[channel]+M12[channel])+(M21[channel]+M03[channel])*
(M21[channel]+M03[channel]);
channel_moments[channel].invariant[4]=(M30[channel]-3.0*M12[channel])*
(M30[channel]+M12[channel])*((M30[channel]+M12[channel])*
(M30[channel]+M12[channel])-3.0*(M21[channel]+M03[channel])*
(M21[channel]+M03[channel]))+(3.0*M21[channel]-M03[channel])*
(M21[channel]+M03[channel])*(3.0*(M30[channel]+M12[channel])*
(M30[channel]+M12[channel])-(M21[channel]+M03[channel])*
(M21[channel]+M03[channel]));
channel_moments[channel].invariant[5]=(M20[channel]-M02[channel])*
((M30[channel]+M12[channel])*(M30[channel]+M12[channel])-
(M21[channel]+M03[channel])*(M21[channel]+M03[channel]))+
4.0*M11[channel]*(M30[channel]+M12[channel])*(M21[channel]+M03[channel]);
channel_moments[channel].invariant[6]=(3.0*M21[channel]-M03[channel])*
(M30[channel]+M12[channel])*((M30[channel]+M12[channel])*
(M30[channel]+M12[channel])-3.0*(M21[channel]+M03[channel])*
(M21[channel]+M03[channel]))-(M30[channel]-3*M12[channel])*
(M21[channel]+M03[channel])*(3.0*(M30[channel]+M12[channel])*
(M30[channel]+M12[channel])-(M21[channel]+M03[channel])*
(M21[channel]+M03[channel]));
channel_moments[channel].invariant[7]=M11[channel]*((M30[channel]+
M12[channel])*(M30[channel]+M12[channel])-(M03[channel]+M21[channel])*
(M03[channel]+M21[channel]))-(M20[channel]-M02[channel])*
(M30[channel]+M12[channel])*(M03[channel]+M21[channel]);
}
if (y < (ssize_t) image->rows)
channel_moments=(ChannelMoments *) RelinquishMagickMemory(channel_moments);
return(channel_moments);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e C h a n n e l P e r c e p t u a l H a s h %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImagePerceptualHash() returns the perceptual hash of one or more
% image channels.
%
% The format of the GetImagePerceptualHash method is:
%
% ChannelPerceptualHash *GetImagePerceptualHash(const Image *image,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
static inline double MagickLog10(const double x)
{
#define Log10Epsilon (1.0e-11)
if (fabs(x) < Log10Epsilon)
return(log10(Log10Epsilon));
return(log10(fabs(x)));
}
MagickExport ChannelPerceptualHash *GetImagePerceptualHash(
const Image *image,ExceptionInfo *exception)
{
ChannelMoments
*moments;
ChannelPerceptualHash
*perceptual_hash;
Image
*hash_image;
MagickBooleanType
status;
register ssize_t
i;
ssize_t
channel;
/*
Blur then transform to sRGB colorspace.
*/
hash_image=BlurImage(image,0.0,1.0,exception);
if (hash_image == (Image *) NULL)
return((ChannelPerceptualHash *) NULL);
hash_image->depth=8;
status=TransformImageColorspace(hash_image,sRGBColorspace,exception);
if (status == MagickFalse)
return((ChannelPerceptualHash *) NULL);
moments=GetImageMoments(hash_image,exception);
hash_image=DestroyImage(hash_image);
if (moments == (ChannelMoments *) NULL)
return((ChannelPerceptualHash *) NULL);
perceptual_hash=(ChannelPerceptualHash *) AcquireQuantumMemory(
CompositeChannels+1UL,sizeof(*perceptual_hash));
if (perceptual_hash == (ChannelPerceptualHash *) NULL)
return((ChannelPerceptualHash *) NULL);
for (channel=0; channel <= MaxPixelChannels; channel++)
for (i=0; i < MaximumNumberOfImageMoments; i++)
perceptual_hash[channel].srgb_hu_phash[i]=
(-MagickLog10(moments[channel].invariant[i]));
moments=(ChannelMoments *) RelinquishMagickMemory(moments);
/*
Blur then transform to HCLp colorspace.
*/
hash_image=BlurImage(image,0.0,1.0,exception);
if (hash_image == (Image *) NULL)
{
perceptual_hash=(ChannelPerceptualHash *) RelinquishMagickMemory(
perceptual_hash);
return((ChannelPerceptualHash *) NULL);
}
hash_image->depth=8;
status=TransformImageColorspace(hash_image,HCLpColorspace,exception);
if (status == MagickFalse)
{
perceptual_hash=(ChannelPerceptualHash *) RelinquishMagickMemory(
perceptual_hash);
return((ChannelPerceptualHash *) NULL);
}
moments=GetImageMoments(hash_image,exception);
hash_image=DestroyImage(hash_image);
if (moments == (ChannelMoments *) NULL)
{
perceptual_hash=(ChannelPerceptualHash *) RelinquishMagickMemory(
perceptual_hash);
return((ChannelPerceptualHash *) NULL);
}
for (channel=0; channel <= MaxPixelChannels; channel++)
for (i=0; i < MaximumNumberOfImageMoments; i++)
perceptual_hash[channel].hclp_hu_phash[i]=
(-MagickLog10(moments[channel].invariant[i]));
moments=(ChannelMoments *) RelinquishMagickMemory(moments);
return(perceptual_hash);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e R a n g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageRange() returns the range of one or more image channels.
%
% The format of the GetImageRange method is:
%
% MagickBooleanType GetImageRange(const Image *image,double *minima,
% double *maxima,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o minima: the minimum value in the channel.
%
% o maxima: the maximum value in the channel.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType GetImageRange(const Image *image,double *minima,
double *maxima,ExceptionInfo *exception)
{
CacheView
*image_view;
MagickBooleanType
initialize,
status;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
status=MagickTrue;
initialize=MagickTrue;
*maxima=0.0;
*minima=0.0;
image_view=AcquireVirtualCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(status,initialize) \
magick_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
double
row_maxima = 0.0,
row_minima = 0.0;
MagickBooleanType
row_initialize;
register const Quantum
*magick_restrict p;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
continue;
}
row_initialize=MagickTrue;
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
if (GetPixelReadMask(image,p) == 0)
{
p+=GetPixelChannels(image);
continue;
}
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel=GetPixelChannelChannel(image,i);
PixelTrait traits=GetPixelChannelTraits(image,channel);
if (traits == UndefinedPixelTrait)
continue;
if ((traits & UpdatePixelTrait) == 0)
continue;
if (row_initialize != MagickFalse)
{
row_minima=(double) p[i];
row_maxima=(double) p[i];
row_initialize=MagickFalse;
}
else
{
if ((double) p[i] < row_minima)
row_minima=(double) p[i];
if ((double) p[i] > row_maxima)
row_maxima=(double) p[i];
}
}
p+=GetPixelChannels(image);
}
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_GetImageRange)
#endif
{
if (initialize != MagickFalse)
{
*minima=row_minima;
*maxima=row_maxima;
initialize=MagickFalse;
}
else
{
if (row_minima < *minima)
*minima=row_minima;
if (row_maxima > *maxima)
*maxima=row_maxima;
}
}
}
image_view=DestroyCacheView(image_view);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t I m a g e S t a t i s t i c s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetImageStatistics() returns statistics for each channel in the image. The
% statistics include the channel depth, its minima, maxima, mean, standard
% deviation, kurtosis and skewness. You can access the red channel mean, for
% example, like this:
%
% channel_statistics=GetImageStatistics(image,exception);
% red_mean=channel_statistics[RedPixelChannel].mean;
%
% Use MagickRelinquishMemory() to free the statistics buffer.
%
% The format of the GetImageStatistics method is:
%
% ChannelStatistics *GetImageStatistics(const Image *image,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport ChannelStatistics *GetImageStatistics(const Image *image,
ExceptionInfo *exception)
{
ChannelStatistics
*channel_statistics;
double
*histogram;
MagickStatusType
status;
QuantumAny
range;
register ssize_t
i;
size_t
channels,
depth;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
histogram=(double *) AcquireQuantumMemory(MaxMap+1UL,MaxPixelChannels*
sizeof(*histogram));
channel_statistics=(ChannelStatistics *) AcquireQuantumMemory(
MaxPixelChannels+1,sizeof(*channel_statistics));
if ((channel_statistics == (ChannelStatistics *) NULL) ||
(histogram == (double *) NULL))
{
if (histogram != (double *) NULL)
histogram=(double *) RelinquishMagickMemory(histogram);
if (channel_statistics != (ChannelStatistics *) NULL)
channel_statistics=(ChannelStatistics *) RelinquishMagickMemory(
channel_statistics);
return(channel_statistics);
}
(void) ResetMagickMemory(channel_statistics,0,(MaxPixelChannels+1)*
sizeof(*channel_statistics));
for (i=0; i <= (ssize_t) MaxPixelChannels; i++)
{
channel_statistics[i].depth=1;
channel_statistics[i].maxima=(-MagickMaximumValue);
channel_statistics[i].minima=MagickMaximumValue;
}
(void) ResetMagickMemory(histogram,0,(MaxMap+1)*MaxPixelChannels*
sizeof(*histogram));
for (y=0; y < (ssize_t) image->rows; y++)
{
register const Quantum
*magick_restrict p;
register ssize_t
x;
p=GetVirtualPixels(image,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
if (GetPixelReadMask(image,p) == 0)
{
p+=GetPixelChannels(image);
continue;
}
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel=GetPixelChannelChannel(image,i);
PixelTrait traits=GetPixelChannelTraits(image,channel);
if (traits == UndefinedPixelTrait)
continue;
if (channel_statistics[channel].depth != MAGICKCORE_QUANTUM_DEPTH)
{
depth=channel_statistics[channel].depth;
range=GetQuantumRange(depth);
status=p[i] != ScaleAnyToQuantum(ScaleQuantumToAny(p[i],range),
range) ? MagickTrue : MagickFalse;
if (status != MagickFalse)
{
channel_statistics[channel].depth++;
i--;
continue;
}
}
if ((double) p[i] < channel_statistics[channel].minima)
channel_statistics[channel].minima=(double) p[i];
if ((double) p[i] > channel_statistics[channel].maxima)
channel_statistics[channel].maxima=(double) p[i];
channel_statistics[channel].sum+=p[i];
channel_statistics[channel].sum_squared+=(double) p[i]*p[i];
channel_statistics[channel].sum_cubed+=(double) p[i]*p[i]*p[i];
channel_statistics[channel].sum_fourth_power+=(double) p[i]*p[i]*p[i]*
p[i];
channel_statistics[channel].area++;
histogram[GetPixelChannels(image)*ScaleQuantumToMap(
ClampToQuantum((double) p[i]))+i]++;
}
p+=GetPixelChannels(image);
}
}
for (i=0; i < (ssize_t) MaxPixelChannels; i++)
{
double
area,
number_bins;
register ssize_t
j;
area=PerceptibleReciprocal(channel_statistics[i].area);
channel_statistics[i].sum*=area;
channel_statistics[i].sum_squared*=area;
channel_statistics[i].sum_cubed*=area;
channel_statistics[i].sum_fourth_power*=area;
channel_statistics[i].mean=channel_statistics[i].sum;
channel_statistics[i].variance=channel_statistics[i].sum_squared;
channel_statistics[i].standard_deviation=sqrt(
channel_statistics[i].variance-(channel_statistics[i].mean*
channel_statistics[i].mean));
number_bins=0.0;
for (j=0; j < (ssize_t) (MaxMap+1U); j++)
if (histogram[GetPixelChannels(image)*j+i] > 0.0)
number_bins++;
for (j=0; j < (ssize_t) (MaxMap+1U); j++)
{
double
count;
count=histogram[GetPixelChannels(image)*j+i]*area;
channel_statistics[i].entropy+=-count*MagickLog10(count)/
MagickLog10(number_bins);
}
}
for (i=0; i < (ssize_t) MaxPixelChannels; i++)
{
PixelTrait traits=GetPixelChannelTraits(image,(PixelChannel) i);
if ((traits & UpdatePixelTrait) == 0)
continue;
channel_statistics[CompositePixelChannel].area+=channel_statistics[i].area;
channel_statistics[CompositePixelChannel].minima=MagickMin(
channel_statistics[CompositePixelChannel].minima,
channel_statistics[i].minima);
channel_statistics[CompositePixelChannel].maxima=EvaluateMax(
channel_statistics[CompositePixelChannel].maxima,
channel_statistics[i].maxima);
channel_statistics[CompositePixelChannel].sum+=channel_statistics[i].sum;
channel_statistics[CompositePixelChannel].sum_squared+=
channel_statistics[i].sum_squared;
channel_statistics[CompositePixelChannel].sum_cubed+=
channel_statistics[i].sum_cubed;
channel_statistics[CompositePixelChannel].sum_fourth_power+=
channel_statistics[i].sum_fourth_power;
channel_statistics[CompositePixelChannel].mean+=channel_statistics[i].mean;
channel_statistics[CompositePixelChannel].variance+=
channel_statistics[i].variance-channel_statistics[i].mean*
channel_statistics[i].mean;
channel_statistics[CompositePixelChannel].standard_deviation+=
channel_statistics[i].variance-channel_statistics[i].mean*
channel_statistics[i].mean;
if (channel_statistics[i].entropy > MagickEpsilon)
channel_statistics[CompositePixelChannel].entropy+=
channel_statistics[i].entropy;
}
channels=GetImageChannels(image);
channel_statistics[CompositePixelChannel].area/=channels;
channel_statistics[CompositePixelChannel].sum/=channels;
channel_statistics[CompositePixelChannel].sum_squared/=channels;
channel_statistics[CompositePixelChannel].sum_cubed/=channels;
channel_statistics[CompositePixelChannel].sum_fourth_power/=channels;
channel_statistics[CompositePixelChannel].mean/=channels;
channel_statistics[CompositePixelChannel].variance/=channels;
channel_statistics[CompositePixelChannel].standard_deviation=
sqrt(channel_statistics[CompositePixelChannel].standard_deviation/channels);
channel_statistics[CompositePixelChannel].kurtosis/=channels;
channel_statistics[CompositePixelChannel].skewness/=channels;
channel_statistics[CompositePixelChannel].entropy/=channels;
for (i=0; i <= (ssize_t) MaxPixelChannels; i++)
{
double
standard_deviation;
if (channel_statistics[i].standard_deviation == 0.0)
continue;
standard_deviation=PerceptibleReciprocal(
channel_statistics[i].standard_deviation);
channel_statistics[i].skewness=(channel_statistics[i].sum_cubed-3.0*
channel_statistics[i].mean*channel_statistics[i].sum_squared+2.0*
channel_statistics[i].mean*channel_statistics[i].mean*
channel_statistics[i].mean)*(standard_deviation*standard_deviation*
standard_deviation);
channel_statistics[i].kurtosis=(channel_statistics[i].sum_fourth_power-4.0*
channel_statistics[i].mean*channel_statistics[i].sum_cubed+6.0*
channel_statistics[i].mean*channel_statistics[i].mean*
channel_statistics[i].sum_squared-3.0*channel_statistics[i].mean*
channel_statistics[i].mean*1.0*channel_statistics[i].mean*
channel_statistics[i].mean)*(standard_deviation*standard_deviation*
standard_deviation*standard_deviation)-3.0;
}
histogram=(double *) RelinquishMagickMemory(histogram);
if (y < (ssize_t) image->rows)
channel_statistics=(ChannelStatistics *) RelinquishMagickMemory(
channel_statistics);
return(channel_statistics);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% P o l y n o m i a l I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% PolynomialImage() returns a new image where each pixel is the sum of the
% pixels in the image sequence after applying its corresponding terms
% (coefficient and degree pairs).
%
% The format of the PolynomialImage method is:
%
% Image *PolynomialImage(const Image *images,const size_t number_terms,
% const double *terms,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o images: the image sequence.
%
% o number_terms: the number of terms in the list. The actual list length
% is 2 x number_terms + 1 (the constant).
%
% o terms: the list of polynomial coefficients and degree pairs and a
% constant.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *PolynomialImage(const Image *images,
const size_t number_terms,const double *terms,ExceptionInfo *exception)
{
#define PolynomialImageTag "Polynomial/Image"
CacheView
*polynomial_view;
Image
*image;
MagickBooleanType
status;
MagickOffsetType
progress;
PixelChannels
**magick_restrict polynomial_pixels;
size_t
number_images;
ssize_t
y;
assert(images != (Image *) NULL);
assert(images->signature == MagickCoreSignature);
if (images->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",images->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
image=CloneImage(images,images->columns,images->rows,MagickTrue,
exception);
if (image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse)
{
image=DestroyImage(image);
return((Image *) NULL);
}
number_images=GetImageListLength(images);
polynomial_pixels=AcquirePixelThreadSet(images,number_images);
if (polynomial_pixels == (PixelChannels **) NULL)
{
image=DestroyImage(image);
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",images->filename);
return((Image *) NULL);
}
/*
Polynomial image pixels.
*/
status=MagickTrue;
progress=0;
polynomial_view=AcquireAuthenticCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status) \
magick_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
CacheView
*image_view;
const Image
*next;
const int
id = GetOpenMPThreadId();
register ssize_t
i,
x;
register PixelChannels
*polynomial_pixel;
register Quantum
*magick_restrict q;
ssize_t
j;
if (status == MagickFalse)
continue;
q=QueueCacheViewAuthenticPixels(polynomial_view,0,y,image->columns,1,
exception);
if (q == (Quantum *) NULL)
{
status=MagickFalse;
continue;
}
polynomial_pixel=polynomial_pixels[id];
for (j=0; j < (ssize_t) image->columns; j++)
for (i=0; i < MaxPixelChannels; i++)
polynomial_pixel[j].channel[i]=0.0;
next=images;
for (j=0; j < (ssize_t) number_images; j++)
{
register const Quantum
*p;
if (j >= (ssize_t) number_terms)
continue;
image_view=AcquireVirtualCacheView(next,exception);
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
{
image_view=DestroyCacheView(image_view);
break;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
if (GetPixelReadMask(next,p) == 0)
{
p+=GetPixelChannels(next);
continue;
}
for (i=0; i < (ssize_t) GetPixelChannels(next); i++)
{
MagickRealType
coefficient,
degree;
PixelChannel channel=GetPixelChannelChannel(image,i);
PixelTrait traits=GetPixelChannelTraits(next,channel);
PixelTrait polynomial_traits=GetPixelChannelTraits(image,channel);
if ((traits == UndefinedPixelTrait) ||
(polynomial_traits == UndefinedPixelTrait))
continue;
if ((traits & UpdatePixelTrait) == 0)
continue;
coefficient=(MagickRealType) terms[2*j];
degree=(MagickRealType) terms[(j << 1)+1];
polynomial_pixel[x].channel[i]+=coefficient*
pow(QuantumScale*GetPixelChannel(image,channel,p),degree);
}
p+=GetPixelChannels(next);
}
image_view=DestroyCacheView(image_view);
next=GetNextImageInList(next);
}
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
if (GetPixelReadMask(image,q) == 0)
{
q+=GetPixelChannels(image);
continue;
}
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel=GetPixelChannelChannel(image,i);
PixelTrait traits=GetPixelChannelTraits(image,channel);
if (traits == UndefinedPixelTrait)
continue;
if ((traits & UpdatePixelTrait) == 0)
continue;
q[i]=ClampToQuantum(QuantumRange*polynomial_pixel[x].channel[i]);
}
q+=GetPixelChannels(image);
}
if (SyncCacheViewAuthenticPixels(polynomial_view,exception) == MagickFalse)
status=MagickFalse;
if (images->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_PolynomialImages)
#endif
proceed=SetImageProgress(images,PolynomialImageTag,progress++,
image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
polynomial_view=DestroyCacheView(polynomial_view);
polynomial_pixels=DestroyPixelThreadSet(polynomial_pixels);
if (status == MagickFalse)
image=DestroyImage(image);
return(image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S t a t i s t i c I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% StatisticImage() makes each pixel the min / max / median / mode / etc. of
% the neighborhood of the specified width and height.
%
% The format of the StatisticImage method is:
%
% Image *StatisticImage(const Image *image,const StatisticType type,
% const size_t width,const size_t height,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o type: the statistic type (median, mode, etc.).
%
% o width: the width of the pixel neighborhood.
%
% o height: the height of the pixel neighborhood.
%
% o exception: return any errors or warnings in this structure.
%
*/
typedef struct _SkipNode
{
size_t
next[9],
count,
signature;
} SkipNode;
typedef struct _SkipList
{
ssize_t
level;
SkipNode
*nodes;
} SkipList;
typedef struct _PixelList
{
size_t
length,
seed;
SkipList
skip_list;
size_t
signature;
} PixelList;
static PixelList *DestroyPixelList(PixelList *pixel_list)
{
if (pixel_list == (PixelList *) NULL)
return((PixelList *) NULL);
if (pixel_list->skip_list.nodes != (SkipNode *) NULL)
pixel_list->skip_list.nodes=(SkipNode *) RelinquishMagickMemory(
pixel_list->skip_list.nodes);
pixel_list=(PixelList *) RelinquishMagickMemory(pixel_list);
return(pixel_list);
}
static PixelList **DestroyPixelListThreadSet(PixelList **pixel_list)
{
register ssize_t
i;
assert(pixel_list != (PixelList **) NULL);
for (i=0; i < (ssize_t) GetMagickResourceLimit(ThreadResource); i++)
if (pixel_list[i] != (PixelList *) NULL)
pixel_list[i]=DestroyPixelList(pixel_list[i]);
pixel_list=(PixelList **) RelinquishMagickMemory(pixel_list);
return(pixel_list);
}
static PixelList *AcquirePixelList(const size_t width,const size_t height)
{
PixelList
*pixel_list;
pixel_list=(PixelList *) AcquireMagickMemory(sizeof(*pixel_list));
if (pixel_list == (PixelList *) NULL)
return(pixel_list);
(void) ResetMagickMemory((void *) pixel_list,0,sizeof(*pixel_list));
pixel_list->length=width*height;
pixel_list->skip_list.nodes=(SkipNode *) AcquireQuantumMemory(65537UL,
sizeof(*pixel_list->skip_list.nodes));
if (pixel_list->skip_list.nodes == (SkipNode *) NULL)
return(DestroyPixelList(pixel_list));
(void) ResetMagickMemory(pixel_list->skip_list.nodes,0,65537UL*
sizeof(*pixel_list->skip_list.nodes));
pixel_list->signature=MagickCoreSignature;
return(pixel_list);
}
static PixelList **AcquirePixelListThreadSet(const size_t width,
const size_t height)
{
PixelList
**pixel_list;
register ssize_t
i;
size_t
number_threads;
number_threads=(size_t) GetMagickResourceLimit(ThreadResource);
pixel_list=(PixelList **) AcquireQuantumMemory(number_threads,
sizeof(*pixel_list));
if (pixel_list == (PixelList **) NULL)
return((PixelList **) NULL);
(void) ResetMagickMemory(pixel_list,0,number_threads*sizeof(*pixel_list));
for (i=0; i < (ssize_t) number_threads; i++)
{
pixel_list[i]=AcquirePixelList(width,height);
if (pixel_list[i] == (PixelList *) NULL)
return(DestroyPixelListThreadSet(pixel_list));
}
return(pixel_list);
}
static void AddNodePixelList(PixelList *pixel_list,const size_t color)
{
register SkipList
*p;
register ssize_t
level;
size_t
search,
update[9];
/*
Initialize the node.
*/
p=(&pixel_list->skip_list);
p->nodes[color].signature=pixel_list->signature;
p->nodes[color].count=1;
/*
Determine where it belongs in the list.
*/
search=65536UL;
for (level=p->level; level >= 0; level--)
{
while (p->nodes[search].next[level] < color)
search=p->nodes[search].next[level];
update[level]=search;
}
/*
Generate a pseudo-random level for this node.
*/
for (level=0; ; level++)
{
pixel_list->seed=(pixel_list->seed*42893621L)+1L;
if ((pixel_list->seed & 0x300) != 0x300)
break;
}
if (level > 8)
level=8;
if (level > (p->level+2))
level=p->level+2;
/*
If we're raising the list's level, link back to the root node.
*/
while (level > p->level)
{
p->level++;
update[p->level]=65536UL;
}
/*
Link the node into the skip-list.
*/
do
{
p->nodes[color].next[level]=p->nodes[update[level]].next[level];
p->nodes[update[level]].next[level]=color;
} while (level-- > 0);
}
static inline void GetMaximumPixelList(PixelList *pixel_list,Quantum *pixel)
{
register SkipList
*p;
size_t
color,
maximum;
ssize_t
count;
/*
Find the maximum value for each of the color.
*/
p=(&pixel_list->skip_list);
color=65536L;
count=0;
maximum=p->nodes[color].next[0];
do
{
color=p->nodes[color].next[0];
if (color > maximum)
maximum=color;
count+=p->nodes[color].count;
} while (count < (ssize_t) pixel_list->length);
*pixel=ScaleShortToQuantum((unsigned short) maximum);
}
static inline void GetMeanPixelList(PixelList *pixel_list,Quantum *pixel)
{
double
sum;
register SkipList
*p;
size_t
color;
ssize_t
count;
/*
Find the mean value for each of the color.
*/
p=(&pixel_list->skip_list);
color=65536L;
count=0;
sum=0.0;
do
{
color=p->nodes[color].next[0];
sum+=(double) p->nodes[color].count*color;
count+=p->nodes[color].count;
} while (count < (ssize_t) pixel_list->length);
sum/=pixel_list->length;
*pixel=ScaleShortToQuantum((unsigned short) sum);
}
static inline void GetMedianPixelList(PixelList *pixel_list,Quantum *pixel)
{
register SkipList
*p;
size_t
color;
ssize_t
count;
/*
Find the median value for each of the color.
*/
p=(&pixel_list->skip_list);
color=65536L;
count=0;
do
{
color=p->nodes[color].next[0];
count+=p->nodes[color].count;
} while (count <= (ssize_t) (pixel_list->length >> 1));
*pixel=ScaleShortToQuantum((unsigned short) color);
}
static inline void GetMinimumPixelList(PixelList *pixel_list,Quantum *pixel)
{
register SkipList
*p;
size_t
color,
minimum;
ssize_t
count;
/*
Find the minimum value for each of the color.
*/
p=(&pixel_list->skip_list);
count=0;
color=65536UL;
minimum=p->nodes[color].next[0];
do
{
color=p->nodes[color].next[0];
if (color < minimum)
minimum=color;
count+=p->nodes[color].count;
} while (count < (ssize_t) pixel_list->length);
*pixel=ScaleShortToQuantum((unsigned short) minimum);
}
static inline void GetModePixelList(PixelList *pixel_list,Quantum *pixel)
{
register SkipList
*p;
size_t
color,
max_count,
mode;
ssize_t
count;
/*
Make each pixel the 'predominant color' of the specified neighborhood.
*/
p=(&pixel_list->skip_list);
color=65536L;
mode=color;
max_count=p->nodes[mode].count;
count=0;
do
{
color=p->nodes[color].next[0];
if (p->nodes[color].count > max_count)
{
mode=color;
max_count=p->nodes[mode].count;
}
count+=p->nodes[color].count;
} while (count < (ssize_t) pixel_list->length);
*pixel=ScaleShortToQuantum((unsigned short) mode);
}
static inline void GetNonpeakPixelList(PixelList *pixel_list,Quantum *pixel)
{
register SkipList
*p;
size_t
color,
next,
previous;
ssize_t
count;
/*
Finds the non peak value for each of the colors.
*/
p=(&pixel_list->skip_list);
color=65536L;
next=p->nodes[color].next[0];
count=0;
do
{
previous=color;
color=next;
next=p->nodes[color].next[0];
count+=p->nodes[color].count;
} while (count <= (ssize_t) (pixel_list->length >> 1));
if ((previous == 65536UL) && (next != 65536UL))
color=next;
else
if ((previous != 65536UL) && (next == 65536UL))
color=previous;
*pixel=ScaleShortToQuantum((unsigned short) color);
}
static inline void GetRootMeanSquarePixelList(PixelList *pixel_list,
Quantum *pixel)
{
double
sum;
register SkipList
*p;
size_t
color;
ssize_t
count;
/*
Find the root mean square value for each of the color.
*/
p=(&pixel_list->skip_list);
color=65536L;
count=0;
sum=0.0;
do
{
color=p->nodes[color].next[0];
sum+=(double) (p->nodes[color].count*color*color);
count+=p->nodes[color].count;
} while (count < (ssize_t) pixel_list->length);
sum/=pixel_list->length;
*pixel=ScaleShortToQuantum((unsigned short) sqrt(sum));
}
static inline void GetStandardDeviationPixelList(PixelList *pixel_list,
Quantum *pixel)
{
double
sum,
sum_squared;
register SkipList
*p;
size_t
color;
ssize_t
count;
/*
Find the standard-deviation value for each of the color.
*/
p=(&pixel_list->skip_list);
color=65536L;
count=0;
sum=0.0;
sum_squared=0.0;
do
{
register ssize_t
i;
color=p->nodes[color].next[0];
sum+=(double) p->nodes[color].count*color;
for (i=0; i < (ssize_t) p->nodes[color].count; i++)
sum_squared+=((double) color)*((double) color);
count+=p->nodes[color].count;
} while (count < (ssize_t) pixel_list->length);
sum/=pixel_list->length;
sum_squared/=pixel_list->length;
*pixel=ScaleShortToQuantum((unsigned short) sqrt(sum_squared-(sum*sum)));
}
static inline void InsertPixelList(const Quantum pixel,PixelList *pixel_list)
{
size_t
signature;
unsigned short
index;
index=ScaleQuantumToShort(pixel);
signature=pixel_list->skip_list.nodes[index].signature;
if (signature == pixel_list->signature)
{
pixel_list->skip_list.nodes[index].count++;
return;
}
AddNodePixelList(pixel_list,index);
}
static void ResetPixelList(PixelList *pixel_list)
{
int
level;
register SkipNode
*root;
register SkipList
*p;
/*
Reset the skip-list.
*/
p=(&pixel_list->skip_list);
root=p->nodes+65536UL;
p->level=0;
for (level=0; level < 9; level++)
root->next[level]=65536UL;
pixel_list->seed=pixel_list->signature++;
}
MagickExport Image *StatisticImage(const Image *image,const StatisticType type,
const size_t width,const size_t height,ExceptionInfo *exception)
{
#define StatisticImageTag "Statistic/Image"
CacheView
*image_view,
*statistic_view;
Image
*statistic_image;
MagickBooleanType
status;
MagickOffsetType
progress;
PixelList
**magick_restrict pixel_list;
ssize_t
center,
y;
/*
Initialize statistics image attributes.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
statistic_image=CloneImage(image,image->columns,image->rows,MagickTrue,
exception);
if (statistic_image == (Image *) NULL)
return((Image *) NULL);
status=SetImageStorageClass(statistic_image,DirectClass,exception);
if (status == MagickFalse)
{
statistic_image=DestroyImage(statistic_image);
return((Image *) NULL);
}
pixel_list=AcquirePixelListThreadSet(MagickMax(width,1),MagickMax(height,1));
if (pixel_list == (PixelList **) NULL)
{
statistic_image=DestroyImage(statistic_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
/*
Make each pixel the min / max / median / mode / etc. of the neighborhood.
*/
center=(ssize_t) GetPixelChannels(image)*(image->columns+MagickMax(width,1))*
(MagickMax(height,1)/2L)+GetPixelChannels(image)*(MagickMax(width,1)/2L);
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(image,exception);
statistic_view=AcquireAuthenticCacheView(statistic_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status) \
magick_threads(image,statistic_image,statistic_image->rows,1)
#endif
for (y=0; y < (ssize_t) statistic_image->rows; y++)
{
const int
id = GetOpenMPThreadId();
register const Quantum
*magick_restrict p;
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,-((ssize_t) MagickMax(width,1)/2L),y-
(ssize_t) (MagickMax(height,1)/2L),image->columns+MagickMax(width,1),
MagickMax(height,1),exception);
q=QueueCacheViewAuthenticPixels(statistic_view,0,y,statistic_image->columns, 1,exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) statistic_image->columns; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
Quantum
pixel;
register const Quantum
*magick_restrict pixels;
register ssize_t
u;
ssize_t
v;
PixelChannel channel=GetPixelChannelChannel(image,i);
PixelTrait traits=GetPixelChannelTraits(image,channel);
PixelTrait statistic_traits=GetPixelChannelTraits(statistic_image,
channel);
if ((traits == UndefinedPixelTrait) ||
(statistic_traits == UndefinedPixelTrait))
continue;
if (((statistic_traits & CopyPixelTrait) != 0) ||
(GetPixelReadMask(image,p) == 0))
{
SetPixelChannel(statistic_image,channel,p[center+i],q);
continue;
}
pixels=p;
ResetPixelList(pixel_list[id]);
for (v=0; v < (ssize_t) MagickMax(height,1); v++)
{
for (u=0; u < (ssize_t) MagickMax(width,1); u++)
{
InsertPixelList(pixels[i],pixel_list[id]);
pixels+=GetPixelChannels(image);
}
pixels+=GetPixelChannels(image)*image->columns;
}
switch (type)
{
case GradientStatistic:
{
double
maximum,
minimum;
GetMinimumPixelList(pixel_list[id],&pixel);
minimum=(double) pixel;
GetMaximumPixelList(pixel_list[id],&pixel);
maximum=(double) pixel;
pixel=ClampToQuantum(MagickAbsoluteValue(maximum-minimum));
break;
}
case MaximumStatistic:
{
GetMaximumPixelList(pixel_list[id],&pixel);
break;
}
case MeanStatistic:
{
GetMeanPixelList(pixel_list[id],&pixel);
break;
}
case MedianStatistic:
default:
{
GetMedianPixelList(pixel_list[id],&pixel);
break;
}
case MinimumStatistic:
{
GetMinimumPixelList(pixel_list[id],&pixel);
break;
}
case ModeStatistic:
{
GetModePixelList(pixel_list[id],&pixel);
break;
}
case NonpeakStatistic:
{
GetNonpeakPixelList(pixel_list[id],&pixel);
break;
}
case RootMeanSquareStatistic:
{
GetRootMeanSquarePixelList(pixel_list[id],&pixel);
break;
}
case StandardDeviationStatistic:
{
GetStandardDeviationPixelList(pixel_list[id],&pixel);
break;
}
}
SetPixelChannel(statistic_image,channel,pixel,q);
}
p+=GetPixelChannels(image);
q+=GetPixelChannels(statistic_image);
}
if (SyncCacheViewAuthenticPixels(statistic_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_StatisticImage)
#endif
proceed=SetImageProgress(image,StatisticImageTag,progress++,
image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
statistic_view=DestroyCacheView(statistic_view);
image_view=DestroyCacheView(image_view);
pixel_list=DestroyPixelListThreadSet(pixel_list);
if (status == MagickFalse)
statistic_image=DestroyImage(statistic_image);
return(statistic_image);
}