| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % M M OOO RRRR PPPP H H OOO L OOO GGGG Y Y % |
| % MM MM O O R R P P H H O O L O O G Y Y % |
| % M M M O O RRRR PPPP HHHHH O O L O O G GGG Y % |
| % M M O O R R P H H O O L O O G G Y % |
| % M M OOO R R P H H OOO LLLLL OOO GGG Y % |
| % % |
| % % |
| % MagickCore Morphology Methods % |
| % % |
| % Software Design % |
| % Anthony Thyssen % |
| % January 2010 % |
| % % |
| % % |
| % Copyright 1999-2010 ImageMagick Studio LLC, a non-profit organization % |
| % dedicated to making software imaging solutions freely available. % |
| % % |
| % You may not use this file except in compliance with the License. You may % |
| % obtain a copy of the License at % |
| % % |
| % http://www.imagemagick.org/script/license.php % |
| % % |
| % Unless required by applicable law or agreed to in writing, software % |
| % distributed under the License is distributed on an "AS IS" BASIS, % |
| % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % |
| % See the License for the specific language governing permissions and % |
| % limitations under the License. % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % Morpology is the the application of various kernels, of any size and even |
| % shape, to a image in various ways (typically binary, but not always). |
| % |
| % Convolution (weighted sum or average) is just one specific type of |
| % morphology. Just one that is very common for image bluring and sharpening |
| % effects. Not only 2D Gaussian blurring, but also 2-pass 1D Blurring. |
| % |
| % This module provides not only a general morphology function, and the ability |
| % to apply more advanced or iterative morphologies, but also functions for the |
| % generation of many different types of kernel arrays from user supplied |
| % arguments. Prehaps even the generation of a kernel from a small image. |
| */ |
| |
| /* |
| Include declarations. |
| */ |
| #include "magick/studio.h" |
| #include "magick/artifact.h" |
| #include "magick/cache-view.h" |
| #include "magick/color-private.h" |
| #include "magick/enhance.h" |
| #include "magick/exception.h" |
| #include "magick/exception-private.h" |
| #include "magick/gem.h" |
| #include "magick/hashmap.h" |
| #include "magick/image.h" |
| #include "magick/image-private.h" |
| #include "magick/list.h" |
| #include "magick/magick.h" |
| #include "magick/memory_.h" |
| #include "magick/monitor-private.h" |
| #include "magick/morphology.h" |
| #include "magick/morphology-private.h" |
| #include "magick/option.h" |
| #include "magick/pixel-private.h" |
| #include "magick/prepress.h" |
| #include "magick/quantize.h" |
| #include "magick/registry.h" |
| #include "magick/semaphore.h" |
| #include "magick/splay-tree.h" |
| #include "magick/statistic.h" |
| #include "magick/string_.h" |
| #include "magick/string-private.h" |
| #include "magick/token.h" |
| |
| |
| /* |
| ** The following test is for special floating point numbers of value NaN (not |
| ** a number), that may be used within a Kernel Definition. NaN's are defined |
| ** as part of the IEEE standard for floating point number representation. |
| ** |
| ** These are used as a Kernel value to mean that this kernel position is not |
| ** part of the kernel neighbourhood for convolution or morphology processing, |
| ** and thus should be ignored. This allows the use of 'shaped' kernels. |
| ** |
| ** The special properity that two NaN's are never equal, even if they are from |
| ** the same variable allow you to test if a value is special NaN value. |
| ** |
| ** This macro IsNaN() is thus is only true if the value given is NaN. |
| */ |
| #define IsNan(a) ((a)!=(a)) |
| |
| /* |
| Other global definitions used by module. |
| */ |
| static inline double MagickMin(const double x,const double y) |
| { |
| return( x < y ? x : y); |
| } |
| static inline double MagickMax(const double x,const double y) |
| { |
| return( x > y ? x : y); |
| } |
| #define Minimize(assign,value) assign=MagickMin(assign,value) |
| #define Maximize(assign,value) assign=MagickMax(assign,value) |
| |
| /* Currently these are only internal to this module */ |
| static void |
| CalcKernelMetaData(KernelInfo *), |
| ExpandMirrorKernelInfo(KernelInfo *), |
| ExpandRotateKernelInfo(KernelInfo *, const double), |
| RotateKernelInfo(KernelInfo *, double); |
| |
| |
| /* Quick function to find last kernel in a kernel list */ |
| static inline KernelInfo *LastKernelInfo(KernelInfo *kernel) |
| { |
| while (kernel->next != (KernelInfo *) NULL) |
| kernel = kernel->next; |
| return(kernel); |
| } |
| |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % A c q u i r e K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % AcquireKernelInfo() takes the given string (generally supplied by the |
| % user) and converts it into a Morphology/Convolution Kernel. This allows |
| % users to specify a kernel from a number of pre-defined kernels, or to fully |
| % specify their own kernel for a specific Convolution or Morphology |
| % Operation. |
| % |
| % The kernel so generated can be any rectangular array of floating point |
| % values (doubles) with the 'control point' or 'pixel being affected' |
| % anywhere within that array of values. |
| % |
| % Previously IM was restricted to a square of odd size using the exact |
| % center as origin, this is no longer the case, and any rectangular kernel |
| % with any value being declared the origin. This in turn allows the use of |
| % highly asymmetrical kernels. |
| % |
| % The floating point values in the kernel can also include a special value |
| % known as 'nan' or 'not a number' to indicate that this value is not part |
| % of the kernel array. This allows you to shaped the kernel within its |
| % rectangular area. That is 'nan' values provide a 'mask' for the kernel |
| % shape. However at least one non-nan value must be provided for correct |
| % working of a kernel. |
| % |
| % The returned kernel should be freed using the DestroyKernelInfo() when you |
| % are finished with it. Do not free this memory yourself. |
| % |
| % Input kernel defintion strings can consist of any of three types. |
| % |
| % "name:args[[@><]" |
| % Select from one of the built in kernels, using the name and |
| % geometry arguments supplied. See AcquireKernelBuiltIn() |
| % |
| % "WxH[+X+Y][@><]:num, num, num ..." |
| % a kernel of size W by H, with W*H floating point numbers following. |
| % the 'center' can be optionally be defined at +X+Y (such that +0+0 |
| % is top left corner). If not defined the pixel in the center, for |
| % odd sizes, or to the immediate top or left of center for even sizes |
| % is automatically selected. |
| % |
| % "num, num, num, num, ..." |
| % list of floating point numbers defining an 'old style' odd sized |
| % square kernel. At least 9 values should be provided for a 3x3 |
| % square kernel, 25 for a 5x5 square kernel, 49 for 7x7, etc. |
| % Values can be space or comma separated. This is not recommended. |
| % |
| % You can define a 'list of kernels' which can be used by some morphology |
| % operators A list is defined as a semi-colon seperated list kernels. |
| % |
| % " kernel ; kernel ; kernel ; " |
| % |
| % Any extra ';' characters, at start, end or between kernel defintions are |
| % simply ignored. |
| % |
| % The special flags will expand a single kernel, into a list of rotated |
| % kernels. A '@' flag will expand a 3x3 kernel into a list of 45-degree |
| % cyclic rotations, while a '>' will generate a list of 90-degree rotations. |
| % The '<' also exands using 90-degree rotates, but giving a 180-degree |
| % reflected kernel before the +/- 90-degree rotations, which can be important |
| % for Thinning operations. |
| % |
| % Note that 'name' kernels will start with an alphabetic character while the |
| % new kernel specification has a ':' character in its specification string. |
| % If neither is the case, it is assumed an old style of a simple list of |
| % numbers generating a odd-sized square kernel has been given. |
| % |
| % The format of the AcquireKernal method is: |
| % |
| % KernelInfo *AcquireKernelInfo(const char *kernel_string) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel_string: the Morphology/Convolution kernel wanted. |
| % |
| */ |
| |
| /* This was separated so that it could be used as a separate |
| ** array input handling function, such as for -color-matrix |
| */ |
| static KernelInfo *ParseKernelArray(const char *kernel_string) |
| { |
| KernelInfo |
| *kernel; |
| |
| char |
| token[MaxTextExtent]; |
| |
| const char |
| *p, |
| *end; |
| |
| register ssize_t |
| i; |
| |
| double |
| nan = sqrt((double)-1.0); /* Special Value : Not A Number */ |
| |
| MagickStatusType |
| flags; |
| |
| GeometryInfo |
| args; |
| |
| kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); |
| if (kernel == (KernelInfo *)NULL) |
| return(kernel); |
| (void) ResetMagickMemory(kernel,0,sizeof(*kernel)); |
| kernel->minimum = kernel->maximum = kernel->angle = 0.0; |
| kernel->negative_range = kernel->positive_range = 0.0; |
| kernel->type = UserDefinedKernel; |
| kernel->next = (KernelInfo *) NULL; |
| kernel->signature = MagickSignature; |
| |
| /* find end of this specific kernel definition string */ |
| end = strchr(kernel_string, ';'); |
| if ( end == (char *) NULL ) |
| end = strchr(kernel_string, '\0'); |
| |
| /* clear flags - for Expanding kernal lists thorugh rotations */ |
| flags = NoValue; |
| |
| /* Has a ':' in argument - New user kernel specification */ |
| p = strchr(kernel_string, ':'); |
| if ( p != (char *) NULL && p < end) |
| { |
| /* ParseGeometry() needs the geometry separated! -- Arrgghh */ |
| memcpy(token, kernel_string, (size_t) (p-kernel_string)); |
| token[p-kernel_string] = '\0'; |
| SetGeometryInfo(&args); |
| flags = ParseGeometry(token, &args); |
| |
| /* Size handling and checks of geometry settings */ |
| if ( (flags & WidthValue) == 0 ) /* if no width then */ |
| args.rho = args.sigma; /* then width = height */ |
| if ( args.rho < 1.0 ) /* if width too small */ |
| args.rho = 1.0; /* then width = 1 */ |
| if ( args.sigma < 1.0 ) /* if height too small */ |
| args.sigma = args.rho; /* then height = width */ |
| kernel->width = (size_t)args.rho; |
| kernel->height = (size_t)args.sigma; |
| |
| /* Offset Handling and Checks */ |
| if ( args.xi < 0.0 || args.psi < 0.0 ) |
| return(DestroyKernelInfo(kernel)); |
| kernel->x = ((flags & XValue)!=0) ? (ssize_t)args.xi |
| : (ssize_t) (kernel->width-1)/2; |
| kernel->y = ((flags & YValue)!=0) ? (ssize_t)args.psi |
| : (ssize_t) (kernel->height-1)/2; |
| if ( kernel->x >= (ssize_t) kernel->width || |
| kernel->y >= (ssize_t) kernel->height ) |
| return(DestroyKernelInfo(kernel)); |
| |
| p++; /* advance beyond the ':' */ |
| } |
| else |
| { /* ELSE - Old old specification, forming odd-square kernel */ |
| /* count up number of values given */ |
| p=(const char *) kernel_string; |
| while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\'')) |
| p++; /* ignore "'" chars for convolve filter usage - Cristy */ |
| for (i=0; p < end; i++) |
| { |
| GetMagickToken(p,&p,token); |
| if (*token == ',') |
| GetMagickToken(p,&p,token); |
| } |
| /* set the size of the kernel - old sized square */ |
| kernel->width = kernel->height= (size_t) sqrt((double) i+1.0); |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| p=(const char *) kernel_string; |
| while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\'')) |
| p++; /* ignore "'" chars for convolve filter usage - Cristy */ |
| } |
| |
| /* Read in the kernel values from rest of input string argument */ |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| kernel->minimum = +MagickHuge; |
| kernel->maximum = -MagickHuge; |
| kernel->negative_range = kernel->positive_range = 0.0; |
| |
| for (i=0; (i < (ssize_t) (kernel->width*kernel->height)) && (p < end); i++) |
| { |
| GetMagickToken(p,&p,token); |
| if (*token == ',') |
| GetMagickToken(p,&p,token); |
| if ( LocaleCompare("nan",token) == 0 |
| || LocaleCompare("-",token) == 0 ) { |
| kernel->values[i] = nan; /* do not include this value in kernel */ |
| } |
| else { |
| kernel->values[i] = StringToDouble(token); |
| ( kernel->values[i] < 0) |
| ? ( kernel->negative_range += kernel->values[i] ) |
| : ( kernel->positive_range += kernel->values[i] ); |
| Minimize(kernel->minimum, kernel->values[i]); |
| Maximize(kernel->maximum, kernel->values[i]); |
| } |
| } |
| |
| /* sanity check -- no more values in kernel definition */ |
| GetMagickToken(p,&p,token); |
| if ( *token != '\0' && *token != ';' && *token != '\'' ) |
| return(DestroyKernelInfo(kernel)); |
| |
| #if 0 |
| /* this was the old method of handling a incomplete kernel */ |
| if ( i < (ssize_t) (kernel->width*kernel->height) ) { |
| Minimize(kernel->minimum, kernel->values[i]); |
| Maximize(kernel->maximum, kernel->values[i]); |
| for ( ; i < (ssize_t) (kernel->width*kernel->height); i++) |
| kernel->values[i]=0.0; |
| } |
| #else |
| /* Number of values for kernel was not enough - Report Error */ |
| if ( i < (ssize_t) (kernel->width*kernel->height) ) |
| return(DestroyKernelInfo(kernel)); |
| #endif |
| |
| /* check that we recieved at least one real (non-nan) value! */ |
| if ( kernel->minimum == MagickHuge ) |
| return(DestroyKernelInfo(kernel)); |
| |
| if ( (flags & AreaValue) != 0 ) /* '@' symbol in kernel size */ |
| ExpandRotateKernelInfo(kernel, 45.0); /* cyclic rotate 3x3 kernels */ |
| else if ( (flags & GreaterValue) != 0 ) /* '>' symbol in kernel args */ |
| ExpandRotateKernelInfo(kernel, 90.0); /* 90 degree rotate of kernel */ |
| else if ( (flags & LessValue) != 0 ) /* '<' symbol in kernel args */ |
| ExpandMirrorKernelInfo(kernel); /* 90 degree mirror rotate */ |
| |
| return(kernel); |
| } |
| |
| static KernelInfo *ParseKernelName(const char *kernel_string) |
| { |
| KernelInfo |
| *kernel; |
| |
| char |
| token[MaxTextExtent]; |
| |
| ssize_t |
| type; |
| |
| const char |
| *p, |
| *end; |
| |
| MagickStatusType |
| flags; |
| |
| GeometryInfo |
| args; |
| |
| /* Parse special 'named' kernel */ |
| GetMagickToken(kernel_string,&p,token); |
| type=ParseMagickOption(MagickKernelOptions,MagickFalse,token); |
| if ( type < 0 || type == UserDefinedKernel ) |
| return((KernelInfo *)NULL); /* not a valid named kernel */ |
| |
| while (((isspace((int) ((unsigned char) *p)) != 0) || |
| (*p == ',') || (*p == ':' )) && (*p != '\0') && (*p != ';')) |
| p++; |
| |
| end = strchr(p, ';'); /* end of this kernel defintion */ |
| if ( end == (char *) NULL ) |
| end = strchr(p, '\0'); |
| |
| /* ParseGeometry() needs the geometry separated! -- Arrgghh */ |
| memcpy(token, p, (size_t) (end-p)); |
| token[end-p] = '\0'; |
| SetGeometryInfo(&args); |
| flags = ParseGeometry(token, &args); |
| |
| #if 0 |
| /* For Debugging Geometry Input */ |
| fprintf(stderr, "Geometry = 0x%04X : %lg x %lg %+lg %+lg\n", |
| flags, args.rho, args.sigma, args.xi, args.psi ); |
| #endif |
| |
| /* special handling of missing values in input string */ |
| switch( type ) { |
| case RectangleKernel: |
| if ( (flags & WidthValue) == 0 ) /* if no width then */ |
| args.rho = args.sigma; /* then width = height */ |
| if ( args.rho < 1.0 ) /* if width too small */ |
| args.rho = 3; /* then width = 3 */ |
| if ( args.sigma < 1.0 ) /* if height too small */ |
| args.sigma = args.rho; /* then height = width */ |
| if ( (flags & XValue) == 0 ) /* center offset if not defined */ |
| args.xi = (double)(((ssize_t)args.rho-1)/2); |
| if ( (flags & YValue) == 0 ) |
| args.psi = (double)(((ssize_t)args.sigma-1)/2); |
| break; |
| case SquareKernel: |
| case DiamondKernel: |
| case DiskKernel: |
| case PlusKernel: |
| case CrossKernel: |
| /* If no scale given (a 0 scale is valid! - set it to 1.0 */ |
| if ( (flags & HeightValue) == 0 ) |
| args.sigma = 1.0; |
| break; |
| case RingKernel: |
| if ( (flags & XValue) == 0 ) |
| args.xi = 1.0; |
| break; |
| case ChebyshevKernel: |
| case ManhattanKernel: |
| case EuclideanKernel: |
| if ( (flags & HeightValue) == 0 ) /* no distance scale */ |
| args.sigma = 100.0; /* default distance scaling */ |
| else if ( (flags & AspectValue ) != 0 ) /* '!' flag */ |
| args.sigma = QuantumRange/(args.sigma+1); /* maximum pixel distance */ |
| else if ( (flags & PercentValue ) != 0 ) /* '%' flag */ |
| args.sigma *= QuantumRange/100.0; /* percentage of color range */ |
| break; |
| default: |
| break; |
| } |
| |
| kernel = AcquireKernelBuiltIn((KernelInfoType)type, &args); |
| |
| /* global expand to rotated kernel list - only for single kernels */ |
| if ( kernel->next == (KernelInfo *) NULL ) { |
| if ( (flags & AreaValue) != 0 ) /* '@' symbol in kernel args */ |
| ExpandRotateKernelInfo(kernel, 45.0); |
| else if ( (flags & GreaterValue) != 0 ) /* '>' symbol in kernel args */ |
| ExpandRotateKernelInfo(kernel, 90.0); |
| else if ( (flags & LessValue) != 0 ) /* '<' symbol in kernel args */ |
| ExpandMirrorKernelInfo(kernel); |
| } |
| |
| return(kernel); |
| } |
| |
| MagickExport KernelInfo *AcquireKernelInfo(const char *kernel_string) |
| { |
| |
| KernelInfo |
| *kernel, |
| *new_kernel; |
| |
| char |
| token[MaxTextExtent]; |
| |
| const char |
| *p; |
| |
| size_t |
| kernel_number; |
| |
| p = kernel_string; |
| kernel = NULL; |
| kernel_number = 0; |
| |
| while ( GetMagickToken(p,NULL,token), *token != '\0' ) { |
| |
| /* ignore extra or multiple ';' kernel seperators */ |
| if ( *token != ';' ) { |
| |
| /* tokens starting with alpha is a Named kernel */ |
| if (isalpha((int) *token) != 0) |
| new_kernel = ParseKernelName(p); |
| else /* otherwise a user defined kernel array */ |
| new_kernel = ParseKernelArray(p); |
| |
| /* Error handling -- this is not proper error handling! */ |
| if ( new_kernel == (KernelInfo *) NULL ) { |
| fprintf(stderr, "Failed to parse kernel number #%.20g\n",(double) |
| kernel_number); |
| if ( kernel != (KernelInfo *) NULL ) |
| kernel=DestroyKernelInfo(kernel); |
| return((KernelInfo *) NULL); |
| } |
| |
| /* initialise or append the kernel list */ |
| if ( kernel == (KernelInfo *) NULL ) |
| kernel = new_kernel; |
| else |
| LastKernelInfo(kernel)->next = new_kernel; |
| } |
| |
| /* look for the next kernel in list */ |
| p = strchr(p, ';'); |
| if ( p == (char *) NULL ) |
| break; |
| p++; |
| |
| } |
| return(kernel); |
| } |
| |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % A c q u i r e K e r n e l B u i l t I n % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % AcquireKernelBuiltIn() returned one of the 'named' built-in types of |
| % kernels used for special purposes such as gaussian blurring, skeleton |
| % pruning, and edge distance determination. |
| % |
| % They take a KernelType, and a set of geometry style arguments, which were |
| % typically decoded from a user supplied string, or from a more complex |
| % Morphology Method that was requested. |
| % |
| % The format of the AcquireKernalBuiltIn method is: |
| % |
| % KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type, |
| % const GeometryInfo args) |
| % |
| % A description of each parameter follows: |
| % |
| % o type: the pre-defined type of kernel wanted |
| % |
| % o args: arguments defining or modifying the kernel |
| % |
| % Convolution Kernels |
| % |
| % Unity |
| % the No-Op kernel, also requivelent to Gaussian of sigma zero. |
| % Basically a 3x3 kernel of a 1 surrounded by zeros. |
| % |
| % Gaussian:{radius},{sigma} |
| % Generate a two-dimentional gaussian kernel, as used by -gaussian. |
| % The sigma for the curve is required. The resulting kernel is |
| % normalized, |
| % |
| % If 'sigma' is zero, you get a single pixel on a field of zeros. |
| % |
| % NOTE: that the 'radius' is optional, but if provided can limit (clip) |
| % the final size of the resulting kernel to a square 2*radius+1 in size. |
| % The radius should be at least 2 times that of the sigma value, or |
| % sever clipping and aliasing may result. If not given or set to 0 the |
| % radius will be determined so as to produce the best minimal error |
| % result, which is usally much larger than is normally needed. |
| % |
| % LoG:{radius},{sigma} |
| % "Laplacian of a Gaussian" or "Mexician Hat" Kernel. |
| % The supposed ideal edge detection, zero-summing kernel. |
| % |
| % An alturnative to this kernel is to use a "DoG" with a sigma ratio of |
| % approx 1.6 (according to wikipedia). |
| % |
| % DoG:{radius},{sigma1},{sigma2} |
| % "Difference of Gaussians" Kernel. |
| % As "Gaussian" but with a gaussian produced by 'sigma2' subtracted |
| % from the gaussian produced by 'sigma1'. Typically sigma2 > sigma1. |
| % The result is a zero-summing kernel. |
| % |
| % Blur:{radius},{sigma}[,{angle}] |
| % Generates a 1 dimensional or linear gaussian blur, at the angle given |
| % (current restricted to orthogonal angles). If a 'radius' is given the |
| % kernel is clipped to a width of 2*radius+1. Kernel can be rotated |
| % by a 90 degree angle. |
| % |
| % If 'sigma' is zero, you get a single pixel on a field of zeros. |
| % |
| % Note that two convolutions with two "Blur" kernels perpendicular to |
| % each other, is equivelent to a far larger "Gaussian" kernel with the |
| % same sigma value, However it is much faster to apply. This is how the |
| % "-blur" operator actually works. |
| % |
| % Comet:{width},{sigma},{angle} |
| % Blur in one direction only, much like how a bright object leaves |
| % a comet like trail. The Kernel is actually half a gaussian curve, |
| % Adding two such blurs in opposite directions produces a Blur Kernel. |
| % Angle can be rotated in multiples of 90 degrees. |
| % |
| % Note that the first argument is the width of the kernel and not the |
| % radius of the kernel. |
| % |
| % # Still to be implemented... |
| % # |
| % # Filter2D |
| % # Filter1D |
| % # Set kernel values using a resize filter, and given scale (sigma) |
| % # Cylindrical or Linear. Is this posible with an image? |
| % # |
| % |
| % Named Constant Convolution Kernels |
| % |
| % All these are unscaled, zero-summing kernels by default. As such for |
| % non-HDRI version of ImageMagick some form of normalization, user scaling, |
| % and biasing the results is recommended, to prevent the resulting image |
| % being 'clipped'. |
| % |
| % The 3x3 kernels (most of these) can be circularly rotated in multiples of |
| % 45 degrees to generate the 8 angled varients of each of the kernels. |
| % |
| % Laplacian:{type} |
| % Discrete Lapacian Kernels, (without normalization) |
| % Type 0 : 3x3 with center:8 surounded by -1 (8 neighbourhood) |
| % Type 1 : 3x3 with center:4 edge:-1 corner:0 (4 neighbourhood) |
| % Type 2 : 3x3 with center:4 edge:1 corner:-2 |
| % Type 3 : 3x3 with center:4 edge:-2 corner:1 |
| % Type 5 : 5x5 laplacian |
| % Type 7 : 7x7 laplacian |
| % Type 15 : 5x5 LoG (sigma approx 1.4) |
| % Type 19 : 9x9 LoG (sigma approx 1.4) |
| % |
| % Sobel:{angle} |
| % Sobel 'Edge' convolution kernel (3x3) |
| % | -1, 0, 1 | |
| % | -2, 0,-2 | |
| % | -1, 0, 1 | |
| % |
| % Sobel:{type},{angle} |
| % Type 0: default un-nomalized version shown above. |
| % |
| % Type 1: As default but pre-normalized |
| % | 1, 0, -1 | |
| % | 2, 0, -2 | / 4 |
| % | 1, 0, -1 | |
| % |
| % Type 2: Diagonal version with same normalization as 1 |
| % | 1, 0, -1 | |
| % | 2, 0, -2 | / 4 |
| % | 1, 0, -1 | |
| % |
| % Roberts:{angle} |
| % Roberts convolution kernel (3x3) |
| % | 0, 0, 0 | |
| % | -1, 1, 0 | |
| % | 0, 0, 0 | |
| % |
| % Prewitt:{angle} |
| % Prewitt Edge convolution kernel (3x3) |
| % | -1, 0, 1 | |
| % | -1, 0, 1 | |
| % | -1, 0, 1 | |
| % |
| % Compass:{angle} |
| % Prewitt's "Compass" convolution kernel (3x3) |
| % | -1, 1, 1 | |
| % | -1,-2, 1 | |
| % | -1, 1, 1 | |
| % |
| % Kirsch:{angle} |
| % Kirsch's "Compass" convolution kernel (3x3) |
| % | -3,-3, 5 | |
| % | -3, 0, 5 | |
| % | -3,-3, 5 | |
| % |
| % FreiChen:{angle} |
| % Frei-Chen Edge Detector is based on a kernel that is similar to |
| % the Sobel Kernel, but is designed to be isotropic. That is it takes |
| % into account the distance of the diagonal in the kernel. |
| % |
| % | 1, 0, -1 | |
| % | sqrt(2), 0, -sqrt(2) | |
| % | 1, 0, -1 | |
| % |
| % FreiChen:{type},{angle} |
| % |
| % Frei-Chen Pre-weighted kernels... |
| % |
| % Type 0: default un-nomalized version shown above. |
| % |
| % Type 1: Orthogonal Kernel (same as type 11 below) |
| % | 1, 0, -1 | |
| % | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2) |
| % | 1, 0, -1 | |
| % |
| % Type 2: Diagonal form of Kernel... |
| % | 1, sqrt(2), 0 | |
| % | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2) |
| % | 0, -sqrt(2) -1 | |
| % |
| % However this kernel is als at the heart of the FreiChen Edge Detection |
| % Process which uses a set of 9 specially weighted kernel. These 9 |
| % kernels not be normalized, but directly applied to the image. The |
| % results is then added together, to produce the intensity of an edge in |
| % a specific direction. The square root of the pixel value can then be |
| % taken as the cosine of the edge, and at least 2 such runs at 90 degrees |
| % from each other, both the direction and the strength of the edge can be |
| % determined. |
| % |
| % Type 10: All 9 of the following pre-weighted kernels... |
| % |
| % Type 11: | 1, 0, -1 | |
| % | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2) |
| % | 1, 0, -1 | |
| % |
| % Type 12: | 1, sqrt(2), 1 | |
| % | 0, 0, 0 | / 2*sqrt(2) |
| % | 1, sqrt(2), 1 | |
| % |
| % Type 13: | sqrt(2), -1, 0 | |
| % | -1, 0, 1 | / 2*sqrt(2) |
| % | 0, 1, -sqrt(2) | |
| % |
| % Type 14: | 0, 1, -sqrt(2) | |
| % | -1, 0, 1 | / 2*sqrt(2) |
| % | sqrt(2), -1, 0 | |
| % |
| % Type 15: | 0, -1, 0 | |
| % | 1, 0, 1 | / 2 |
| % | 0, -1, 0 | |
| % |
| % Type 16: | 1, 0, -1 | |
| % | 0, 0, 0 | / 2 |
| % | -1, 0, 1 | |
| % |
| % Type 17: | 1, -2, 1 | |
| % | -2, 4, -2 | / 6 |
| % | -1, -2, 1 | |
| % |
| % Type 18: | -2, 1, -2 | |
| % | 1, 4, 1 | / 6 |
| % | -2, 1, -2 | |
| % |
| % Type 19: | 1, 1, 1 | |
| % | 1, 1, 1 | / 3 |
| % | 1, 1, 1 | |
| % |
| % The first 4 are for edge detection, the next 4 are for line detection |
| % and the last is to add a average component to the results. |
| % |
| % Using a special type of '-1' will return all 9 pre-weighted kernels |
| % as a multi-kernel list, so that you can use them directly (without |
| % normalization) with the special "-set option:morphology:compose Plus" |
| % setting to apply the full FreiChen Edge Detection Technique. |
| % |
| % If 'type' is large it will be taken to be an actual rotation angle for |
| % the default FreiChen (type 0) kernel. As such FreiChen:45 will look |
| % like a Sobel:45 but with 'sqrt(2)' instead of '2' values. |
| % |
| % WARNING: The above was layed out as per |
| % http://www.math.tau.ac.il/~turkel/notes/edge_detectors.pdf |
| % But rotated 90 degrees so direction is from left rather than the top. |
| % I have yet to find any secondary confirmation of the above. The only |
| % other source found was actual source code at |
| % http://ltswww.epfl.ch/~courstiv/exos_labos/sol3.pdf |
| % Neigher paper defineds the kernels in a way that looks locical or |
| % correct when taken as a whole. |
| % |
| % Boolean Kernels |
| % |
| % Diamond:[{radius}[,{scale}]] |
| % Generate a diamond shaped kernel with given radius to the points. |
| % Kernel size will again be radius*2+1 square and defaults to radius 1, |
| % generating a 3x3 kernel that is slightly larger than a square. |
| % |
| % Square:[{radius}[,{scale}]] |
| % Generate a square shaped kernel of size radius*2+1, and defaulting |
| % to a 3x3 (radius 1). |
| % |
| % Note that using a larger radius for the "Square" or the "Diamond" is |
| % also equivelent to iterating the basic morphological method that many |
| % times. However iterating with the smaller radius is actually faster |
| % than using a larger kernel radius. |
| % |
| % Rectangle:{geometry} |
| % Simply generate a rectangle of 1's with the size given. You can also |
| % specify the location of the 'control point', otherwise the closest |
| % pixel to the center of the rectangle is selected. |
| % |
| % Properly centered and odd sized rectangles work the best. |
| % |
| % Disk:[{radius}[,{scale}]] |
| % Generate a binary disk of the radius given, radius may be a float. |
| % Kernel size will be ceil(radius)*2+1 square. |
| % NOTE: Here are some disk shapes of specific interest |
| % "Disk:1" => "diamond" or "cross:1" |
| % "Disk:1.5" => "square" |
| % "Disk:2" => "diamond:2" |
| % "Disk:2.5" => a general disk shape of radius 2 |
| % "Disk:2.9" => "square:2" |
| % "Disk:3.5" => default - octagonal/disk shape of radius 3 |
| % "Disk:4.2" => roughly octagonal shape of radius 4 |
| % "Disk:4.3" => a general disk shape of radius 4 |
| % After this all the kernel shape becomes more and more circular. |
| % |
| % Because a "disk" is more circular when using a larger radius, using a |
| % larger radius is preferred over iterating the morphological operation. |
| % |
| % Symbol Dilation Kernels |
| % |
| % These kernel is not a good general morphological kernel, but is used |
| % more for highlighting and marking any single pixels in an image using, |
| % a "Dilate" method as appropriate. |
| % |
| % For the same reasons iterating these kernels does not produce the |
| % same result as using a larger radius for the symbol. |
| % |
| % Plus:[{radius}[,{scale}]] |
| % Cross:[{radius}[,{scale}]] |
| % Generate a kernel in the shape of a 'plus' or a 'cross' with |
| % a each arm the length of the given radius (default 2). |
| % |
| % NOTE: "plus:1" is equivelent to a "Diamond" kernel. |
| % |
| % Ring:{radius1},{radius2}[,{scale}] |
| % A ring of the values given that falls between the two radii. |
| % Defaults to a ring of approximataly 3 radius in a 7x7 kernel. |
| % This is the 'edge' pixels of the default "Disk" kernel, |
| % More specifically, "Ring" -> "Ring:2.5,3.5,1.0" |
| % |
| % Hit and Miss Kernels |
| % |
| % Peak:radius1,radius2 |
| % Find any peak larger than the pixels the fall between the two radii. |
| % The default ring of pixels is as per "Ring". |
| % Edges |
| % Find flat orthogonal edges of a binary shape |
| % Corners |
| % Find 90 degree corners of a binary shape |
| % LineEnds:type |
| % Find end points of lines (for pruning a skeletion) |
| % Two types of lines ends (default to both) can be searched for |
| % Type 0: All line ends |
| % Type 1: single kernel for 4-conneected line ends |
| % Type 2: single kernel for simple line ends |
| % LineJunctions |
| % Find three line junctions (within a skeletion) |
| % Type 0: all line junctions |
| % Type 1: Y Junction kernel |
| % Type 2: Diagonal T Junction kernel |
| % Type 3: Orthogonal T Junction kernel |
| % Type 4: Diagonal X Junction kernel |
| % Type 5: Orthogonal + Junction kernel |
| % Ridges:type |
| % Find single pixel ridges or thin lines |
| % Type 1: Fine single pixel thick lines and ridges |
| % Type 2: Find two pixel thick lines and ridges |
| % ConvexHull |
| % Octagonal thicken kernel, to generate convex hulls of 45 degrees |
| % Skeleton:type |
| % Traditional skeleton generating kernels. |
| % Type 1: Tradional Skeleton kernel (4 connected skeleton) |
| % Type 2: HIPR2 Skeleton kernel (8 connected skeleton) |
| % Type 3: Experimental Variation to try to present left-right symmetry |
| % Type 4: Experimental Variation to preserve left-right symmetry |
| % |
| % Distance Measuring Kernels |
| % |
| % Different types of distance measuring methods, which are used with the |
| % a 'Distance' morphology method for generating a gradient based on |
| % distance from an edge of a binary shape, though there is a technique |
| % for handling a anti-aliased shape. |
| % |
| % See the 'Distance' Morphological Method, for information of how it is |
| % applied. |
| % |
| % Chebyshev:[{radius}][x{scale}[%!]] |
| % Chebyshev Distance (also known as Tchebychev Distance) is a value of |
| % one to any neighbour, orthogonal or diagonal. One why of thinking of |
| % it is the number of squares a 'King' or 'Queen' in chess needs to |
| % traverse reach any other position on a chess board. It results in a |
| % 'square' like distance function, but one where diagonals are closer |
| % than expected. |
| % |
| % Manhattan:[{radius}][x{scale}[%!]] |
| % Manhattan Distance (also known as Rectilinear Distance, or the Taxi |
| % Cab metric), is the distance needed when you can only travel in |
| % orthogonal (horizontal or vertical) only. It is the distance a 'Rook' |
| % in chess would travel. It results in a diamond like distances, where |
| % diagonals are further than expected. |
| % |
| % Euclidean:[{radius}][x{scale}[%!]] |
| % Euclidean Distance is the 'direct' or 'as the crow flys distance. |
| % However by default the kernel size only has a radius of 1, which |
| % limits the distance to 'Knight' like moves, with only orthogonal and |
| % diagonal measurements being correct. As such for the default kernel |
| % you will get octagonal like distance function, which is reasonally |
| % accurate. |
| % |
| % However if you use a larger radius such as "Euclidean:4" you will |
| % get a much smoother distance gradient from the edge of the shape. |
| % Of course a larger kernel is slower to use, and generally not needed. |
| % |
| % To allow the use of fractional distances that you get with diagonals |
| % the actual distance is scaled by a fixed value which the user can |
| % provide. This is not actually nessary for either ""Chebyshev" or |
| % "Manhattan" distance kernels, but is done for all three distance |
| % kernels. If no scale is provided it is set to a value of 100, |
| % allowing for a maximum distance measurement of 655 pixels using a Q16 |
| % version of IM, from any edge. However for small images this can |
| % result in quite a dark gradient. |
| % |
| */ |
| |
| MagickExport KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type, |
| const GeometryInfo *args) |
| { |
| KernelInfo |
| *kernel; |
| |
| register ssize_t |
| i; |
| |
| register ssize_t |
| u, |
| v; |
| |
| double |
| nan = sqrt((double)-1.0); /* Special Value : Not A Number */ |
| |
| /* Generate a new empty kernel if needed */ |
| kernel=(KernelInfo *) NULL; |
| switch(type) { |
| case UndefinedKernel: /* These should not call this function */ |
| case UserDefinedKernel: |
| break; |
| case UnityKernel: /* Named Descrete Convolution Kernels */ |
| case LaplacianKernel: |
| case SobelKernel: |
| case RobertsKernel: |
| case PrewittKernel: |
| case CompassKernel: |
| case KirschKernel: |
| case FreiChenKernel: |
| case EdgesKernel: /* Hit and Miss kernels */ |
| case CornersKernel: |
| case ThinDiagonalsKernel: |
| case LineEndsKernel: |
| case LineJunctionsKernel: |
| case RidgesKernel: |
| case ConvexHullKernel: |
| case SkeletonKernel: |
| break; /* A pre-generated kernel is not needed */ |
| #if 0 |
| /* set to 1 to do a compile-time check that we haven't missed anything */ |
| case GaussianKernel: |
| case DoGKernel: |
| case LoGKernel: |
| case BlurKernel: |
| case CometKernel: |
| case DiamondKernel: |
| case SquareKernel: |
| case RectangleKernel: |
| case DiskKernel: |
| case PlusKernel: |
| case CrossKernel: |
| case RingKernel: |
| case PeaksKernel: |
| case ChebyshevKernel: |
| case ManhattanKernel: |
| case EuclideanKernel: |
| #else |
| default: |
| #endif |
| /* Generate the base Kernel Structure */ |
| kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| (void) ResetMagickMemory(kernel,0,sizeof(*kernel)); |
| kernel->minimum = kernel->maximum = kernel->angle = 0.0; |
| kernel->negative_range = kernel->positive_range = 0.0; |
| kernel->type = type; |
| kernel->next = (KernelInfo *) NULL; |
| kernel->signature = MagickSignature; |
| break; |
| } |
| |
| switch(type) { |
| /* Convolution Kernels */ |
| case GaussianKernel: |
| case DoGKernel: |
| case LoGKernel: |
| { double |
| sigma = fabs(args->sigma), |
| sigma2 = fabs(args->xi), |
| A, B, R; |
| |
| if ( args->rho >= 1.0 ) |
| kernel->width = (size_t)args->rho*2+1; |
| else if ( (type != DoGKernel) || (sigma >= sigma2) ) |
| kernel->width = GetOptimalKernelWidth2D(args->rho,sigma); |
| else |
| kernel->width = GetOptimalKernelWidth2D(args->rho,sigma2); |
| kernel->height = kernel->width; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* WARNING: The following generates a 'sampled gaussian' kernel. |
| * What we really want is a 'discrete gaussian' kernel. |
| * |
| * How to do this is currently not known, but appears to be |
| * basied on the Error Function 'erf()' (intergral of a gaussian) |
| */ |
| |
| if ( type == GaussianKernel || type == DoGKernel ) |
| { /* Calculate a Gaussian, OR positive half of a DoG */ |
| if ( sigma > MagickEpsilon ) |
| { A = 1.0/(2.0*sigma*sigma); /* simplify loop expressions */ |
| B = 1.0/(Magick2PI*sigma*sigma); |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| kernel->values[i] = exp(-((double)(u*u+v*v))*A)*B; |
| } |
| else /* limiting case - a unity (normalized Dirac) kernel */ |
| { (void) ResetMagickMemory(kernel->values,0, (size_t) |
| kernel->width*kernel->height*sizeof(double)); |
| kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; |
| } |
| } |
| |
| if ( type == DoGKernel ) |
| { /* Subtract a Negative Gaussian for "Difference of Gaussian" */ |
| if ( sigma2 > MagickEpsilon ) |
| { sigma = sigma2; /* simplify loop expressions */ |
| A = 1.0/(2.0*sigma*sigma); |
| B = 1.0/(Magick2PI*sigma*sigma); |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| kernel->values[i] -= exp(-((double)(u*u+v*v))*A)*B; |
| } |
| else /* limiting case - a unity (normalized Dirac) kernel */ |
| kernel->values[kernel->x+kernel->y*kernel->width] -= 1.0; |
| } |
| |
| if ( type == LoGKernel ) |
| { /* Calculate a Laplacian of a Gaussian - Or Mexician Hat */ |
| if ( sigma > MagickEpsilon ) |
| { A = 1.0/(2.0*sigma*sigma); /* simplify loop expressions */ |
| B = 1.0/(MagickPI*sigma*sigma*sigma*sigma); |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| { R = ((double)(u*u+v*v))*A; |
| kernel->values[i] = (1-R)*exp(-R)*B; |
| } |
| } |
| else /* special case - generate a unity kernel */ |
| { (void) ResetMagickMemory(kernel->values,0, (size_t) |
| kernel->width*kernel->height*sizeof(double)); |
| kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; |
| } |
| } |
| |
| /* Note the above kernels may have been 'clipped' by a user defined |
| ** radius, producing a smaller (darker) kernel. Also for very small |
| ** sigma's (> 0.1) the central value becomes larger than one, and thus |
| ** producing a very bright kernel. |
| ** |
| ** Normalization will still be needed. |
| */ |
| |
| /* Normalize the 2D Gaussian Kernel |
| ** |
| ** NB: a CorrelateNormalize performs a normal Normalize if |
| ** there are no negative values. |
| */ |
| CalcKernelMetaData(kernel); /* the other kernel meta-data */ |
| ScaleKernelInfo(kernel, 1.0, CorrelateNormalizeValue); |
| |
| break; |
| } |
| case BlurKernel: |
| { double |
| sigma = fabs(args->sigma), |
| alpha, beta; |
| |
| if ( args->rho >= 1.0 ) |
| kernel->width = (size_t)args->rho*2+1; |
| else |
| kernel->width = GetOptimalKernelWidth1D(args->rho,sigma); |
| kernel->height = 1; |
| kernel->x = (ssize_t) (kernel->width-1)/2; |
| kernel->y = 0; |
| kernel->negative_range = kernel->positive_range = 0.0; |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| #if 1 |
| #define KernelRank 3 |
| /* Formula derived from GetBlurKernel() in "effect.c" (plus bug fix). |
| ** It generates a gaussian 3 times the width, and compresses it into |
| ** the expected range. This produces a closer normalization of the |
| ** resulting kernel, especially for very low sigma values. |
| ** As such while wierd it is prefered. |
| ** |
| ** I am told this method originally came from Photoshop. |
| ** |
| ** A properly normalized curve is generated (apart from edge clipping) |
| ** even though we later normalize the result (for edge clipping) |
| ** to allow the correct generation of a "Difference of Blurs". |
| */ |
| |
| /* initialize */ |
| v = (ssize_t) (kernel->width*KernelRank-1)/2; /* start/end points to fit range */ |
| (void) ResetMagickMemory(kernel->values,0, (size_t) |
| kernel->width*kernel->height*sizeof(double)); |
| /* Calculate a Positive 1D Gaussian */ |
| if ( sigma > MagickEpsilon ) |
| { sigma *= KernelRank; /* simplify loop expressions */ |
| alpha = 1.0/(2.0*sigma*sigma); |
| beta= 1.0/(MagickSQ2PI*sigma ); |
| for ( u=-v; u <= v; u++) { |
| kernel->values[(u+v)/KernelRank] += |
| exp(-((double)(u*u))*alpha)*beta; |
| } |
| } |
| else /* special case - generate a unity kernel */ |
| kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; |
| #else |
| /* Direct calculation without curve averaging */ |
| |
| /* Calculate a Positive Gaussian */ |
| if ( sigma > MagickEpsilon ) |
| { alpha = 1.0/(2.0*sigma*sigma); /* simplify loop expressions */ |
| beta = 1.0/(MagickSQ2PI*sigma); |
| for ( i=0, u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| kernel->values[i] = exp(-((double)(u*u))*alpha)*beta; |
| } |
| else /* special case - generate a unity kernel */ |
| { (void) ResetMagickMemory(kernel->values,0, (size_t) |
| kernel->width*kernel->height*sizeof(double)); |
| kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; |
| } |
| #endif |
| /* Note the above kernel may have been 'clipped' by a user defined |
| ** radius, producing a smaller (darker) kernel. Also for very small |
| ** sigma's (> 0.1) the central value becomes larger than one, and thus |
| ** producing a very bright kernel. |
| ** |
| ** Normalization will still be needed. |
| */ |
| |
| /* Normalize the 1D Gaussian Kernel |
| ** |
| ** NB: a CorrelateNormalize performs a normal Normalize if |
| ** there are no negative values. |
| */ |
| CalcKernelMetaData(kernel); /* the other kernel meta-data */ |
| ScaleKernelInfo(kernel, 1.0, CorrelateNormalizeValue); |
| |
| /* rotate the 1D kernel by given angle */ |
| RotateKernelInfo(kernel, args->xi ); |
| break; |
| } |
| case CometKernel: |
| { double |
| sigma = fabs(args->sigma), |
| A; |
| |
| if ( args->rho < 1.0 ) |
| kernel->width = (GetOptimalKernelWidth1D(args->rho,sigma)-1)/2+1; |
| else |
| kernel->width = (size_t)args->rho; |
| kernel->x = kernel->y = 0; |
| kernel->height = 1; |
| kernel->negative_range = kernel->positive_range = 0.0; |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* A comet blur is half a 1D gaussian curve, so that the object is |
| ** blurred in one direction only. This may not be quite the right |
| ** curve to use so may change in the future. The function must be |
| ** normalised after generation, which also resolves any clipping. |
| ** |
| ** As we are normalizing and not subtracting gaussians, |
| ** there is no need for a divisor in the gaussian formula |
| ** |
| ** It is less comples |
| */ |
| if ( sigma > MagickEpsilon ) |
| { |
| #if 1 |
| #define KernelRank 3 |
| v = (ssize_t) kernel->width*KernelRank; /* start/end points */ |
| (void) ResetMagickMemory(kernel->values,0, (size_t) |
| kernel->width*sizeof(double)); |
| sigma *= KernelRank; /* simplify the loop expression */ |
| A = 1.0/(2.0*sigma*sigma); |
| /* B = 1.0/(MagickSQ2PI*sigma); */ |
| for ( u=0; u < v; u++) { |
| kernel->values[u/KernelRank] += |
| exp(-((double)(u*u))*A); |
| /* exp(-((double)(i*i))/2.0*sigma*sigma)/(MagickSQ2PI*sigma); */ |
| } |
| for (i=0; i < (ssize_t) kernel->width; i++) |
| kernel->positive_range += kernel->values[i]; |
| #else |
| A = 1.0/(2.0*sigma*sigma); /* simplify the loop expression */ |
| /* B = 1.0/(MagickSQ2PI*sigma); */ |
| for ( i=0; i < (ssize_t) kernel->width; i++) |
| kernel->positive_range += |
| kernel->values[i] = |
| exp(-((double)(i*i))*A); |
| /* exp(-((double)(i*i))/2.0*sigma*sigma)/(MagickSQ2PI*sigma); */ |
| #endif |
| } |
| else /* special case - generate a unity kernel */ |
| { (void) ResetMagickMemory(kernel->values,0, (size_t) |
| kernel->width*kernel->height*sizeof(double)); |
| kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; |
| kernel->positive_range = 1.0; |
| } |
| |
| kernel->minimum = 0.0; |
| kernel->maximum = kernel->values[0]; |
| kernel->negative_range = 0.0; |
| |
| ScaleKernelInfo(kernel, 1.0, NormalizeValue); /* Normalize */ |
| RotateKernelInfo(kernel, args->xi); /* Rotate by angle */ |
| break; |
| } |
| |
| /* Convolution Kernels - Well Known Constants */ |
| case LaplacianKernel: |
| { switch ( (int) args->rho ) { |
| case 0: |
| default: /* laplacian square filter -- default */ |
| kernel=ParseKernelArray("3: -1,-1,-1 -1,8,-1 -1,-1,-1"); |
| break; |
| case 1: /* laplacian diamond filter */ |
| kernel=ParseKernelArray("3: 0,-1,0 -1,4,-1 0,-1,0"); |
| break; |
| case 2: |
| kernel=ParseKernelArray("3: -2,1,-2 1,4,1 -2,1,-2"); |
| break; |
| case 3: |
| kernel=ParseKernelArray("3: 1,-2,1 -2,4,-2 1,-2,1"); |
| break; |
| case 5: /* a 5x5 laplacian */ |
| kernel=ParseKernelArray( |
| "5: -4,-1,0,-1,-4 -1,2,3,2,-1 0,3,4,3,0 -1,2,3,2,-1 -4,-1,0,-1,-4"); |
| break; |
| case 7: /* a 7x7 laplacian */ |
| kernel=ParseKernelArray( |
| "7:-10,-5,-2,-1,-2,-5,-10 -5,0,3,4,3,0,-5 -2,3,6,7,6,3,-2 -1,4,7,8,7,4,-1 -2,3,6,7,6,3,-2 -5,0,3,4,3,0,-5 -10,-5,-2,-1,-2,-5,-10" ); |
| break; |
| case 15: /* a 5x5 LoG (sigma approx 1.4) */ |
| kernel=ParseKernelArray( |
| "5: 0,0,-1,0,0 0,-1,-2,-1,0 -1,-2,16,-2,-1 0,-1,-2,-1,0 0,0,-1,0,0"); |
| break; |
| case 19: /* a 9x9 LoG (sigma approx 1.4) */ |
| /* http://www.cscjournals.org/csc/manuscript/Journals/IJIP/volume3/Issue1/IJIP-15.pdf */ |
| kernel=ParseKernelArray( |
| "9: 0,-1,-1,-2,-2,-2,-1,-1,0 -1,-2,-4,-5,-5,-5,-4,-2,-1 -1,-4,-5,-3,-0,-3,-5,-4,-1 -2,-5,-3,12,24,12,-3,-5,-2 -2,-5,-0,24,40,24,-0,-5,-2 -2,-5,-3,12,24,12,-3,-5,-2 -1,-4,-5,-3,-0,-3,-5,-4,-1 -1,-2,-4,-5,-5,-5,-4,-2,-1 0,-1,-1,-2,-2,-2,-1,-1,0"); |
| break; |
| } |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| break; |
| } |
| case SobelKernel: |
| #if 0 |
| { /* Sobel with optional 'sub-types' */ |
| switch ( (int) args->rho ) { |
| default: |
| case 0: |
| kernel=ParseKernelArray("3: 1,0,-1 2,0,-2 1,0,-1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| break; |
| case 1: |
| kernel=ParseKernelArray("3: 1,0,-1 2,0,-2 1,0,-1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ScaleKernelInfo(kernel, 0.25, NoValue); |
| break; |
| case 2: |
| kernel=ParseKernelArray("3: 1,2,0 2,0,-2 0,-2,-1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ScaleKernelInfo(kernel, 0.25, NoValue); |
| break; |
| } |
| if ( fabs(args->sigma) > MagickEpsilon ) |
| /* Rotate by correctly supplied 'angle' */ |
| RotateKernelInfo(kernel, args->sigma); |
| else if ( args->rho > 30.0 || args->rho < -30.0 ) |
| /* Rotate by out of bounds 'type' */ |
| RotateKernelInfo(kernel, args->rho); |
| break; |
| } |
| #else |
| { /* Simple Sobel Kernel */ |
| kernel=ParseKernelArray("3: 1,0,-1 2,0,-2 1,0,-1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->rho); |
| break; |
| } |
| #endif |
| case RobertsKernel: |
| { |
| kernel=ParseKernelArray("3: 0,0,0 1,-1,0 0,0,0"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->rho); |
| break; |
| } |
| case PrewittKernel: |
| { |
| kernel=ParseKernelArray("3: 1,0,-1 1,0,-1 1,0,-1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->rho); |
| break; |
| } |
| case CompassKernel: |
| { |
| kernel=ParseKernelArray("3: 1,1,-1 1,-2,-1 1,1,-1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->rho); |
| break; |
| } |
| case KirschKernel: |
| { |
| kernel=ParseKernelArray("3: 5,-3,-3 5,0,-3 5,-3,-3"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->rho); |
| break; |
| } |
| case FreiChenKernel: |
| /* Direction is set to be left to right positive */ |
| /* http://www.math.tau.ac.il/~turkel/notes/edge_detectors.pdf -- RIGHT? */ |
| /* http://ltswww.epfl.ch/~courstiv/exos_labos/sol3.pdf -- WRONG? */ |
| { switch ( (int) args->rho ) { |
| default: |
| case 0: |
| kernel=ParseKernelArray("3: 1,0,-1 2,0,-2 1,0,-1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| kernel->values[3] = +MagickSQ2; |
| kernel->values[5] = -MagickSQ2; |
| CalcKernelMetaData(kernel); /* recalculate meta-data */ |
| break; |
| case 2: |
| kernel=ParseKernelArray("3: 1,2,0 2,0,-2 0,-2,-1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| kernel->values[1] = kernel->values[3] = +MagickSQ2; |
| kernel->values[5] = kernel->values[7] = -MagickSQ2; |
| CalcKernelMetaData(kernel); /* recalculate meta-data */ |
| ScaleKernelInfo(kernel, 1.0/2.0*MagickSQ2, NoValue); |
| break; |
| case 10: |
| kernel=AcquireKernelInfo("FreiChen:11;FreiChen:12;FreiChen:13;FreiChen:14;FreiChen:15;FreiChen:16;FreiChen:17;FreiChen:18;FreiChen:19"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| break; |
| case 1: |
| case 11: |
| kernel=ParseKernelArray("3: 1,0,-1 2,0,-2 1,0,-1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| kernel->values[3] = +MagickSQ2; |
| kernel->values[5] = -MagickSQ2; |
| CalcKernelMetaData(kernel); /* recalculate meta-data */ |
| ScaleKernelInfo(kernel, 1.0/2.0*MagickSQ2, NoValue); |
| break; |
| case 12: |
| kernel=ParseKernelArray("3: 1,2,1 0,0,0 1,2,1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| kernel->values[1] = +MagickSQ2; |
| kernel->values[7] = +MagickSQ2; |
| CalcKernelMetaData(kernel); |
| ScaleKernelInfo(kernel, 1.0/2.0*MagickSQ2, NoValue); |
| break; |
| case 13: |
| kernel=ParseKernelArray("3: 2,-1,0 -1,0,1 0,1,-2"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| kernel->values[0] = +MagickSQ2; |
| kernel->values[8] = -MagickSQ2; |
| CalcKernelMetaData(kernel); |
| ScaleKernelInfo(kernel, 1.0/2.0*MagickSQ2, NoValue); |
| break; |
| case 14: |
| kernel=ParseKernelArray("3: 0,1,-2 -1,0,1 2,-1,0"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| kernel->values[2] = -MagickSQ2; |
| kernel->values[6] = +MagickSQ2; |
| CalcKernelMetaData(kernel); |
| ScaleKernelInfo(kernel, 1.0/2.0*MagickSQ2, NoValue); |
| break; |
| case 15: |
| kernel=ParseKernelArray("3: 0,-1,0 1,0,1 0,-1,0"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ScaleKernelInfo(kernel, 1.0/2.0, NoValue); |
| break; |
| case 16: |
| kernel=ParseKernelArray("3: 1,0,-1 0,0,0 -1,0,1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ScaleKernelInfo(kernel, 1.0/2.0, NoValue); |
| break; |
| case 17: |
| kernel=ParseKernelArray("3: 1,-2,1 -2,4,-2 -1,-2,1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ScaleKernelInfo(kernel, 1.0/6.0, NoValue); |
| break; |
| case 18: |
| kernel=ParseKernelArray("3: -2,1,-2 1,4,1 -2,1,-2"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ScaleKernelInfo(kernel, 1.0/6.0, NoValue); |
| break; |
| case 19: |
| kernel=ParseKernelArray("3: 1,1,1 1,1,1 1,1,1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ScaleKernelInfo(kernel, 1.0/3.0, NoValue); |
| break; |
| } |
| if ( fabs(args->sigma) > MagickEpsilon ) |
| /* Rotate by correctly supplied 'angle' */ |
| RotateKernelInfo(kernel, args->sigma); |
| else if ( args->rho > 30.0 || args->rho < -30.0 ) |
| /* Rotate by out of bounds 'type' */ |
| RotateKernelInfo(kernel, args->rho); |
| break; |
| } |
| |
| /* Boolean Kernels */ |
| case DiamondKernel: |
| { |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 3; /* default radius = 1 */ |
| else |
| kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* set all kernel values within diamond area to scale given */ |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| if ( (labs((long) u)+labs((long) v)) <= (long) kernel->x) |
| kernel->positive_range += kernel->values[i] = args->sigma; |
| else |
| kernel->values[i] = nan; |
| kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ |
| break; |
| } |
| case SquareKernel: |
| case RectangleKernel: |
| { double |
| scale; |
| if ( type == SquareKernel ) |
| { |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 3; /* default radius = 1 */ |
| else |
| kernel->width = kernel->height = (size_t) (2*args->rho+1); |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| scale = args->sigma; |
| } |
| else { |
| /* NOTE: user defaults set in "AcquireKernelInfo()" */ |
| if ( args->rho < 1.0 || args->sigma < 1.0 ) |
| return(DestroyKernelInfo(kernel)); /* invalid args given */ |
| kernel->width = (size_t)args->rho; |
| kernel->height = (size_t)args->sigma; |
| if ( args->xi < 0.0 || args->xi > (double)kernel->width || |
| args->psi < 0.0 || args->psi > (double)kernel->height ) |
| return(DestroyKernelInfo(kernel)); /* invalid args given */ |
| kernel->x = (ssize_t) args->xi; |
| kernel->y = (ssize_t) args->psi; |
| scale = 1.0; |
| } |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* set all kernel values to scale given */ |
| u=(ssize_t) (kernel->width*kernel->height); |
| for ( i=0; i < u; i++) |
| kernel->values[i] = scale; |
| kernel->minimum = kernel->maximum = scale; /* a flat shape */ |
| kernel->positive_range = scale*u; |
| break; |
| } |
| case DiskKernel: |
| { |
| ssize_t |
| limit = (ssize_t)(args->rho*args->rho); |
| |
| if (args->rho < 0.4) /* default radius approx 3.5 */ |
| kernel->width = kernel->height = 7L, limit = 10L; |
| else |
| kernel->width = kernel->height = (size_t)fabs(args->rho)*2+1; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* set all kernel values within disk area to scale given */ |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| if ((u*u+v*v) <= limit) |
| kernel->positive_range += kernel->values[i] = args->sigma; |
| else |
| kernel->values[i] = nan; |
| kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ |
| break; |
| } |
| case PlusKernel: |
| { |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 5; /* default radius 2 */ |
| else |
| kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* set all kernel values along axises to given scale */ |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| kernel->values[i] = (u == 0 || v == 0) ? args->sigma : nan; |
| kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ |
| kernel->positive_range = args->sigma*(kernel->width*2.0 - 1.0); |
| break; |
| } |
| case CrossKernel: |
| { |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 5; /* default radius 2 */ |
| else |
| kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* set all kernel values along axises to given scale */ |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| kernel->values[i] = (u == v || u == -v) ? args->sigma : nan; |
| kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ |
| kernel->positive_range = args->sigma*(kernel->width*2.0 - 1.0); |
| break; |
| } |
| /* HitAndMiss Kernels */ |
| case RingKernel: |
| case PeaksKernel: |
| { |
| ssize_t |
| limit1, |
| limit2, |
| scale; |
| |
| if (args->rho < args->sigma) |
| { |
| kernel->width = ((size_t)args->sigma)*2+1; |
| limit1 = (ssize_t)(args->rho*args->rho); |
| limit2 = (ssize_t)(args->sigma*args->sigma); |
| } |
| else |
| { |
| kernel->width = ((size_t)args->rho)*2+1; |
| limit1 = (ssize_t)(args->sigma*args->sigma); |
| limit2 = (ssize_t)(args->rho*args->rho); |
| } |
| if ( limit2 <= 0 ) |
| kernel->width = 7L, limit1 = 7L, limit2 = 11L; |
| |
| kernel->height = kernel->width; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* set a ring of points of 'scale' ( 0.0 for PeaksKernel ) */ |
| scale = (ssize_t) (( type == PeaksKernel) ? 0.0 : args->xi); |
| for ( i=0, v= -kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| { ssize_t radius=u*u+v*v; |
| if (limit1 < radius && radius <= limit2) |
| kernel->positive_range += kernel->values[i] = (double) scale; |
| else |
| kernel->values[i] = nan; |
| } |
| kernel->minimum = kernel->maximum = (double) scale; |
| if ( type == PeaksKernel ) { |
| /* set the central point in the middle */ |
| kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; |
| kernel->positive_range = 1.0; |
| kernel->maximum = 1.0; |
| } |
| break; |
| } |
| case EdgesKernel: |
| { |
| kernel=ParseKernelArray("3: 0,0,0 -,1,- 1,1,1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ExpandMirrorKernelInfo(kernel); /* mirror expansion of other kernels */ |
| break; |
| } |
| case CornersKernel: |
| { |
| kernel=ParseKernelArray("3: 0,0,- 0,1,1 -,1,-"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ExpandRotateKernelInfo(kernel, 90.0); /* Expand 90 degree rotations */ |
| break; |
| } |
| case ThinDiagonalsKernel: |
| { |
| switch ( (int) args->rho ) { |
| case 0: |
| default: |
| { KernelInfo |
| *new_kernel; |
| kernel=ParseKernelArray("3: 0,0,0 0,1,1 1,1,-"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| new_kernel=ParseKernelArray("3: 0,0,1 0,1,1 0,1,-"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| LastKernelInfo(kernel)->next = new_kernel; |
| ExpandMirrorKernelInfo(kernel); |
| break; |
| } |
| case 1: |
| kernel=ParseKernelArray("3: 0,0,0 0,1,1 1,1,-"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->sigma); |
| break; |
| case 2: |
| kernel=ParseKernelArray("3: 0,0,1 0,1,1 0,1,-"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->sigma); |
| break; |
| } |
| break; |
| } |
| case LineEndsKernel: |
| { /* Kernels for finding the end of thin lines */ |
| switch ( (int) args->rho ) { |
| case 0: |
| default: |
| /* set of kernels to find all end of lines */ |
| kernel=AcquireKernelInfo("LineEnds:1>;LineEnds:2>"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| break; |
| case 1: |
| /* kernel for 4-connected line ends - no rotation */ |
| kernel=ParseKernelArray("3: 0,0,- 0,1,1 0,0,-"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->sigma); |
| break; |
| case 2: |
| /* kernel to add for 8-connected lines - no rotation */ |
| kernel=ParseKernelArray("3: 0,0,0 0,1,0 0,0,1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->sigma); |
| break; |
| case 3: |
| /* kernel to add for orthogonal line ends - does not find corners */ |
| kernel=ParseKernelArray("3: 0,0,0 0,1,1 0,0,0"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->sigma); |
| break; |
| case 4: |
| /* traditional line end - fails on last T end */ |
| kernel=ParseKernelArray("3: 0,0,0 0,1,- 0,0,-"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->sigma); |
| break; |
| } |
| break; |
| } |
| case LineJunctionsKernel: |
| { /* kernels for finding the junctions of multiple lines */ |
| switch ( (int) args->rho ) { |
| case 0: |
| default: |
| /* set of kernels to find all line junctions */ |
| kernel=AcquireKernelInfo("LineJunctions:1@;LineJunctions:2>"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| break; |
| case 1: |
| /* Y Junction */ |
| kernel=ParseKernelArray("3: 1,-,1 -,1,- -,1,-"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->sigma); |
| break; |
| case 2: |
| /* Diagonal T Junctions */ |
| kernel=ParseKernelArray("3: 1,-,- -,1,- 1,-,1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->sigma); |
| break; |
| case 3: |
| /* Orthogonal T Junctions */ |
| kernel=ParseKernelArray("3: -,-,- 1,1,1 -,1,-"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->sigma); |
| break; |
| case 4: |
| /* Diagonal X Junctions */ |
| kernel=ParseKernelArray("3: 1,-,1 -,1,- 1,-,1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->sigma); |
| break; |
| case 5: |
| /* Orthogonal X Junctions - minimal diamond kernel */ |
| kernel=ParseKernelArray("3: -,1,- 1,1,1 -,1,-"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->sigma); |
| break; |
| } |
| break; |
| } |
| case RidgesKernel: |
| { /* Ridges - Ridge finding kernels */ |
| KernelInfo |
| *new_kernel; |
| switch ( (int) args->rho ) { |
| case 1: |
| default: |
| kernel=ParseKernelArray("3x1:0,1,0"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ExpandRotateKernelInfo(kernel, 90.0); /* 2 rotated kernels (symmetrical) */ |
| break; |
| case 2: |
| kernel=ParseKernelArray("4x1:0,1,1,0"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ExpandRotateKernelInfo(kernel, 90.0); /* 4 rotated kernels */ |
| |
| /* Kernels to find a stepped 'thick' line, 4 rotates + mirrors */ |
| /* Unfortunatally we can not yet rotate a non-square kernel */ |
| /* But then we can't flip a non-symetrical kernel either */ |
| new_kernel=ParseKernelArray("4x3+1+1:0,1,1,- -,1,1,- -,1,1,0"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| LastKernelInfo(kernel)->next = new_kernel; |
| new_kernel=ParseKernelArray("4x3+2+1:0,1,1,- -,1,1,- -,1,1,0"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| LastKernelInfo(kernel)->next = new_kernel; |
| new_kernel=ParseKernelArray("4x3+1+1:-,1,1,0 -,1,1,- 0,1,1,-"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| LastKernelInfo(kernel)->next = new_kernel; |
| new_kernel=ParseKernelArray("4x3+2+1:-,1,1,0 -,1,1,- 0,1,1,-"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| LastKernelInfo(kernel)->next = new_kernel; |
| new_kernel=ParseKernelArray("3x4+1+1:0,-,- 1,1,1 1,1,1 -,-,0"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| LastKernelInfo(kernel)->next = new_kernel; |
| new_kernel=ParseKernelArray("3x4+1+2:0,-,- 1,1,1 1,1,1 -,-,0"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| LastKernelInfo(kernel)->next = new_kernel; |
| new_kernel=ParseKernelArray("3x4+1+1:-,-,0 1,1,1 1,1,1 0,-,-"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| LastKernelInfo(kernel)->next = new_kernel; |
| new_kernel=ParseKernelArray("3x4+1+2:-,-,0 1,1,1 1,1,1 0,-,-"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| LastKernelInfo(kernel)->next = new_kernel; |
| break; |
| } |
| break; |
| } |
| case ConvexHullKernel: |
| { |
| KernelInfo |
| *new_kernel; |
| /* first set of 8 kernels */ |
| kernel=ParseKernelArray("3: 1,1,- 1,0,- 1,-,0"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ExpandRotateKernelInfo(kernel, 90.0); |
| /* append the mirror versions too - no flip function yet */ |
| new_kernel=ParseKernelArray("3: 1,1,1 1,0,- -,-,0"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| ExpandRotateKernelInfo(new_kernel, 90.0); |
| LastKernelInfo(kernel)->next = new_kernel; |
| break; |
| } |
| case SkeletonKernel: |
| { |
| KernelInfo |
| *new_kernel; |
| switch ( (int) args->rho ) { |
| case 1: |
| default: |
| /* Traditional Skeleton... |
| ** A cyclically rotated single kernel |
| */ |
| kernel=ParseKernelArray("3: 0,0,0 -,1,- 1,1,1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ExpandRotateKernelInfo(kernel, 45.0); /* 8 rotations */ |
| break; |
| case 2: |
| /* HIPR Variation of the cyclic skeleton |
| ** Corners of the traditional method made more forgiving, |
| ** but the retain the same cyclic order. |
| */ |
| kernel=ParseKernelArray("3: 0,0,0 -,1,- 1,1,1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| new_kernel=ParseKernelArray("3: -,0,0 1,1,0 -,1,-"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(new_kernel); |
| new_kernel->type = type; |
| LastKernelInfo(kernel)->next = new_kernel; |
| ExpandRotateKernelInfo(kernel, 90.0); /* 4 rotations of the 2 kernels */ |
| break; |
| } |
| break; |
| } |
| /* Distance Measuring Kernels */ |
| case ChebyshevKernel: |
| { |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 3; /* default radius = 1 */ |
| else |
| kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| kernel->positive_range += ( kernel->values[i] = |
| args->sigma*((labs((long) u)>labs((long) v)) ? labs((long) u) : labs((long) v)) ); |
| kernel->maximum = kernel->values[0]; |
| break; |
| } |
| case ManhattanKernel: |
| { |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 3; /* default radius = 1 */ |
| else |
| kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| kernel->positive_range += ( kernel->values[i] = |
| args->sigma*(labs((long) u)+labs((long) v)) ); |
| kernel->maximum = kernel->values[0]; |
| break; |
| } |
| case EuclideanKernel: |
| { |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 3; /* default radius = 1 */ |
| else |
| kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| |
| kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| kernel->positive_range += ( kernel->values[i] = |
| args->sigma*sqrt((double)(u*u+v*v)) ); |
| kernel->maximum = kernel->values[0]; |
| break; |
| } |
| case UnityKernel: |
| default: |
| { |
| /* Unity or No-Op Kernel - Basically just a single pixel on its own */ |
| kernel=ParseKernelArray("1:1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = ( type == UnityKernel ) ? UnityKernel : UndefinedKernel; |
| break; |
| } |
| break; |
| } |
| |
| return(kernel); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % C l o n e K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % CloneKernelInfo() creates a new clone of the given Kernel List so that its |
| % can be modified without effecting the original. The cloned kernel should |
| % be destroyed using DestoryKernelInfo() when no longer needed. |
| % |
| % The format of the CloneKernelInfo method is: |
| % |
| % KernelInfo *CloneKernelInfo(const KernelInfo *kernel) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel to be cloned |
| % |
| */ |
| MagickExport KernelInfo *CloneKernelInfo(const KernelInfo *kernel) |
| { |
| register ssize_t |
| i; |
| |
| KernelInfo |
| *new_kernel; |
| |
| assert(kernel != (KernelInfo *) NULL); |
| new_kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(new_kernel); |
| *new_kernel=(*kernel); /* copy values in structure */ |
| |
| /* replace the values with a copy of the values */ |
| new_kernel->values=(double *) AcquireQuantumMemory(kernel->width, |
| kernel->height*sizeof(double)); |
| if (new_kernel->values == (double *) NULL) |
| return(DestroyKernelInfo(new_kernel)); |
| for (i=0; i < (ssize_t) (kernel->width*kernel->height); i++) |
| new_kernel->values[i]=kernel->values[i]; |
| |
| /* Also clone the next kernel in the kernel list */ |
| if ( kernel->next != (KernelInfo *) NULL ) { |
| new_kernel->next = CloneKernelInfo(kernel->next); |
| if ( new_kernel->next == (KernelInfo *) NULL ) |
| return(DestroyKernelInfo(new_kernel)); |
| } |
| |
| return(new_kernel); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % D e s t r o y K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % DestroyKernelInfo() frees the memory used by a Convolution/Morphology |
| % kernel. |
| % |
| % The format of the DestroyKernelInfo method is: |
| % |
| % KernelInfo *DestroyKernelInfo(KernelInfo *kernel) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel to be destroyed |
| % |
| */ |
| MagickExport KernelInfo *DestroyKernelInfo(KernelInfo *kernel) |
| { |
| assert(kernel != (KernelInfo *) NULL); |
| |
| if ( kernel->next != (KernelInfo *) NULL ) |
| kernel->next = DestroyKernelInfo(kernel->next); |
| |
| kernel->values = (double *)RelinquishMagickMemory(kernel->values); |
| kernel = (KernelInfo *) RelinquishMagickMemory(kernel); |
| return(kernel); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + E x p a n d M i r r o r K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ExpandMirrorKernelInfo() takes a single kernel, and expands it into a |
| % sequence of 90-degree rotated kernels but providing a reflected 180 |
| % rotatation, before the -/+ 90-degree rotations. |
| % |
| % This special rotation order produces a better, more symetrical thinning of |
| % objects. |
| % |
| % The format of the ExpandMirrorKernelInfo method is: |
| % |
| % void ExpandMirrorKernelInfo(KernelInfo *kernel) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel |
| % |
| % This function is only internel to this module, as it is not finalized, |
| % especially with regard to non-orthogonal angles, and rotation of larger |
| % 2D kernels. |
| */ |
| |
| #if 0 |
| static void FlopKernelInfo(KernelInfo *kernel) |
| { /* Do a Flop by reversing each row. */ |
| size_t |
| y; |
| register ssize_t |
| x,r; |
| register double |
| *k,t; |
| |
| for ( y=0, k=kernel->values; y < kernel->height; y++, k+=kernel->width) |
| for ( x=0, r=kernel->width-1; x<kernel->width/2; x++, r--) |
| t=k[x], k[x]=k[r], k[r]=t; |
| |
| kernel->x = kernel->width - kernel->x - 1; |
| angle = fmod(angle+180.0, 360.0); |
| } |
| #endif |
| |
| static void ExpandMirrorKernelInfo(KernelInfo *kernel) |
| { |
| KernelInfo |
| *clone, |
| *last; |
| |
| last = kernel; |
| |
| clone = CloneKernelInfo(last); |
| RotateKernelInfo(clone, 180); /* flip */ |
| LastKernelInfo(last)->next = clone; |
| last = clone; |
| |
| clone = CloneKernelInfo(last); |
| RotateKernelInfo(clone, 90); /* transpose */ |
| LastKernelInfo(last)->next = clone; |
| last = clone; |
| |
| clone = CloneKernelInfo(last); |
| RotateKernelInfo(clone, 180); /* flop */ |
| LastKernelInfo(last)->next = clone; |
| |
| return; |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + E x p a n d R o t a t e K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ExpandRotateKernelInfo() takes a kernel list, and expands it by rotating |
| % incrementally by the angle given, until the first kernel repeats. |
| % |
| % WARNING: 45 degree rotations only works for 3x3 kernels. |
| % While 90 degree roatations only works for linear and square kernels |
| % |
| % The format of the ExpandRotateKernelInfo method is: |
| % |
| % void ExpandRotateKernelInfo(KernelInfo *kernel, double angle) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel |
| % |
| % o angle: angle to rotate in degrees |
| % |
| % This function is only internel to this module, as it is not finalized, |
| % especially with regard to non-orthogonal angles, and rotation of larger |
| % 2D kernels. |
| */ |
| |
| /* Internal Routine - Return true if two kernels are the same */ |
| static MagickBooleanType SameKernelInfo(const KernelInfo *kernel1, |
| const KernelInfo *kernel2) |
| { |
| register size_t |
| i; |
| |
| /* check size and origin location */ |
| if ( kernel1->width != kernel2->width |
| || kernel1->height != kernel2->height |
| || kernel1->x != kernel2->x |
| || kernel1->y != kernel2->y ) |
| return MagickFalse; |
| |
| /* check actual kernel values */ |
| for (i=0; i < (kernel1->width*kernel1->height); i++) { |
| /* Test for Nan equivelence */ |
| if ( IsNan(kernel1->values[i]) && !IsNan(kernel2->values[i]) ) |
| return MagickFalse; |
| if ( IsNan(kernel2->values[i]) && !IsNan(kernel1->values[i]) ) |
| return MagickFalse; |
| /* Test actual values are equivelent */ |
| if ( fabs(kernel1->values[i] - kernel2->values[i]) > MagickEpsilon ) |
| return MagickFalse; |
| } |
| |
| return MagickTrue; |
| } |
| |
| static void ExpandRotateKernelInfo(KernelInfo *kernel, const double angle) |
| { |
| KernelInfo |
| *clone, |
| *last; |
| |
| last = kernel; |
| while(1) { |
| clone = CloneKernelInfo(last); |
| RotateKernelInfo(clone, angle); |
| if ( SameKernelInfo(kernel, clone) == MagickTrue ) |
| break; |
| LastKernelInfo(last)->next = clone; |
| last = clone; |
| } |
| clone = DestroyKernelInfo(clone); /* kernel has repeated - junk the clone */ |
| return; |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + C a l c M e t a K e r n a l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % CalcKernelMetaData() recalculate the KernelInfo meta-data of this kernel only, |
| % using the kernel values. This should only ne used if it is not posible to |
| % calculate that meta-data in some easier way. |
| % |
| % It is important that the meta-data is correct before ScaleKernelInfo() is |
| % used to perform kernel normalization. |
| % |
| % The format of the CalcKernelMetaData method is: |
| % |
| % void CalcKernelMetaData(KernelInfo *kernel, const double scale ) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel to modify |
| % |
| % WARNING: Minimum and Maximum values are assumed to include zero, even if |
| % zero is not part of the kernel (as in Gaussian Derived kernels). This |
| % however is not true for flat-shaped morphological kernels. |
| % |
| % WARNING: Only the specific kernel pointed to is modified, not a list of |
| % multiple kernels. |
| % |
| % This is an internal function and not expected to be useful outside this |
| % module. This could change however. |
| */ |
| static void CalcKernelMetaData(KernelInfo *kernel) |
| { |
| register size_t |
| i; |
| |
| kernel->minimum = kernel->maximum = 0.0; |
| kernel->negative_range = kernel->positive_range = 0.0; |
| for (i=0; i < (kernel->width*kernel->height); i++) |
| { |
| if ( fabs(kernel->values[i]) < MagickEpsilon ) |
| kernel->values[i] = 0.0; |
| ( kernel->values[i] < 0) |
| ? ( kernel->negative_range += kernel->values[i] ) |
| : ( kernel->positive_range += kernel->values[i] ); |
| Minimize(kernel->minimum, kernel->values[i]); |
| Maximize(kernel->maximum, kernel->values[i]); |
| } |
| |
| return; |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % M o r p h o l o g y A p p l y % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % MorphologyApply() applies a morphological method, multiple times using |
| % a list of multiple kernels. |
| % |
| % It is basically equivelent to as MorphologyImageChannel() (see below) but |
| % without any user controls. This allows internel programs to use this |
| % function, to actually perform a specific task without posible interference |
| % by any API user supplied settings. |
| % |
| % It is MorphologyImageChannel() task to extract any such user controls, and |
| % pass them to this function for processing. |
| % |
| % More specifically kernels are not normalized/scaled/blended by the |
| % 'convolve:scale' Image Artifact (setting), nor is the convolve bias |
| % (-bias setting or image->bias) loooked at, but must be supplied from the |
| % function arguments. |
| % |
| % The format of the MorphologyApply method is: |
| % |
| % Image *MorphologyApply(const Image *image,MorphologyMethod method, |
| % const ssize_t iterations,const KernelInfo *kernel, |
| % const CompositeMethod compose, const double bias, |
| % ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the source image |
| % |
| % o method: the morphology method to be applied. |
| % |
| % o iterations: apply the operation this many times (or no change). |
| % A value of -1 means loop until no change found. |
| % How this is applied may depend on the morphology method. |
| % Typically this is a value of 1. |
| % |
| % o channel: the channel type. |
| % |
| % o kernel: An array of double representing the morphology kernel. |
| % |
| % o compose: How to handle or merge multi-kernel results. |
| % If 'UndefinedCompositeOp' use default for the Morphology method. |
| % If 'NoCompositeOp' force image to be re-iterated by each kernel. |
| % Otherwise merge the results using the compose method given. |
| % |
| % o bias: Convolution Output Bias. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| |
| |
| /* Apply a Morphology Primative to an image using the given kernel. |
| ** Two pre-created images must be provided, no image is created. |
| ** It returns the number of pixels that changed betwene the images |
| ** for convergence determination. |
| */ |
| static size_t MorphologyPrimitive(const Image *image, Image |
| *result_image, const MorphologyMethod method, const ChannelType channel, |
| const KernelInfo *kernel,const double bias,ExceptionInfo *exception) |
| { |
| #define MorphologyTag "Morphology/Image" |
| |
| CacheView |
| *p_view, |
| *q_view; |
| |
| ssize_t |
| y, offx, offy, |
| changed; |
| |
| MagickBooleanType |
| status; |
| |
| MagickOffsetType |
| progress; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickSignature); |
| assert(result_image != (Image *) NULL); |
| assert(result_image->signature == MagickSignature); |
| assert(kernel != (KernelInfo *) NULL); |
| assert(kernel->signature == MagickSignature); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickSignature); |
| |
| status=MagickTrue; |
| changed=0; |
| progress=0; |
| |
| p_view=AcquireCacheView(image); |
| q_view=AcquireCacheView(result_image); |
| |
| /* Some methods (including convolve) needs use a reflected kernel. |
| * Adjust 'origin' offsets to loop though kernel as a reflection. |
| */ |
| offx = kernel->x; |
| offy = kernel->y; |
| switch(method) { |
| case ConvolveMorphology: |
| case DilateMorphology: |
| case DilateIntensityMorphology: |
| case DistanceMorphology: |
| /* kernel needs to used with reflection about origin */ |
| offx = (ssize_t) kernel->width-offx-1; |
| offy = (ssize_t) kernel->height-offy-1; |
| break; |
| case ErodeMorphology: |
| case ErodeIntensityMorphology: |
| case HitAndMissMorphology: |
| case ThinningMorphology: |
| case ThickenMorphology: |
| /* kernel is used as is, without reflection */ |
| break; |
| default: |
| assert("Not a Primitive Morphology Method" != (char *) NULL); |
| break; |
| } |
| |
| |
| if ( method == ConvolveMorphology && kernel->width == 1 ) |
| { /* Special handling (for speed) of vertical (blur) kernels. |
| ** This performs its handling in columns rather than in rows. |
| ** This is only done fo convolve as it is the only method that |
| ** generates very large 1-D vertical kernels (such as a 'BlurKernel') |
| ** |
| ** Timing tests (on single CPU laptop) |
| ** Using a vertical 1-d Blue with normal row-by-row (below) |
| ** time convert logo: -morphology Convolve Blur:0x10+90 null: |
| ** 0.807u |
| ** Using this column method |
| ** time convert logo: -morphology Convolve Blur:0x10+90 null: |
| ** 0.620u |
| ** |
| ** Anthony Thyssen, 14 June 2010 |
| */ |
| register ssize_t |
| x; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel for schedule(dynamic,4) shared(progress,status) |
| #endif |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| register const PixelPacket |
| *restrict p; |
| |
| register const IndexPacket |
| *restrict p_indexes; |
| |
| register PixelPacket |
| *restrict q; |
| |
| register IndexPacket |
| *restrict q_indexes; |
| |
| register ssize_t |
| y; |
| |
| size_t |
| r; |
| |
| if (status == MagickFalse) |
| continue; |
| p=GetCacheViewVirtualPixels(p_view, x, -offy,1, |
| image->rows+kernel->height, exception); |
| q=GetCacheViewAuthenticPixels(q_view,x,0,1,result_image->rows,exception); |
| if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL)) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| p_indexes=GetCacheViewVirtualIndexQueue(p_view); |
| q_indexes=GetCacheViewAuthenticIndexQueue(q_view); |
| r = offy; /* offset to the origin pixel in 'p' */ |
| |
| for (y=0; y < (ssize_t) image->rows; y++) |
| { |
| register ssize_t |
| v; |
| |
| register const double |
| *restrict k; |
| |
| register const PixelPacket |
| *restrict k_pixels; |
| |
| register const IndexPacket |
| *restrict k_indexes; |
| |
| MagickPixelPacket |
| result; |
| |
| /* Copy input image to the output image for unused channels |
| * This removes need for 'cloning' a new image every iteration |
| */ |
| *q = p[r]; |
| if (image->colorspace == CMYKColorspace) |
| q_indexes[y] = p_indexes[r]; |
| |
| /* Set the bias of the weighted average output */ |
| result.red = |
| result.green = |
| result.blue = |
| result.opacity = |
| result.index = bias; |
| |
| |
| /* Weighted Average of pixels using reflected kernel |
| ** |
| ** NOTE for correct working of this operation for asymetrical |
| ** kernels, the kernel needs to be applied in its reflected form. |
| ** That is its values needs to be reversed. |
| */ |
| k = &kernel->values[ kernel->height-1 ]; |
| k_pixels = p; |
| k_indexes = p_indexes; |
| if ( ((channel & SyncChannels) == 0 ) || |
| (image->matte == MagickFalse) ) |
| { /* No 'Sync' involved. |
| ** Convolution is simple greyscale channel operation |
| */ |
| for (v=0; v < (ssize_t) kernel->height; v++) { |
| if ( IsNan(*k) ) continue; |
| result.red += (*k)*k_pixels->red; |
| result.green += (*k)*k_pixels->green; |
| result.blue += (*k)*k_pixels->blue; |
| result.opacity += (*k)*k_pixels->opacity; |
| if ( image->colorspace == CMYKColorspace) |
| result.index += (*k)*(*k_indexes); |
| k--; |
| k_pixels++; |
| k_indexes++; |
| } |
| if ((channel & RedChannel) != 0) |
| q->red = ClampToQuantum(result.red); |
| if ((channel & GreenChannel) != 0) |
| q->green = ClampToQuantum(result.green); |
| if ((channel & BlueChannel) != 0) |
| q->blue = ClampToQuantum(result.blue); |
| if ((channel & OpacityChannel) != 0 |
| && image->matte == MagickTrue ) |
| q->opacity = ClampToQuantum(result.opacity); |
| if ((channel & IndexChannel) != 0 |
| && image->colorspace == CMYKColorspace) |
| q_indexes[x] = ClampToQuantum(result.index); |
| } |
| else |
| { /* Channel 'Sync' Flag, and Alpha Channel enabled. |
| ** Weight the color channels with Alpha Channel so that |
| ** transparent pixels are not part of the results. |
| */ |
| MagickRealType |
| alpha, /* alpha weighting of colors : kernel*alpha */ |
| gamma; /* divisor, sum of color weighting values */ |
| |
| gamma=0.0; |
| for (v=0; v < (ssize_t) kernel->height; v++) { |
| if ( IsNan(*k) ) continue; |
| alpha=(*k)*(QuantumScale*(QuantumRange-k_pixels->opacity)); |
| gamma += alpha; |
| result.red += alpha*k_pixels->red; |
| result.green += alpha*k_pixels->green; |
| result.blue += alpha*k_pixels->blue; |
| result.opacity += (*k)*k_pixels->opacity; |
| if ( image->colorspace == CMYKColorspace) |
| result.index += alpha*(*k_indexes); |
| k--; |
| k_pixels++; |
| k_indexes++; |
| } |
| /* Sync'ed channels, all channels are modified */ |
| gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma); |
| q->red = ClampToQuantum(gamma*result.red); |
| q->green = ClampToQuantum(gamma*result.green); |
| q->blue = ClampToQuantum(gamma*result.blue); |
| q->opacity = ClampToQuantum(result.opacity); |
| if (image->colorspace == CMYKColorspace) |
| q_indexes[x] = ClampToQuantum(gamma*result.index); |
| } |
| |
| /* Count up changed pixels */ |
| if ( ( p[r].red != q->red ) |
| || ( p[r].green != q->green ) |
| || ( p[r].blue != q->blue ) |
| || ( p[r].opacity != q->opacity ) |
| || ( image->colorspace == CMYKColorspace && |
| p_indexes[r] != q_indexes[x] ) ) |
| changed++; /* The pixel was changed in some way! */ |
| p++; |
| q++; |
| } /* y */ |
| if ( SyncCacheViewAuthenticPixels(q_view,exception) == MagickFalse) |
| status=MagickFalse; |
| if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp critical (MagickCore_MorphologyImage) |
| #endif |
| proceed=SetImageProgress(image,MorphologyTag,progress++,image->rows); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| } /* x */ |
| result_image->type=image->type; |
| q_view=DestroyCacheView(q_view); |
| p_view=DestroyCacheView(p_view); |
| return(status ? (size_t) changed : 0); |
| } |
| |
| /* |
| ** Normal handling of horizontal or rectangular kernels (row by row) |
| */ |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel for schedule(dynamic,4) shared(progress,status) |
| #endif |
| for (y=0; y < (ssize_t) image->rows; y++) |
| { |
| register const PixelPacket |
| *restrict p; |
| |
| register const IndexPacket |
| *restrict p_indexes; |
| |
| register PixelPacket |
| *restrict q; |
| |
| register IndexPacket |
| *restrict q_indexes; |
| |
| register ssize_t |
| x; |
| |
| size_t |
| r; |
| |
| if (status == MagickFalse) |
| continue; |
| p=GetCacheViewVirtualPixels(p_view, -offx, y-offy, |
| image->columns+kernel->width, kernel->height, exception); |
| q=GetCacheViewAuthenticPixels(q_view,0,y,result_image->columns,1, |
| exception); |
| if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL)) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| p_indexes=GetCacheViewVirtualIndexQueue(p_view); |
| q_indexes=GetCacheViewAuthenticIndexQueue(q_view); |
| r = (image->columns+kernel->width)*offy+offx; /* offset to origin in 'p' */ |
| |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| ssize_t |
| v; |
| |
| register ssize_t |
| u; |
| |
| register const double |
| *restrict k; |
| |
| register const PixelPacket |
| *restrict k_pixels; |
| |
| register const IndexPacket |
| *restrict k_indexes; |
| |
| MagickPixelPacket |
| result, |
| min, |
| max; |
| |
| /* Copy input image to the output image for unused channels |
| * This removes need for 'cloning' a new image every iteration |
| */ |
| *q = p[r]; |
| if (image->colorspace == CMYKColorspace) |
| q_indexes[x] = p_indexes[r]; |
| |
| /* Defaults */ |
| min.red = |
| min.green = |
| min.blue = |
| min.opacity = |
| min.index = (MagickRealType) QuantumRange; |
| max.red = |
| max.green = |
| max.blue = |
| max.opacity = |
| max.index = (MagickRealType) 0; |
| /* default result is the original pixel value */ |
| result.red = (MagickRealType) p[r].red; |
| result.green = (MagickRealType) p[r].green; |
| result.blue = (MagickRealType) p[r].blue; |
| result.opacity = QuantumRange - (MagickRealType) p[r].opacity; |
| result.index = 0.0; |
| if ( image->colorspace == CMYKColorspace) |
| result.index = (MagickRealType) p_indexes[r]; |
| |
| switch (method) { |
| case ConvolveMorphology: |
| /* Set the bias of the weighted average output */ |
| result.red = |
| result.green = |
| result.blue = |
| result.opacity = |
| result.index = bias; |
| break; |
| case DilateIntensityMorphology: |
| case ErodeIntensityMorphology: |
| /* use a boolean flag indicating when first match found */ |
| result.red = 0.0; /* result is not used otherwise */ |
| break; |
| default: |
| break; |
| } |
| |
| switch ( method ) { |
| case ConvolveMorphology: |
| /* Weighted Average of pixels using reflected kernel |
| ** |
| ** NOTE for correct working of this operation for asymetrical |
| ** kernels, the kernel needs to be applied in its reflected form. |
| ** That is its values needs to be reversed. |
| ** |
| ** Correlation is actually the same as this but without reflecting |
| ** the kernel, and thus 'lower-level' that Convolution. However |
| ** as Convolution is the more common method used, and it does not |
| ** really cost us much in terms of processing to use a reflected |
| ** kernel, so it is Convolution that is implemented. |
| ** |
| ** Correlation will have its kernel reflected before calling |
| ** this function to do a Convolve. |
| ** |
| ** For more details of Correlation vs Convolution see |
| ** http://www.cs.umd.edu/~djacobs/CMSC426/Convolution.pdf |
| */ |
| k = &kernel->values[ kernel->width*kernel->height-1 ]; |
| k_pixels = p; |
| k_indexes = p_indexes; |
| if ( ((channel & SyncChannels) == 0 ) || |
| (image->matte == MagickFalse) ) |
| { /* No 'Sync' involved. |
| ** Convolution is simple greyscale channel operation |
| */ |
| for (v=0; v < (ssize_t) kernel->height; v++) { |
| for (u=0; u < (ssize_t) kernel->width; u++, k--) { |
| if ( IsNan(*k) ) continue; |
| result.red += (*k)*k_pixels[u].red; |
| result.green += (*k)*k_pixels[u].green; |
| result.blue += (*k)*k_pixels[u].blue; |
| result.opacity += (*k)*k_pixels[u].opacity; |
| if ( image->colorspace == CMYKColorspace) |
| result.index += (*k)*k_indexes[u]; |
| } |
| k_pixels += image->columns+kernel->width; |
| k_indexes += image->columns+kernel->width; |
| } |
| if ((channel & RedChannel) != 0) |
| q->red = ClampToQuantum(result.red); |
| if ((channel & GreenChannel) != 0) |
| q->green = ClampToQuantum(result.green); |
| if ((channel & BlueChannel) != 0) |
| q->blue = ClampToQuantum(result.blue); |
| if ((channel & OpacityChannel) != 0 |
| && image->matte == MagickTrue ) |
| q->opacity = ClampToQuantum(result.opacity); |
| if ((channel & IndexChannel) != 0 |
| && image->colorspace == CMYKColorspace) |
| q_indexes[x] = ClampToQuantum(result.index); |
| } |
| else |
| { /* Channel 'Sync' Flag, and Alpha Channel enabled. |
| ** Weight the color channels with Alpha Channel so that |
| ** transparent pixels are not part of the results. |
| */ |
| MagickRealType |
| alpha, /* alpha weighting of colors : kernel*alpha */ |
| gamma; /* divisor, sum of color weighting values */ |
| |
| gamma=0.0; |
| for (v=0; v < (ssize_t) kernel->height; v++) { |
| for (u=0; u < (ssize_t) kernel->width; u++, k--) { |
| if ( IsNan(*k) ) continue; |
| alpha=(*k)*(QuantumScale*(QuantumRange- |
| k_pixels[u].opacity)); |
| gamma += alpha; |
| result.red += alpha*k_pixels[u].red; |
| result.green += alpha*k_pixels[u].green; |
| result.blue += alpha*k_pixels[u].blue; |
| result.opacity += (*k)*k_pixels[u].opacity; |
| if ( image->colorspace == CMYKColorspace) |
| result.index += alpha*k_indexes[u]; |
| } |
| k_pixels += image->columns+kernel->width; |
| k_indexes += image->columns+kernel->width; |
| } |
| /* Sync'ed channels, all channels are modified */ |
| gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma); |
| q->red = ClampToQuantum(gamma*result.red); |
| q->green = ClampToQuantum(gamma*result.green); |
| q->blue = ClampToQuantum(gamma*result.blue); |
| q->opacity = ClampToQuantum(result.opacity); |
| if (image->colorspace == CMYKColorspace) |
| q_indexes[x] = ClampToQuantum(gamma*result.index); |
| } |
| break; |
| |
| case ErodeMorphology: |
| /* Minimum Value within kernel neighbourhood |
| ** |
| ** NOTE that the kernel is not reflected for this operation! |
| ** |
| ** NOTE: in normal Greyscale Morphology, the kernel value should |
| ** be added to the real value, this is currently not done, due to |
| ** the nature of the boolean kernels being used. |
| */ |
| k = kernel->values; |
| k_pixels = p; |
| k_indexes = p_indexes; |
| for (v=0; v < (ssize_t) kernel->height; v++) { |
| for (u=0; u < (ssize_t) kernel->width; u++, k++) { |
| if ( IsNan(*k) || (*k) < 0.5 ) continue; |
| Minimize(min.red, (double) k_pixels[u].red); |
| Minimize(min.green, (double) k_pixels[u].green); |
| Minimize(min.blue, (double) k_pixels[u].blue); |
| Minimize(min.opacity, |
| QuantumRange-(double) k_pixels[u].opacity); |
| if ( image->colorspace == CMYKColorspace) |
| Minimize(min.index, (double) k_indexes[u]); |
| } |
| k_pixels += image->columns+kernel->width; |
| k_indexes += image->columns+kernel->width; |
| } |
| break; |
| |
| case DilateMorphology: |
| /* Maximum Value within kernel neighbourhood |
| ** |
| ** NOTE for correct working of this operation for asymetrical |
| ** kernels, the kernel needs to be applied in its reflected form. |
| ** That is its values needs to be reversed. |
| ** |
| ** NOTE: in normal Greyscale Morphology, the kernel value should |
| ** be added to the real value, this is currently not done, due to |
| ** the nature of the boolean kernels being used. |
| ** |
| */ |
| k = &kernel->values[ kernel->width*kernel->height-1 ]; |
| k_pixels = p; |
| k_indexes = p_indexes; |
| for (v=0; v < (ssize_t) kernel->height; v++) { |
| for (u=0; u < (ssize_t) kernel->width; u++, k--) { |
| if ( IsNan(*k) || (*k) < 0.5 ) continue; |
| Maximize(max.red, (double) k_pixels[u].red); |
| Maximize(max.green, (double) k_pixels[u].green); |
| Maximize(max.blue, (double) k_pixels[u].blue); |
| Maximize(max.opacity, |
| QuantumRange-(double) k_pixels[u].opacity); |
| if ( image->colorspace == CMYKColorspace) |
| Maximize(max.index, (double) k_indexes[u]); |
| } |
| k_pixels += image->columns+kernel->width; |
| k_indexes += image->columns+kernel->width; |
| } |
| break; |
| |
| case HitAndMissMorphology: |
| case ThinningMorphology: |
| case ThickenMorphology: |
| /* Minimum of Foreground Pixel minus Maxumum of Background Pixels |
| ** |
| ** NOTE that the kernel is not reflected for this operation, |
| ** and consists of both foreground and background pixel |
| ** neighbourhoods, 0.0 for background, and 1.0 for foreground |
| ** with either Nan or 0.5 values for don't care. |
| ** |
| ** Note that this will never produce a meaningless negative |
| ** result. Such results can cause Thinning/Thicken to not work |
| ** correctly when used against a greyscale image. |
| */ |
| k = kernel->values; |
| k_pixels = p; |
| k_indexes = p_indexes; |
| for (v=0; v < (ssize_t) kernel->height; v++) { |
| for (u=0; u < (ssize_t) kernel->width; u++, k++) { |
| if ( IsNan(*k) ) continue; |
| if ( (*k) > 0.7 ) |
| { /* minimim of foreground pixels */ |
| Minimize(min.red, (double) k_pixels[u].red); |
| Minimize(min.green, (double) k_pixels[u].green); |
| Minimize(min.blue, (double) k_pixels[u].blue); |
| Minimize(min.opacity, |
| QuantumRange-(double) k_pixels[u].opacity); |
| if ( image->colorspace == CMYKColorspace) |
| Minimize(min.index, (double) k_indexes[u]); |
| } |
| else if ( (*k) < 0.3 ) |
| { /* maximum of background pixels */ |
| Maximize(max.red, (double) k_pixels[u].red); |
| Maximize(max.green, (double) k_pixels[u].green); |
| Maximize(max.blue, (double) k_pixels[u].blue); |
| Maximize(max.opacity, |
| QuantumRange-(double) k_pixels[u].opacity); |
| if ( image->colorspace == CMYKColorspace) |
| Maximize(max.index, (double) k_indexes[u]); |
| } |
| } |
| k_pixels += image->columns+kernel->width; |
| k_indexes += image->columns+kernel->width; |
| } |
| /* Pattern Match if difference is positive */ |
| min.red -= max.red; Maximize( min.red, 0.0 ); |
| min.green -= max.green; Maximize( min.green, 0.0 ); |
| min.blue -= max.blue; Maximize( min.blue, 0.0 ); |
| min.opacity -= max.opacity; Maximize( min.opacity, 0.0 ); |
| min.index -= max.index; Maximize( min.index, 0.0 ); |
| break; |
| |
| case ErodeIntensityMorphology: |
| /* Select Pixel with Minimum Intensity within kernel neighbourhood |
| ** |
| ** WARNING: the intensity test fails for CMYK and does not |
| ** take into account the moderating effect of the alpha channel |
| ** on the intensity. |
| ** |
| ** NOTE that the kernel is not reflected for this operation! |
| */ |
| k = kernel->values; |
| k_pixels = p; |
| k_indexes = p_indexes; |
| for (v=0; v < (ssize_t) kernel->height; v++) { |
| for (u=0; u < (ssize_t) kernel->width; u++, k++) { |
| if ( IsNan(*k) || (*k) < 0.5 ) continue; |
| if ( result.red == 0.0 || |
| PixelIntensity(&(k_pixels[u])) < PixelIntensity(q) ) { |
| /* copy the whole pixel - no channel selection */ |
| *q = k_pixels[u]; |
| if ( result.red > 0.0 ) changed++; |
| result.red = 1.0; |
| } |
| } |
| k_pixels += image->columns+kernel->width; |
| k_indexes += image->columns+kernel->width; |
| } |
| break; |
| |
| case DilateIntensityMorphology: |
| /* Select Pixel with Maximum Intensity within kernel neighbourhood |
| ** |
| ** WARNING: the intensity test fails for CMYK and does not |
| ** take into account the moderating effect of the alpha channel |
| ** on the intensity (yet). |
| ** |
| ** NOTE for correct working of this operation for asymetrical |
| ** kernels, the kernel needs to be applied in its reflected form. |
| ** That is its values needs to be reversed. |
| */ |
| k = &kernel->values[ kernel->width*kernel->height-1 ]; |
| k_pixels = p; |
| k_indexes = p_indexes; |
| for (v=0; v < (ssize_t) kernel->height; v++) { |
| for (u=0; u < (ssize_t) kernel->width; u++, k--) { |
| if ( IsNan(*k) || (*k) < 0.5 ) continue; /* boolean kernel */ |
| if ( result.red == 0.0 || |
| PixelIntensity(&(k_pixels[u])) > PixelIntensity(q) ) { |
| /* copy the whole pixel - no channel selection */ |
| *q = k_pixels[u]; |
| if ( result.red > 0.0 ) changed++; |
| result.red = 1.0; |
| } |
| } |
| k_pixels += image->columns+kernel->width; |
| k_indexes += image->columns+kernel->width; |
| } |
| break; |
| |
| |
| case DistanceMorphology: |
| /* Add kernel Value and select the minimum value found. |
| ** The result is a iterative distance from edge of image shape. |
| ** |
| ** All Distance Kernels are symetrical, but that may not always |
| ** be the case. For example how about a distance from left edges? |
| ** To work correctly with asymetrical kernels the reflected kernel |
| ** needs to be applied. |
| ** |
| ** Actually this is really a GreyErode with a negative kernel! |
| ** |
| */ |
| k = &kernel->values[ kernel->width*kernel->height-1 ]; |
| k_pixels = p; |
| k_indexes = p_indexes; |
| for (v=0; v < (ssize_t) kernel->height; v++) { |
| for (u=0; u < (ssize_t) kernel->width; u++, k--) { |
| if ( IsNan(*k) ) continue; |
| Minimize(result.red, (*k)+k_pixels[u].red); |
| Minimize(result.green, (*k)+k_pixels[u].green); |
| Minimize(result.blue, (*k)+k_pixels[u].blue); |
| Minimize(result.opacity, (*k)+QuantumRange-k_pixels[u].opacity); |
| if ( image->colorspace == CMYKColorspace) |
| Minimize(result.index, (*k)+k_indexes[u]); |
| } |
| k_pixels += image->columns+kernel->width; |
| k_indexes += image->columns+kernel->width; |
| } |
| break; |
| |
| case UndefinedMorphology: |
| default: |
| break; /* Do nothing */ |
| } |
| /* Final mathematics of results (combine with original image?) |
| ** |
| ** NOTE: Difference Morphology operators Edge* and *Hat could also |
| ** be done here but works better with iteration as a image difference |
| ** in the controling function (below). Thicken and Thinning however |
| ** should be done here so thay can be iterated correctly. |
| */ |
| switch ( method ) { |
| case HitAndMissMorphology: |
| case ErodeMorphology: |
| result = min; /* minimum of neighbourhood */ |
| break; |
| case DilateMorphology: |
| result = max; /* maximum of neighbourhood */ |
| break; |
| case ThinningMorphology: |
| /* subtract pattern match from original */ |
| result.red -= min.red; |
| result.green -= min.green; |
| result.blue -= min.blue; |
| result.opacity -= min.opacity; |
| result.index -= min.index; |
| break; |
| case ThickenMorphology: |
| /* Add the pattern matchs to the original */ |
| result.red += min.red; |
| result.green += min.green; |
| result.blue += min.blue; |
| result.opacity += min.opacity; |
| result.index += min.index; |
| break; |
| default: |
| /* result directly calculated or assigned */ |
| break; |
| } |
| /* Assign the resulting pixel values - Clamping Result */ |
| switch ( method ) { |
| case UndefinedMorphology: |
| case ConvolveMorphology: |
| case DilateIntensityMorphology: |
| case ErodeIntensityMorphology: |
| break; /* full pixel was directly assigned - not a channel method */ |
| default: |
| if ((channel & RedChannel) != 0) |
| q->red = ClampToQuantum(result.red); |
| if ((channel & GreenChannel) != 0) |
| q->green = ClampToQuantum(result.green); |
| if ((channel & BlueChannel) != 0) |
| q->blue = ClampToQuantum(result.blue); |
| if ((channel & OpacityChannel) != 0 |
| && image->matte == MagickTrue ) |
| q->opacity = ClampToQuantum(QuantumRange-result.opacity); |
| if ((channel & IndexChannel) != 0 |
| && image->colorspace == CMYKColorspace) |
| q_indexes[x] = ClampToQuantum(result.index); |
| break; |
| } |
| /* Count up changed pixels */ |
| if ( ( p[r].red != q->red ) |
| || ( p[r].green != q->green ) |
| || ( p[r].blue != q->blue ) |
| || ( p[r].opacity != q->opacity ) |
| || ( image->colorspace == CMYKColorspace && |
| p_indexes[r] != q_indexes[x] ) ) |
| changed++; /* The pixel was changed in some way! */ |
| p++; |
| q++; |
| } /* x */ |
| if ( SyncCacheViewAuthenticPixels(q_view,exception) == MagickFalse) |
| status=MagickFalse; |
| if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp critical (MagickCore_MorphologyImage) |
| #endif |
| proceed=SetImageProgress(image,MorphologyTag,progress++,image->rows); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| } /* y */ |
| result_image->type=image->type; |
| q_view=DestroyCacheView(q_view); |
| p_view=DestroyCacheView(p_view); |
| return(status ? (size_t) changed : 0); |
| } |
| |
| |
| MagickExport Image *MorphologyApply(const Image *image, const ChannelType |
| channel,const MorphologyMethod method, const ssize_t iterations, |
| const KernelInfo *kernel, const CompositeOperator compose, |
| const double bias, ExceptionInfo *exception) |
| { |
| Image |
| *curr_image, /* Image we are working with or iterating */ |
| *work_image, /* secondary image for primative iteration */ |
| *save_image, /* saved image - for 'edge' method only */ |
| *rslt_image; /* resultant image - after multi-kernel handling */ |
| |
| KernelInfo |
| *reflected_kernel, /* A reflected copy of the kernel (if needed) */ |
| *norm_kernel, /* the current normal un-reflected kernel */ |
| *rflt_kernel, /* the current reflected kernel (if needed) */ |
| *this_kernel; /* the kernel being applied */ |
| |
| MorphologyMethod |
| primative; /* the current morphology primative being applied */ |
| |
| CompositeOperator |
| rslt_compose; /* multi-kernel compose method for results to use */ |
| |
| MagickBooleanType |
| verbose; /* verbose output of results */ |
| |
| size_t |
| method_loop, /* Loop 1: number of compound method iterations */ |
| method_limit, /* maximum number of compound method iterations */ |
| kernel_number, /* Loop 2: the kernel number being applied */ |
| stage_loop, /* Loop 3: primative loop for compound morphology */ |
| stage_limit, /* how many primatives in this compound */ |
| kernel_loop, /* Loop 4: iterate the kernel (basic morphology) */ |
| kernel_limit, /* number of times to iterate kernel */ |
| count, /* total count of primative steps applied */ |
| changed, /* number pixels changed by last primative operation */ |
| kernel_changed, /* total count of changed using iterated kernel */ |
| method_changed; /* total count of changed over method iteration */ |
| |
| char |
| v_info[80]; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickSignature); |
| assert(kernel != (KernelInfo *) NULL); |
| assert(kernel->signature == MagickSignature); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickSignature); |
| |
| count = 0; /* number of low-level morphology primatives performed */ |
| if ( iterations == 0 ) |
| return((Image *)NULL); /* null operation - nothing to do! */ |
| |
| kernel_limit = (size_t) iterations; |
| if ( iterations < 0 ) /* negative interations = infinite (well alomst) */ |
| kernel_limit = image->columns > image->rows ? image->columns : image->rows; |
| |
| verbose = ( GetImageArtifact(image,"verbose") != (const char *) NULL ) ? |
| MagickTrue : MagickFalse; |
| |
| /* initialise for cleanup */ |
| curr_image = (Image *) image; |
| work_image = save_image = rslt_image = (Image *) NULL; |
| reflected_kernel = (KernelInfo *) NULL; |
| |
| /* Initialize specific methods |
| * + which loop should use the given iteratations |
| * + how many primatives make up the compound morphology |
| * + multi-kernel compose method to use (by default) |
| */ |
| method_limit = 1; /* just do method once, unless otherwise set */ |
| stage_limit = 1; /* assume method is not a compount */ |
| rslt_compose = compose; /* and we are composing multi-kernels as given */ |
| switch( method ) { |
| case SmoothMorphology: /* 4 primative compound morphology */ |
| stage_limit = 4; |
| break; |
| case OpenMorphology: /* 2 primative compound morphology */ |
| case OpenIntensityMorphology: |
| case TopHatMorphology: |
| case CloseMorphology: |
| case CloseIntensityMorphology: |
| case BottomHatMorphology: |
| case EdgeMorphology: |
| stage_limit = 2; |
| break; |
| case HitAndMissMorphology: |
| rslt_compose = LightenCompositeOp; /* Union of multi-kernel results */ |
| /* FALL THUR */ |
| case ThinningMorphology: |
| case ThickenMorphology: |
| method_limit = kernel_limit; /* iterate the whole method */ |
| kernel_limit = 1; /* do not do kernel iteration */ |
| break; |
| default: |
| break; |
| } |
| |
| /* Handle user (caller) specified multi-kernel composition method */ |
| if ( compose != UndefinedCompositeOp ) |
| rslt_compose = compose; /* override default composition for method */ |
| if ( rslt_compose == UndefinedCompositeOp ) |
| rslt_compose = NoCompositeOp; /* still not defined! Then re-iterate */ |
| |
| /* Some methods require a reflected kernel to use with primatives. |
| * Create the reflected kernel for those methods. */ |
| switch ( method ) { |
| case CorrelateMorphology: |
| case CloseMorphology: |
| case CloseIntensityMorphology: |
| case BottomHatMorphology: |
| case SmoothMorphology: |
| reflected_kernel = CloneKernelInfo(kernel); |
| if (reflected_kernel == (KernelInfo *) NULL) |
| goto error_cleanup; |
| RotateKernelInfo(reflected_kernel,180); |
| break; |
| default: |
| break; |
| } |
| |
| /* Loop 1: iterate the compound method */ |
| method_loop = 0; |
| method_changed = 1; |
| while ( method_loop < method_limit && method_changed > 0 ) { |
| method_loop++; |
| method_changed = 0; |
| |
| /* Loop 2: iterate over each kernel in a multi-kernel list */ |
| norm_kernel = (KernelInfo *) kernel; |
| this_kernel = (KernelInfo *) kernel; |
| rflt_kernel = reflected_kernel; |
| |
| kernel_number = 0; |
| while ( norm_kernel != NULL ) { |
| |
| /* Loop 3: Compound Morphology Staging - Select Primative to apply */ |
| stage_loop = 0; /* the compound morphology stage number */ |
| while ( stage_loop < stage_limit ) { |
| stage_loop++; /* The stage of the compound morphology */ |
| |
| /* Select primative morphology for this stage of compound method */ |
| this_kernel = norm_kernel; /* default use unreflected kernel */ |
| primative = method; /* Assume method is a primative */ |
| switch( method ) { |
| case ErodeMorphology: /* just erode */ |
| case EdgeInMorphology: /* erode and image difference */ |
| primative = ErodeMorphology; |
| break; |
| case DilateMorphology: /* just dilate */ |
| case EdgeOutMorphology: /* dilate and image difference */ |
| primative = DilateMorphology; |
| break; |
| case OpenMorphology: /* erode then dialate */ |
| case TopHatMorphology: /* open and image difference */ |
| primative = ErodeMorphology; |
| if ( stage_loop == 2 ) |
| primative = DilateMorphology; |
| break; |
| case OpenIntensityMorphology: |
| primative = ErodeIntensityMorphology; |
| if ( stage_loop == 2 ) |
| primative = DilateIntensityMorphology; |
| break; |
| case CloseMorphology: /* dilate, then erode */ |
| case BottomHatMorphology: /* close and image difference */ |
| this_kernel = rflt_kernel; /* use the reflected kernel */ |
| primative = DilateMorphology; |
| if ( stage_loop == 2 ) |
| primative = ErodeMorphology; |
| break; |
| case CloseIntensityMorphology: |
| this_kernel = rflt_kernel; /* use the reflected kernel */ |
| primative = DilateIntensityMorphology; |
| if ( stage_loop == 2 ) |
| primative = ErodeIntensityMorphology; |
| break; |
| case SmoothMorphology: /* open, close */ |
| switch ( stage_loop ) { |
| case 1: /* start an open method, which starts with Erode */ |
| primative = ErodeMorphology; |
| break; |
| case 2: /* now Dilate the Erode */ |
| primative = DilateMorphology; |
| break; |
| case 3: /* Reflect kernel a close */ |
| this_kernel = rflt_kernel; /* use the reflected kernel */ |
| primative = DilateMorphology; |
| break; |
| case 4: /* Finish the Close */ |
| this_kernel = rflt_kernel; /* use the reflected kernel */ |
| primative = ErodeMorphology; |
| break; |
| } |
| break; |
| case EdgeMorphology: /* dilate and erode difference */ |
| primative = DilateMorphology; |
| if ( stage_loop == 2 ) { |
| save_image = curr_image; /* save the image difference */ |
| curr_image = (Image *) image; |
| primative = ErodeMorphology; |
| } |
| break; |
| case CorrelateMorphology: |
| /* A Correlation is a Convolution with a reflected kernel. |
| ** However a Convolution is a weighted sum using a reflected |
| ** kernel. It may seem stange to convert a Correlation into a |
| ** Convolution as the Correlation is the simplier method, but |
| ** Convolution is much more commonly used, and it makes sense to |
| ** implement it directly so as to avoid the need to duplicate the |
| ** kernel when it is not required (which is typically the |
| ** default). |
| */ |
| this_kernel = rflt_kernel; /* use the reflected kernel */ |
| primative = ConvolveMorphology; |
| break; |
| default: |
| break; |
| } |
| assert( this_kernel != (KernelInfo *) NULL ); |
| |
| /* Extra information for debugging compound operations */ |
| if ( verbose == MagickTrue ) { |
| if ( stage_limit > 1 ) |
| (void) FormatMagickString(v_info,MaxTextExtent,"%s:%.20g.%.20g -> ", |
| MagickOptionToMnemonic(MagickMorphologyOptions,method),(double) |
| method_loop,(double) stage_loop); |
| else if ( primative != method ) |
| (void) FormatMagickString(v_info, MaxTextExtent, "%s:%.20g -> ", |
| MagickOptionToMnemonic(MagickMorphologyOptions, method),(double) |
| method_loop); |
| else |
| v_info[0] = '\0'; |
| } |
| |
| /* Loop 4: Iterate the kernel with primative */ |
| kernel_loop = 0; |
| kernel_changed = 0; |
| changed = 1; |
| while ( kernel_loop < kernel_limit && changed > 0 ) { |
| kernel_loop++; /* the iteration of this kernel */ |
| |
| /* Create a destination image, if not yet defined */ |
| if ( work_image == (Image *) NULL ) |
| { |
| work_image=CloneImage(image,0,0,MagickTrue,exception); |
| if (work_image == (Image *) NULL) |
| goto error_cleanup; |
| if (SetImageStorageClass(work_image,DirectClass) == MagickFalse) |
| { |
| InheritException(exception,&work_image->exception); |
| goto error_cleanup; |
| } |
| } |
| |
| /* APPLY THE MORPHOLOGICAL PRIMITIVE (curr -> work) */ |
| count++; |
| changed = MorphologyPrimitive(curr_image, work_image, primative, |
| channel, this_kernel, bias, exception); |
| kernel_changed += changed; |
| method_changed += changed; |
| |
| if ( verbose == MagickTrue ) { |
| if ( kernel_loop > 1 ) |
| fprintf(stderr, "\n"); /* add end-of-line from previous */ |
| (void) fprintf(stderr, "%s%s%s:%.20g.%.20g #%.20g => Changed %.20g", |
| v_info,MagickOptionToMnemonic(MagickMorphologyOptions, |
| primative),(this_kernel == rflt_kernel ) ? "*" : "", |
| (double) (method_loop+kernel_loop-1),(double) kernel_number, |
| (double) count,(double) changed); |
| } |
| /* prepare next loop */ |
| { Image *tmp = work_image; /* swap images for iteration */ |
| work_image = curr_image; |
| curr_image = tmp; |
| } |
| if ( work_image == image ) |
| work_image = (Image *) NULL; /* replace input 'image' */ |
| |
| } /* End Loop 4: Iterate the kernel with primative */ |
| |
| if ( verbose == MagickTrue && kernel_changed != changed ) |
| fprintf(stderr, " Total %.20g",(double) kernel_changed); |
| if ( verbose == MagickTrue && stage_loop < stage_limit ) |
| fprintf(stderr, "\n"); /* add end-of-line before looping */ |
| |
| #if 0 |
| fprintf(stderr, "--E-- image=0x%lx\n", (unsigned long)image); |
| fprintf(stderr, " curr =0x%lx\n", (unsigned long)curr_image); |
| fprintf(stderr, " work =0x%lx\n", (unsigned long)work_image); |
| fprintf(stderr, " save =0x%lx\n", (unsigned long)save_image); |
| fprintf(stderr, " union=0x%lx\n", (unsigned long)rslt_image); |
| #endif |
| |
| } /* End Loop 3: Primative (staging) Loop for Coumpound Methods */ |
| |
| /* Final Post-processing for some Compound Methods |
| ** |
| ** The removal of any 'Sync' channel flag in the Image Compositon |
| ** below ensures the methematical compose method is applied in a |
| ** purely mathematical way, and only to the selected channels. |
| ** Turn off SVG composition 'alpha blending'. |
| */ |
| switch( method ) { |
| case EdgeOutMorphology: |
| case EdgeInMorphology: |
| case TopHatMorphology: |
| case BottomHatMorphology: |
| if ( verbose == MagickTrue ) |
| fprintf(stderr, "\n%s: Difference with original image", |
| MagickOptionToMnemonic(MagickMorphologyOptions, method) ); |
| (void) CompositeImageChannel(curr_image, |
| (ChannelType) (channel & ~SyncChannels), |
| DifferenceCompositeOp, image, 0, 0); |
| break; |
| case EdgeMorphology: |
| if ( verbose == MagickTrue ) |
| fprintf(stderr, "\n%s: Difference of Dilate and Erode", |
| MagickOptionToMnemonic(MagickMorphologyOptions, method) ); |
| (void) CompositeImageChannel(curr_image, |
| (ChannelType) (channel & ~SyncChannels), |
| DifferenceCompositeOp, save_image, 0, 0); |
| save_image = DestroyImage(save_image); /* finished with save image */ |
| break; |
| default: |
| break; |
| } |
| |
| /* multi-kernel handling: re-iterate, or compose results */ |
| if ( kernel->next == (KernelInfo *) NULL ) |
| rslt_image = curr_image; /* just return the resulting image */ |
| else if ( rslt_compose == NoCompositeOp ) |
| { if ( verbose == MagickTrue ) { |
| if ( this_kernel->next != (KernelInfo *) NULL ) |
| fprintf(stderr, " (re-iterate)"); |
| else |
| fprintf(stderr, " (done)"); |
| } |
| rslt_image = curr_image; /* return result, and re-iterate */ |
| } |
| else if ( rslt_image == (Image *) NULL) |
| { if ( verbose == MagickTrue ) |
| fprintf(stderr, " (save for compose)"); |
| rslt_image = curr_image; |
| curr_image = (Image *) image; /* continue with original image */ |
| } |
| else |
| { /* add the new 'current' result to the composition |
| ** |
| ** The removal of any 'Sync' channel flag in the Image Compositon |
| ** below ensures the methematical compose method is applied in a |
| ** purely mathematical way, and only to the selected channels. |
| ** Turn off SVG composition 'alpha blending'. |
| ** |
| ** The compose image order is specifically so that the new image can |
| ** be subtarcted 'Minus' from the collected result, to allow you to |
| ** convert a HitAndMiss methd into a Thinning method. |
| */ |
| if ( verbose == MagickTrue ) |
| fprintf(stderr, " (compose \"%s\")", |
| MagickOptionToMnemonic(MagickComposeOptions, rslt_compose) ); |
| (void) CompositeImageChannel(curr_image, |
| (ChannelType) (channel & ~SyncChannels), rslt_compose, |
| rslt_image, 0, 0); |
| rslt_image = DestroyImage(rslt_image); |
| rslt_image = curr_image; |
| curr_image = (Image *) image; /* continue with original image */ |
| } |
| if ( verbose == MagickTrue ) |
| fprintf(stderr, "\n"); |
| |
| /* loop to the next kernel in a multi-kernel list */ |
| norm_kernel = norm_kernel->next; |
| if ( rflt_kernel != (KernelInfo *) NULL ) |
| rflt_kernel = rflt_kernel->next; |
| kernel_number++; |
| } /* End Loop 2: Loop over each kernel */ |
| |
| } /* End Loop 1: compound method interation */ |
| |
| goto exit_cleanup; |
| |
| /* Yes goto's are bad, but it makes cleanup lot more efficient */ |
| error_cleanup: |
| if ( curr_image != (Image *) NULL && |
| curr_image != rslt_image && |
| curr_image != image ) |
| curr_image = DestroyImage(curr_image); |
| if ( rslt_image != (Image *) NULL ) |
| rslt_image = DestroyImage(rslt_image); |
| exit_cleanup: |
| if ( curr_image != (Image *) NULL && |
| curr_image != rslt_image && |
| curr_image != image ) |
| curr_image = DestroyImage(curr_image); |
| if ( work_image != (Image *) NULL ) |
| work_image = DestroyImage(work_image); |
| if ( save_image != (Image *) NULL ) |
| save_image = DestroyImage(save_image); |
| if ( reflected_kernel != (KernelInfo *) NULL ) |
| reflected_kernel = DestroyKernelInfo(reflected_kernel); |
| return(rslt_image); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % M o r p h o l o g y I m a g e C h a n n e l % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % MorphologyImageChannel() applies a user supplied kernel to the image |
| % according to the given mophology method. |
| % |
| % This function applies any and all user defined settings before calling |
| % the above internal function MorphologyApply(). |
| % |
| % User defined settings include... |
| % * Output Bias for Convolution and correlation ("-bias") |
| % * Kernel Scale/normalize settings ("-set 'option:convolve:scale'") |
| % This can also includes the addition of a scaled unity kernel. |
| % * Show Kernel being applied ("-set option:showkernel 1") |
| % |
| % The format of the MorphologyImage method is: |
| % |
| % Image *MorphologyImage(const Image *image,MorphologyMethod method, |
| % const ssize_t iterations,KernelInfo *kernel,ExceptionInfo *exception) |
| % |
| % Image *MorphologyImageChannel(const Image *image, const ChannelType |
| % channel,MorphologyMethod method,const ssize_t iterations, |
| % KernelInfo *kernel,ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o method: the morphology method to be applied. |
| % |
| % o iterations: apply the operation this many times (or no change). |
| % A value of -1 means loop until no change found. |
| % How this is applied may depend on the morphology method. |
| % Typically this is a value of 1. |
| % |
| % o channel: the channel type. |
| % |
| % o kernel: An array of double representing the morphology kernel. |
| % Warning: kernel may be normalized for the Convolve method. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| |
| MagickExport Image *MorphologyImageChannel(const Image *image, |
| const ChannelType channel,const MorphologyMethod method, |
| const ssize_t iterations,const KernelInfo *kernel,ExceptionInfo *exception) |
| { |
| const char |
| *artifact; |
| |
| KernelInfo |
| *curr_kernel; |
| |
| CompositeOperator |
| compose; |
| |
| Image |
| *morphology_image; |
| |
| |
| /* Apply Convolve/Correlate Normalization and Scaling Factors. |
| * This is done BEFORE the ShowKernelInfo() function is called so that |
| * users can see the results of the 'option:convolve:scale' option. |
| */ |
| curr_kernel = (KernelInfo *) kernel; |
| if ( method == ConvolveMorphology || method == CorrelateMorphology ) |
| { |
| artifact = GetImageArtifact(image,"convolve:scale"); |
| if ( artifact != (const char *)NULL ) { |
| if ( curr_kernel == kernel ) |
| curr_kernel = CloneKernelInfo(kernel); |
| if (curr_kernel == (KernelInfo *) NULL) { |
| curr_kernel=DestroyKernelInfo(curr_kernel); |
| return((Image *) NULL); |
| } |
| ScaleGeometryKernelInfo(curr_kernel, artifact); |
| } |
| } |
| |
| /* display the (normalized) kernel via stderr */ |
| artifact = GetImageArtifact(image,"showkernel"); |
| if ( artifact == (const char *) NULL) |
| artifact = GetImageArtifact(image,"convolve:showkernel"); |
| if ( artifact == (const char *) NULL) |
| artifact = GetImageArtifact(image,"morphology:showkernel"); |
| if ( artifact != (const char *) NULL) |
| ShowKernelInfo(curr_kernel); |
| |
| /* Override the default handling of multi-kernel morphology results |
| * If 'Undefined' use the default method |
| * If 'None' (default for 'Convolve') re-iterate previous result |
| * Otherwise merge resulting images using compose method given. |
| * Default for 'HitAndMiss' is 'Lighten'. |
| */ |
| compose = UndefinedCompositeOp; /* use default for method */ |
| artifact = GetImageArtifact(image,"morphology:compose"); |
| if ( artifact != (const char *) NULL) |
| compose = (CompositeOperator) ParseMagickOption( |
| MagickComposeOptions,MagickFalse,artifact); |
| |
| /* Apply the Morphology */ |
| morphology_image = MorphologyApply(image, channel, method, iterations, |
| curr_kernel, compose, image->bias, exception); |
| |
| /* Cleanup and Exit */ |
| if ( curr_kernel != kernel ) |
| curr_kernel=DestroyKernelInfo(curr_kernel); |
| return(morphology_image); |
| } |
| |
| MagickExport Image *MorphologyImage(const Image *image, const MorphologyMethod |
| method, const ssize_t iterations,const KernelInfo *kernel, ExceptionInfo |
| *exception) |
| { |
| Image |
| *morphology_image; |
| |
| morphology_image=MorphologyImageChannel(image,DefaultChannels,method, |
| iterations,kernel,exception); |
| return(morphology_image); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + R o t a t e K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % RotateKernelInfo() rotates the kernel by the angle given. |
| % |
| % Currently it is restricted to 90 degree angles, of either 1D kernels |
| % or square kernels. And 'circular' rotations of 45 degrees for 3x3 kernels. |
| % It will ignore usless rotations for specific 'named' built-in kernels. |
| % |
| % The format of the RotateKernelInfo method is: |
| % |
| % void RotateKernelInfo(KernelInfo *kernel, double angle) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel |
| % |
| % o angle: angle to rotate in degrees |
| % |
| % This function is currently internal to this module only, but can be exported |
| % to other modules if needed. |
| */ |
| static void RotateKernelInfo(KernelInfo *kernel, double angle) |
| { |
| /* angle the lower kernels first */ |
| if ( kernel->next != (KernelInfo *) NULL) |
| RotateKernelInfo(kernel->next, angle); |
| |
| /* WARNING: Currently assumes the kernel (rightly) is horizontally symetrical |
| ** |
| ** TODO: expand beyond simple 90 degree rotates, flips and flops |
| */ |
| |
| /* Modulus the angle */ |
| angle = fmod(angle, 360.0); |
| if ( angle < 0 ) |
| angle += 360.0; |
| |
| if ( 337.5 < angle || angle <= 22.5 ) |
| return; /* Near zero angle - no change! - At least not at this time */ |
| |
| /* Handle special cases */ |
| switch (kernel->type) { |
| /* These built-in kernels are cylindrical kernels, rotating is useless */ |
| case GaussianKernel: |
| case DoGKernel: |
| case LoGKernel: |
| case DiskKernel: |
| case PeaksKernel: |
| case LaplacianKernel: |
| case ChebyshevKernel: |
| case ManhattanKernel: |
| case EuclideanKernel: |
| return; |
| |
| /* These may be rotatable at non-90 angles in the future */ |
| /* but simply rotating them in multiples of 90 degrees is useless */ |
| case SquareKernel: |
| case DiamondKernel: |
| case PlusKernel: |
| case CrossKernel: |
| return; |
| |
| /* These only allows a +/-90 degree rotation (by transpose) */ |
| /* A 180 degree rotation is useless */ |
| case BlurKernel: |
| case RectangleKernel: |
| if ( 135.0 < angle && angle <= 225.0 ) |
| return; |
| if ( 225.0 < angle && angle <= 315.0 ) |
| angle -= 180; |
| break; |
| |
| default: |
| break; |
| } |
| /* Attempt rotations by 45 degrees */ |
| if ( 22.5 < fmod(angle,90.0) && fmod(angle,90.0) <= 67.5 ) |
| { |
| if ( kernel->width == 3 && kernel->height == 3 ) |
| { /* Rotate a 3x3 square by 45 degree angle */ |
| MagickRealType t = kernel->values[0]; |
| kernel->values[0] = kernel->values[3]; |
| kernel->values[3] = kernel->values[6]; |
| kernel->values[6] = kernel->values[7]; |
| kernel->values[7] = kernel->values[8]; |
| kernel->values[8] = kernel->values[5]; |
| kernel->values[5] = kernel->values[2]; |
| kernel->values[2] = kernel->values[1]; |
| kernel->values[1] = t; |
| /* rotate non-centered origin */ |
| if ( kernel->x != 1 || kernel->y != 1 ) { |
| ssize_t x,y; |
| x = (ssize_t) kernel->x-1; |
| y = (ssize_t) kernel->y-1; |
| if ( x == y ) x = 0; |
| else if ( x == 0 ) x = -y; |
| else if ( x == -y ) y = 0; |
| else if ( y == 0 ) y = x; |
| kernel->x = (ssize_t) x+1; |
| kernel->y = (ssize_t) y+1; |
| } |
| angle = fmod(angle+315.0, 360.0); /* angle reduced 45 degrees */ |
| kernel->angle = fmod(kernel->angle+45.0, 360.0); |
| } |
| else |
| perror("Unable to rotate non-3x3 kernel by 45 degrees"); |
| } |
| if ( 45.0 < fmod(angle, 180.0) && fmod(angle,180.0) <= 135.0 ) |
| { |
| if ( kernel->width == 1 || kernel->height == 1 ) |
| { /* Do a transpose of a 1 dimentional kernel, |
| ** which results in a fast 90 degree rotation of some type. |
| */ |
| ssize_t |
| t; |
| t = (ssize_t) kernel->width; |
| kernel->width = kernel->height; |
| kernel->height = (size_t) t; |
| t = kernel->x; |
| kernel->x = kernel->y; |
| kernel->y = t; |
| if ( kernel->width == 1 ) { |
| angle = fmod(angle+270.0, 360.0); /* angle reduced 90 degrees */ |
| kernel->angle = fmod(kernel->angle+90.0, 360.0); |
| } else { |
| angle = fmod(angle+90.0, 360.0); /* angle increased 90 degrees */ |
| kernel->angle = fmod(kernel->angle+270.0, 360.0); |
| } |
| } |
| else if ( kernel->width == kernel->height ) |
| { /* Rotate a square array of values by 90 degrees */ |
| { register size_t |
| i,j,x,y; |
| register MagickRealType |
| *k,t; |
| k=kernel->values; |
| for( i=0, x=kernel->width-1; i<=x; i++, x--) |
| for( j=0, y=kernel->height-1; j<y; j++, y--) |
| { t = k[i+j*kernel->width]; |
| k[i+j*kernel->width] = k[j+x*kernel->width]; |
| k[j+x*kernel->width] = k[x+y*kernel->width]; |
| k[x+y*kernel->width] = k[y+i*kernel->width]; |
| k[y+i*kernel->width] = t; |
| } |
| } |
| /* rotate the origin - relative to center of array */ |
| { register ssize_t x,y; |
| x = (ssize_t) (kernel->x*2-kernel->width+1); |
| y = (ssize_t) (kernel->y*2-kernel->height+1); |
| kernel->x = (ssize_t) ( -y +(ssize_t) kernel->width-1)/2; |
| kernel->y = (ssize_t) ( +x +(ssize_t) kernel->height-1)/2; |
| } |
| angle = fmod(angle+270.0, 360.0); /* angle reduced 90 degrees */ |
| kernel->angle = fmod(kernel->angle+90.0, 360.0); |
| } |
| else |
| perror("Unable to rotate a non-square, non-linear kernel 90 degrees"); |
| } |
| if ( 135.0 < angle && angle <= 225.0 ) |
| { |
| /* For a 180 degree rotation - also know as a reflection |
| * This is actually a very very common operation! |
| * Basically all that is needed is a reversal of the kernel data! |
| * And a reflection of the origon |
| */ |
| size_t |
| i,j; |
| register double |
| *k,t; |
| |
| k=kernel->values; |
| for ( i=0, j=kernel->width*kernel->height-1; i<j; i++, j--) |
| t=k[i], k[i]=k[j], k[j]=t; |
| |
| kernel->x = (ssize_t) kernel->width - kernel->x - 1; |
| kernel->y = (ssize_t) kernel->height - kernel->y - 1; |
| angle = fmod(angle-180.0, 360.0); /* angle+180 degrees */ |
| kernel->angle = fmod(kernel->angle+180.0, 360.0); |
| } |
| /* At this point angle should at least between -45 (315) and +45 degrees |
| * In the future some form of non-orthogonal angled rotates could be |
| * performed here, posibily with a linear kernel restriction. |
| */ |
| |
| return; |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % S c a l e G e o m e t r y K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ScaleGeometryKernelInfo() takes a geometry argument string, typically |
| % provided as a "-set option:convolve:scale {geometry}" user setting, |
| % and modifies the kernel according to the parsed arguments of that setting. |
| % |
| % The first argument (and any normalization flags) are passed to |
| % ScaleKernelInfo() to scale/normalize the kernel. The second argument |
| % is then passed to UnityAddKernelInfo() to add a scled unity kernel |
| % into the scaled/normalized kernel. |
| % |
| % The format of the ScaleKernelInfo method is: |
| % |
| % void ScaleKernelInfo(KernelInfo *kernel, const double scaling_factor, |
| % const MagickStatusType normalize_flags ) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel to modify |
| % |
| % o geometry: |
| % The geometry string to parse, typically from the user provided |
| % "-set option:convolve:scale {geometry}" setting. |
| % |
| */ |
| MagickExport void ScaleGeometryKernelInfo (KernelInfo *kernel, |
| const char *geometry) |
| { |
| GeometryFlags |
| flags; |
| GeometryInfo |
| args; |
| |
| SetGeometryInfo(&args); |
| flags = (GeometryFlags) ParseGeometry(geometry, &args); |
| |
| #if 0 |
| /* For Debugging Geometry Input */ |
| fprintf(stderr, "Geometry = 0x%04X : %lg x %lg %+lg %+lg\n", |
| flags, args.rho, args.sigma, args.xi, args.psi ); |
| #endif |
| |
| if ( (flags & PercentValue) != 0 ) /* Handle Percentage flag*/ |
| args.rho *= 0.01, args.sigma *= 0.01; |
| |
| if ( (flags & RhoValue) == 0 ) /* Set Defaults for missing args */ |
| args.rho = 1.0; |
| if ( (flags & SigmaValue) == 0 ) |
| args.sigma = 0.0; |
| |
| /* Scale/Normalize the input kernel */ |
| ScaleKernelInfo(kernel, args.rho, flags); |
| |
| /* Add Unity Kernel, for blending with original */ |
| if ( (flags & SigmaValue) != 0 ) |
| UnityAddKernelInfo(kernel, args.sigma); |
| |
| return; |
| } |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % S c a l e K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ScaleKernelInfo() scales the given kernel list by the given amount, with or |
| % without normalization of the sum of the kernel values (as per given flags). |
| % |
| % By default (no flags given) the values within the kernel is scaled |
| % directly using given scaling factor without change. |
| % |
| % If either of the two 'normalize_flags' are given the kernel will first be |
| % normalized and then further scaled by the scaling factor value given. |
| % |
| % Kernel normalization ('normalize_flags' given) is designed to ensure that |
| % any use of the kernel scaling factor with 'Convolve' or 'Correlate' |
| % morphology methods will fall into -1.0 to +1.0 range. Note that for |
| % non-HDRI versions of IM this may cause images to have any negative results |
| % clipped, unless some 'bias' is used. |
| % |
| % More specifically. Kernels which only contain positive values (such as a |
| % 'Gaussian' kernel) will be scaled so that those values sum to +1.0, |
| % ensuring a 0.0 to +1.0 output range for non-HDRI images. |
| % |
| % For Kernels that contain some negative values, (such as 'Sharpen' kernels) |
| % the kernel will be scaled by the absolute of the sum of kernel values, so |
| % that it will generally fall within the +/- 1.0 range. |
| % |
| % For kernels whose values sum to zero, (such as 'Laplician' kernels) kernel |
| % will be scaled by just the sum of the postive values, so that its output |
| % range will again fall into the +/- 1.0 range. |
| % |
| % For special kernels designed for locating shapes using 'Correlate', (often |
| % only containing +1 and -1 values, representing foreground/brackground |
| % matching) a special normalization method is provided to scale the positive |
| % values seperatally to those of the negative values, so the kernel will be |
| % forced to become a zero-sum kernel better suited to such searches. |
| % |
| % WARNING: Correct normalization of the kernel assumes that the '*_range' |
| % attributes within the kernel structure have been correctly set during the |
| % kernels creation. |
| % |
| % NOTE: The values used for 'normalize_flags' have been selected specifically |
| % to match the use of geometry options, so that '!' means NormalizeValue, '^' |
| % means CorrelateNormalizeValue. All other GeometryFlags values are ignored. |
| % |
| % The format of the ScaleKernelInfo method is: |
| % |
| % void ScaleKernelInfo(KernelInfo *kernel, const double scaling_factor, |
| % const MagickStatusType normalize_flags ) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel |
| % |
| % o scaling_factor: |
| % multiply all values (after normalization) by this factor if not |
| % zero. If the kernel is normalized regardless of any flags. |
| % |
| % o normalize_flags: |
| % GeometryFlags defining normalization method to use. |
| % specifically: NormalizeValue, CorrelateNormalizeValue, |
| % and/or PercentValue |
| % |
| */ |
| MagickExport void ScaleKernelInfo(KernelInfo *kernel, |
| const double scaling_factor,const GeometryFlags normalize_flags) |
| { |
| register ssize_t |
| i; |
| |
| register double |
| pos_scale, |
| neg_scale; |
| |
| /* do the other kernels in a multi-kernel list first */ |
| if ( kernel->next != (KernelInfo *) NULL) |
| ScaleKernelInfo(kernel->next, scaling_factor, normalize_flags); |
| |
| /* Normalization of Kernel */ |
| pos_scale = 1.0; |
| if ( (normalize_flags&NormalizeValue) != 0 ) { |
| if ( fabs(kernel->positive_range + kernel->negative_range) > MagickEpsilon ) |
| /* non-zero-summing kernel (generally positive) */ |
| pos_scale = fabs(kernel->positive_range + kernel->negative_range); |
| else |
| /* zero-summing kernel */ |
| pos_scale = kernel->positive_range; |
| } |
| /* Force kernel into a normalized zero-summing kernel */ |
| if ( (normalize_flags&CorrelateNormalizeValue) != 0 ) { |
| pos_scale = ( fabs(kernel->positive_range) > MagickEpsilon ) |
| ? kernel->positive_range : 1.0; |
| neg_scale = ( fabs(kernel->negative_range) > MagickEpsilon ) |
| ? -kernel->negative_range : 1.0; |
| } |
| else |
| neg_scale = pos_scale; |
| |
| /* finialize scaling_factor for positive and negative components */ |
| pos_scale = scaling_factor/pos_scale; |
| neg_scale = scaling_factor/neg_scale; |
| |
| for (i=0; i < (ssize_t) (kernel->width*kernel->height); i++) |
| if ( ! IsNan(kernel->values[i]) ) |
| kernel->values[i] *= (kernel->values[i] >= 0) ? pos_scale : neg_scale; |
| |
| /* convolution output range */ |
| kernel->positive_range *= pos_scale; |
| kernel->negative_range *= neg_scale; |
| /* maximum and minimum values in kernel */ |
| kernel->maximum *= (kernel->maximum >= 0.0) ? pos_scale : neg_scale; |
| kernel->minimum *= (kernel->minimum >= 0.0) ? pos_scale : neg_scale; |
| |
| /* swap kernel settings if user's scaling factor is negative */ |
| if ( scaling_factor < MagickEpsilon ) { |
| double t; |
| t = kernel->positive_range; |
| kernel->positive_range = kernel->negative_range; |
| kernel->negative_range = t; |
| t = kernel->maximum; |
| kernel->maximum = kernel->minimum; |
| kernel->minimum = 1; |
| } |
| |
| return; |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % S h o w K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ShowKernelInfo() outputs the details of the given kernel defination to |
| % standard error, generally due to a users 'showkernel' option request. |
| % |
| % The format of the ShowKernel method is: |
| % |
| % void ShowKernelInfo(KernelInfo *kernel) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel |
| % |
| */ |
| MagickExport void ShowKernelInfo(KernelInfo *kernel) |
| { |
| KernelInfo |
| *k; |
| |
| size_t |
| c, i, u, v; |
| |
| for (c=0, k=kernel; k != (KernelInfo *) NULL; c++, k=k->next ) { |
| |
| fprintf(stderr, "Kernel"); |
| if ( kernel->next != (KernelInfo *) NULL ) |
| fprintf(stderr, " #%lu", (unsigned long) c ); |
| fprintf(stderr, " \"%s", |
| MagickOptionToMnemonic(MagickKernelOptions, k->type) ); |
| if ( fabs(k->angle) > MagickEpsilon ) |
| fprintf(stderr, "@%lg", k->angle); |
| fprintf(stderr, "\" of size %lux%lu%+ld%+ld",(unsigned long) k->width, |
| (unsigned long) k->height,(long) k->x,(long) k->y); |
| fprintf(stderr, |
| " with values from %.*lg to %.*lg\n", |
| GetMagickPrecision(), k->minimum, |
| GetMagickPrecision(), k->maximum); |
| fprintf(stderr, "Forming a output range from %.*lg to %.*lg", |
| GetMagickPrecision(), k->negative_range, |
| GetMagickPrecision(), k->positive_range); |
| if ( fabs(k->positive_range+k->negative_range) < MagickEpsilon ) |
| fprintf(stderr, " (Zero-Summing)\n"); |
| else if ( fabs(k->positive_range+k->negative_range-1.0) < MagickEpsilon ) |
| fprintf(stderr, " (Normalized)\n"); |
| else |
| fprintf(stderr, " (Sum %.*lg)\n", |
| GetMagickPrecision(), k->positive_range+k->negative_range); |
| for (i=v=0; v < k->height; v++) { |
| fprintf(stderr, "%2lu:", (unsigned long) v ); |
| for (u=0; u < k->width; u++, i++) |
| if ( IsNan(k->values[i]) ) |
| fprintf(stderr," %*s", GetMagickPrecision()+3, "nan"); |
| else |
| fprintf(stderr," %*.*lg", GetMagickPrecision()+3, |
| GetMagickPrecision(), k->values[i]); |
| fprintf(stderr,"\n"); |
| } |
| } |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % U n i t y A d d K e r n a l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % UnityAddKernelInfo() Adds a given amount of the 'Unity' Convolution Kernel |
| % to the given pre-scaled and normalized Kernel. This in effect adds that |
| % amount of the original image into the resulting convolution kernel. This |
| % value is usually provided by the user as a percentage value in the |
| % 'convolve:scale' setting. |
| % |
| % The resulting effect is to convert the defined kernels into blended |
| % soft-blurs, unsharp kernels or into sharpening kernels. |
| % |
| % The format of the UnityAdditionKernelInfo method is: |
| % |
| % void UnityAdditionKernelInfo(KernelInfo *kernel, const double scale ) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel |
| % |
| % o scale: |
| % scaling factor for the unity kernel to be added to |
| % the given kernel. |
| % |
| */ |
| MagickExport void UnityAddKernelInfo(KernelInfo *kernel, |
| const double scale) |
| { |
| /* do the other kernels in a multi-kernel list first */ |
| if ( kernel->next != (KernelInfo *) NULL) |
| UnityAddKernelInfo(kernel->next, scale); |
| |
| /* Add the scaled unity kernel to the existing kernel */ |
| kernel->values[kernel->x+kernel->y*kernel->width] += scale; |
| CalcKernelMetaData(kernel); /* recalculate the meta-data */ |
| |
| return; |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % Z e r o K e r n e l N a n s % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ZeroKernelNans() replaces any special 'nan' value that may be present in |
| % the kernel with a zero value. This is typically done when the kernel will |
| % be used in special hardware (GPU) convolution processors, to simply |
| % matters. |
| % |
| % The format of the ZeroKernelNans method is: |
| % |
| % void ZeroKernelNans (KernelInfo *kernel) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel |
| % |
| */ |
| MagickExport void ZeroKernelNans(KernelInfo *kernel) |
| { |
| register size_t |
| i; |
| |
| /* do the other kernels in a multi-kernel list first */ |
| if ( kernel->next != (KernelInfo *) NULL) |
| ZeroKernelNans(kernel->next); |
| |
| for (i=0; i < (kernel->width*kernel->height); i++) |
| if ( IsNan(kernel->values[i]) ) |
| kernel->values[i] = 0.0; |
| |
| return; |
| } |