blob: 5d4f07644650bb1b2a2a404f149c4dca8d0ac3f8 [file] [log] [blame]
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% M M AAA TTTTT L AAA BBBB %
% MM MM A A T L A A B B %
% M M M AAAAA T L AAAAA BBBB %
% M M A A T L A A B B %
% M M A A T LLLLL A A BBBB %
% %
% %
% Read MATLAB Image Format %
% %
% Software Design %
% Jaroslav Fojtik %
% 2001-2008 %
% %
% %
% Permission is hereby granted, free of charge, to any person obtaining a %
% copy of this software and associated documentation files ("ImageMagick"), %
% to deal in ImageMagick without restriction, including without limitation %
% the rights to use, copy, modify, merge, publish, distribute, sublicense, %
% and/or sell copies of ImageMagick, and to permit persons to whom the %
% ImageMagick is furnished to do so, subject to the following conditions: %
% %
% The above copyright notice and this permission notice shall be included in %
% all copies or substantial portions of ImageMagick. %
% %
% The software is provided "as is", without warranty of any kind, express or %
% implied, including but not limited to the warranties of merchantability, %
% fitness for a particular purpose and noninfringement. In no event shall %
% ImageMagick Studio be liable for any claim, damages or other liability, %
% whether in an action of contract, tort or otherwise, arising from, out of %
% or in connection with ImageMagick or the use or other dealings in %
% ImageMagick. %
% %
% Except as contained in this notice, the name of the ImageMagick Studio %
% shall not be used in advertising or otherwise to promote the sale, use or %
% other dealings in ImageMagick without prior written authorization from the %
% ImageMagick Studio. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
*/
/*
Include declarations.
*/
#include "MagickCore/studio.h"
#include "MagickCore/attribute.h"
#include "MagickCore/blob.h"
#include "MagickCore/blob-private.h"
#include "MagickCore/cache.h"
#include "MagickCore/color-private.h"
#include "MagickCore/colormap.h"
#include "MagickCore/colorspace-private.h"
#include "MagickCore/distort.h"
#include "MagickCore/exception.h"
#include "MagickCore/exception-private.h"
#include "MagickCore/image.h"
#include "MagickCore/image-private.h"
#include "MagickCore/list.h"
#include "MagickCore/magick.h"
#include "MagickCore/memory_.h"
#include "MagickCore/monitor.h"
#include "MagickCore/monitor-private.h"
#include "MagickCore/pixel-accessor.h"
#include "MagickCore/quantum.h"
#include "MagickCore/quantum-private.h"
#include "MagickCore/option.h"
#include "MagickCore/pixel.h"
#include "MagickCore/resource_.h"
#include "MagickCore/static.h"
#include "MagickCore/string_.h"
#include "MagickCore/module.h"
#include "MagickCore/transform.h"
#include "MagickCore/utility-private.h"
#if defined(MAGICKCORE_ZLIB_DELEGATE)
#include "zlib.h"
#endif
/*
Forward declaration.
*/
static MagickBooleanType
WriteMATImage(const ImageInfo *,Image *,ExceptionInfo *);
/* Auto coloring method, sorry this creates some artefact inside data
MinReal+j*MaxComplex = red MaxReal+j*MaxComplex = black
MinReal+j*0 = white MaxReal+j*0 = black
MinReal+j*MinComplex = blue MaxReal+j*MinComplex = black
*/
typedef struct
{
char identific[124];
unsigned short Version;
char EndianIndicator[2];
unsigned long DataType;
unsigned long ObjectSize;
unsigned long unknown1;
unsigned long unknown2;
unsigned short unknown5;
unsigned char StructureFlag;
unsigned char StructureClass;
unsigned long unknown3;
unsigned long unknown4;
unsigned long DimFlag;
unsigned long SizeX;
unsigned long SizeY;
unsigned short Flag1;
unsigned short NameFlag;
}
MATHeader;
static const char *MonthsTab[12]={"Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"};
static const char *DayOfWTab[7]={"Sun","Mon","Tue","Wed","Thu","Fri","Sat"};
static const char *OsDesc=
#if defined(MAGICKCORE_WINDOWS_SUPPORT)
"PCWIN";
#else
#ifdef __APPLE__
"MAC";
#else
"LNX86";
#endif
#endif
typedef enum
{
miINT8 = 1, /* 8 bit signed */
miUINT8, /* 8 bit unsigned */
miINT16, /* 16 bit signed */
miUINT16, /* 16 bit unsigned */
miINT32, /* 32 bit signed */
miUINT32, /* 32 bit unsigned */
miSINGLE, /* IEEE 754 single precision float */
miRESERVE1,
miDOUBLE, /* IEEE 754 double precision float */
miRESERVE2,
miRESERVE3,
miINT64, /* 64 bit signed */
miUINT64, /* 64 bit unsigned */
miMATRIX, /* MATLAB array */
miCOMPRESSED, /* Compressed Data */
miUTF8, /* Unicode UTF-8 Encoded Character Data */
miUTF16, /* Unicode UTF-16 Encoded Character Data */
miUTF32 /* Unicode UTF-32 Encoded Character Data */
} mat5_data_type;
typedef enum
{
mxCELL_CLASS=1, /* cell array */
mxSTRUCT_CLASS, /* structure */
mxOBJECT_CLASS, /* object */
mxCHAR_CLASS, /* character array */
mxSPARSE_CLASS, /* sparse array */
mxDOUBLE_CLASS, /* double precision array */
mxSINGLE_CLASS, /* single precision floating point */
mxINT8_CLASS, /* 8 bit signed integer */
mxUINT8_CLASS, /* 8 bit unsigned integer */
mxINT16_CLASS, /* 16 bit signed integer */
mxUINT16_CLASS, /* 16 bit unsigned integer */
mxINT32_CLASS, /* 32 bit signed integer */
mxUINT32_CLASS, /* 32 bit unsigned integer */
mxINT64_CLASS, /* 64 bit signed integer */
mxUINT64_CLASS, /* 64 bit unsigned integer */
mxFUNCTION_CLASS /* Function handle */
} arrayclasstype;
#define FLAG_COMPLEX 0x8
#define FLAG_GLOBAL 0x4
#define FLAG_LOGICAL 0x2
static const QuantumType z2qtype[4] = {GrayQuantum, BlueQuantum, GreenQuantum, RedQuantum};
static void InsertComplexDoubleRow(Image *image,double *p,int y,double MinVal,
double MaxVal,ExceptionInfo *exception)
{
double f;
int x;
register Quantum *q;
if (MinVal == 0)
MinVal = -1;
if (MaxVal == 0)
MaxVal = 1;
q=QueueAuthenticPixels(image,0,y,image->columns,1,exception);
if (q == (Quantum *) NULL)
return;
for (x = 0; x < (ssize_t) image->columns; x++)
{
if (*p > 0)
{
f = (*p / MaxVal) * (QuantumRange-GetPixelRed(image,q));
if (f + GetPixelRed(image,q) > QuantumRange)
SetPixelRed(image,QuantumRange,q);
else
SetPixelRed(image,GetPixelRed(image,q)+(int) f,q);
if ((int) f / 2.0 > GetPixelGreen(image,q))
{
SetPixelGreen(image,0,q);
SetPixelBlue(image,0,q);
}
else
{
SetPixelBlue(image,GetPixelBlue(image,q)-(int) (f/2.0),q);
SetPixelGreen(image,GetPixelBlue(image,q),q);
}
}
if (*p < 0)
{
f = (*p / MaxVal) * (QuantumRange-GetPixelBlue(image,q));
if (f+GetPixelBlue(image,q) > QuantumRange)
SetPixelBlue(image,QuantumRange,q);
else
SetPixelBlue(image,GetPixelBlue(image,q)+(int) f,q);
if ((int) f / 2.0 > GetPixelGreen(image,q))
{
SetPixelRed(image,0,q);
SetPixelGreen(image,0,q);
}
else
{
SetPixelRed(image,GetPixelRed(image,q)-(int) (f/2.0),q);
SetPixelGreen(image,GetPixelRed(image,q),q);
}
}
p++;
q+=GetPixelChannels(image);
}
if (!SyncAuthenticPixels(image,exception))
return;
return;
}
static void InsertComplexFloatRow(Image *image,float *p,int y,double MinVal,
double MaxVal,ExceptionInfo *exception)
{
double f;
int x;
register Quantum *q;
if (MinVal == 0)
MinVal = -1;
if (MaxVal == 0)
MaxVal = 1;
q = QueueAuthenticPixels(image, 0, y, image->columns, 1,exception);
if (q == (Quantum *) NULL)
return;
for (x = 0; x < (ssize_t) image->columns; x++)
{
if (*p > 0)
{
f = (*p / MaxVal) * (QuantumRange-GetPixelRed(image,q));
if (f+GetPixelRed(image,q) > QuantumRange)
SetPixelRed(image,QuantumRange,q);
else
SetPixelRed(image,GetPixelRed(image,q)+(int) f,q);
if ((int) f / 2.0 > GetPixelGreen(image,q))
{
SetPixelGreen(image,0,q);
SetPixelBlue(image,0,q);
}
else
{
SetPixelBlue(image,GetPixelBlue(image,q)-(int) (f/2.0),q);
SetPixelGreen(image,GetPixelBlue(image,q),q);
}
}
if (*p < 0)
{
f = (*p / MaxVal) * (QuantumRange - GetPixelBlue(image,q));
if (f + GetPixelBlue(image,q) > QuantumRange)
SetPixelBlue(image,QuantumRange,q);
else
SetPixelBlue(image,GetPixelBlue(image,q)+
(int) f,q);
if ((int) f / 2.0 > GetPixelGreen(image,q))
{
SetPixelGreen(image,0,q);
SetPixelRed(image,0,q);
}
else
{
SetPixelRed(image,GetPixelRed(image,q)-(int) (f/2.0),q);
SetPixelGreen(image,GetPixelRed(image,q),q);
}
}
p++;
q++;
}
if (!SyncAuthenticPixels(image,exception))
return;
return;
}
/************** READERS ******************/
/* This function reads one block of floats*/
static void ReadBlobFloatsLSB(Image * image, size_t len, float *data)
{
while (len >= 4)
{
*data++ = ReadBlobFloat(image);
len -= sizeof(float);
}
if (len > 0)
(void) SeekBlob(image, len, SEEK_CUR);
}
static void ReadBlobFloatsMSB(Image * image, size_t len, float *data)
{
while (len >= 4)
{
*data++ = ReadBlobFloat(image);
len -= sizeof(float);
}
if (len > 0)
(void) SeekBlob(image, len, SEEK_CUR);
}
/* This function reads one block of doubles*/
static void ReadBlobDoublesLSB(Image * image, size_t len, double *data)
{
while (len >= 8)
{
*data++ = ReadBlobDouble(image);
len -= sizeof(double);
}
if (len > 0)
(void) SeekBlob(image, len, SEEK_CUR);
}
static void ReadBlobDoublesMSB(Image * image, size_t len, double *data)
{
while (len >= 8)
{
*data++ = ReadBlobDouble(image);
len -= sizeof(double);
}
if (len > 0)
(void) SeekBlob(image, len, SEEK_CUR);
}
/* Calculate minimum and maximum from a given block of data */
static void CalcMinMax(Image *image, int endian_indicator, int SizeX, int SizeY, size_t CellType, unsigned ldblk, void *BImgBuff, double *Min, double *Max)
{
MagickOffsetType filepos;
int i, x;
void (*ReadBlobDoublesXXX)(Image * image, size_t len, double *data);
void (*ReadBlobFloatsXXX)(Image * image, size_t len, float *data);
double *dblrow;
float *fltrow;
if (endian_indicator == LSBEndian)
{
ReadBlobDoublesXXX = ReadBlobDoublesLSB;
ReadBlobFloatsXXX = ReadBlobFloatsLSB;
}
else /* MI */
{
ReadBlobDoublesXXX = ReadBlobDoublesMSB;
ReadBlobFloatsXXX = ReadBlobFloatsMSB;
}
filepos = TellBlob(image); /* Please note that file seeking occurs only in the case of doubles */
for (i = 0; i < SizeY; i++)
{
if (CellType==miDOUBLE)
{
ReadBlobDoublesXXX(image, ldblk, (double *)BImgBuff);
dblrow = (double *)BImgBuff;
if (i == 0)
{
*Min = *Max = *dblrow;
}
for (x = 0; x < SizeX; x++)
{
if (*Min > *dblrow)
*Min = *dblrow;
if (*Max < *dblrow)
*Max = *dblrow;
dblrow++;
}
}
if (CellType==miSINGLE)
{
ReadBlobFloatsXXX(image, ldblk, (float *)BImgBuff);
fltrow = (float *)BImgBuff;
if (i == 0)
{
*Min = *Max = *fltrow;
}
for (x = 0; x < (ssize_t) SizeX; x++)
{
if (*Min > *fltrow)
*Min = *fltrow;
if (*Max < *fltrow)
*Max = *fltrow;
fltrow++;
}
}
}
(void) SeekBlob(image, filepos, SEEK_SET);
}
static void FixSignedValues(const Image *image,Quantum *q, int y)
{
while(y-->0)
{
/* Please note that negative values will overflow
Q=8; QuantumRange=255: <0;127> + 127+1 = <128; 255>
<-1;-128> + 127+1 = <0; 127> */
SetPixelRed(image,GetPixelRed(image,q)+QuantumRange/2+1,q);
SetPixelGreen(image,GetPixelGreen(image,q)+QuantumRange/2+1,q);
SetPixelBlue(image,GetPixelBlue(image,q)+QuantumRange/2+1,q);
q++;
}
}
/** Fix whole row of logical/binary data. It means pack it. */
static void FixLogical(unsigned char *Buff,int ldblk)
{
unsigned char mask=128;
unsigned char *BuffL = Buff;
unsigned char val = 0;
while(ldblk-->0)
{
if(*Buff++ != 0)
val |= mask;
mask >>= 1;
if(mask==0)
{
*BuffL++ = val;
val = 0;
mask = 128;
}
}
*BuffL = val;
}
#if defined(MAGICKCORE_ZLIB_DELEGATE)
static voidpf AcquireZIPMemory(voidpf context,unsigned int items,
unsigned int size)
{
(void) context;
return((voidpf) AcquireQuantumMemory(items,size));
}
static void RelinquishZIPMemory(voidpf context,voidpf memory)
{
(void) context;
memory=RelinquishMagickMemory(memory);
}
#endif
#if defined(MAGICKCORE_ZLIB_DELEGATE)
/** This procedure decompreses an image block for a new MATLAB format. */
static Image *DecompressBlock(Image *orig, MagickOffsetType Size, ImageInfo *clone_info, ExceptionInfo *exception)
{
Image *image2;
void *CacheBlock, *DecompressBlock;
z_stream zip_info;
FILE *mat_file;
size_t magick_size;
size_t extent;
int file;
int status;
int zip_status;
if(clone_info==NULL) return NULL;
if(clone_info->file) /* Close file opened from previous transaction. */
{
fclose(clone_info->file);
clone_info->file = NULL;
(void) remove_utf8(clone_info->filename);
}
CacheBlock = AcquireQuantumMemory((size_t)((Size<16384)?Size:16384),sizeof(unsigned char *));
if(CacheBlock==NULL) return NULL;
DecompressBlock = AcquireQuantumMemory((size_t)(4096),sizeof(unsigned char *));
if(DecompressBlock==NULL)
{
RelinquishMagickMemory(CacheBlock);
return NULL;
}
mat_file=0;
file = AcquireUniqueFileResource(clone_info->filename);
if (file != -1)
mat_file = fdopen(file,"w");
if(!mat_file)
{
RelinquishMagickMemory(CacheBlock);
RelinquishMagickMemory(DecompressBlock);
(void) LogMagickEvent(CoderEvent,GetMagickModule(),"Cannot create file stream for decompressed image");
return NULL;
}
zip_info.zalloc=AcquireZIPMemory;
zip_info.zfree=RelinquishZIPMemory;
zip_info.opaque = (voidpf) NULL;
zip_status = inflateInit(&zip_info);
if (zip_status != Z_OK)
{
RelinquishMagickMemory(CacheBlock);
RelinquishMagickMemory(DecompressBlock);
(void) ThrowMagickException(exception,GetMagickModule(),CorruptImageError,
"UnableToUncompressImage","`%s'",clone_info->filename);
(void) fclose(mat_file);
RelinquishUniqueFileResource(clone_info->filename);
return NULL;
}
/* zip_info.next_out = 8*4;*/
zip_info.avail_in = 0;
zip_info.total_out = 0;
while(Size>0 && !EOFBlob(orig))
{
magick_size = ReadBlob(orig, (Size<16384)?Size:16384, (unsigned char *) CacheBlock);
zip_info.next_in = (Bytef *) CacheBlock;
zip_info.avail_in = (uInt) magick_size;
while(zip_info.avail_in>0)
{
zip_info.avail_out = 4096;
zip_info.next_out = (Bytef *) DecompressBlock;
zip_status = inflate(&zip_info,Z_NO_FLUSH);
if ((zip_status != Z_OK) && (zip_status != Z_STREAM_END))
break;
extent=fwrite(DecompressBlock, 4096-zip_info.avail_out, 1, mat_file);
(void) extent;
if(zip_status == Z_STREAM_END) goto DblBreak;
}
if ((zip_status != Z_OK) && (zip_status != Z_STREAM_END))
break;
Size -= magick_size;
}
DblBreak:
inflateEnd(&zip_info);
(void)fclose(mat_file);
RelinquishMagickMemory(CacheBlock);
RelinquishMagickMemory(DecompressBlock);
if((clone_info->file=fopen(clone_info->filename,"rb"))==NULL) goto UnlinkFile;
if( (image2 = AcquireImage(clone_info,exception))==NULL ) goto EraseFile;
status = OpenBlob(clone_info,image2,ReadBinaryBlobMode,exception);
if (status == MagickFalse)
{
DeleteImageFromList(&image2);
EraseFile:
fclose(clone_info->file);
clone_info->file = NULL;
UnlinkFile:
RelinquishUniqueFileResource(clone_info->filename);
return NULL;
}
return image2;
}
#endif
static Image *ReadMATImageV4(const ImageInfo *image_info,Image *image,
ExceptionInfo *exception)
{
typedef struct {
unsigned char Type[4];
unsigned int nRows;
unsigned int nCols;
unsigned int imagf;
unsigned int nameLen;
} MAT4_HDR;
long
ldblk;
EndianType
endian;
Image
*rotate_image;
MagickBooleanType
status;
MAT4_HDR
HDR;
QuantumInfo
*quantum_info;
QuantumFormatType
format_type;
register ssize_t
i;
ssize_t
count,
y;
unsigned char
*pixels;
unsigned int
depth;
(void) SeekBlob(image,0,SEEK_SET);
ldblk=ReadBlobLSBLong(image);
if ((ldblk > 9999) || (ldblk < 0))
return((Image *) NULL);
HDR.Type[3]=ldblk % 10; ldblk /= 10; /* T digit */
HDR.Type[2]=ldblk % 10; ldblk /= 10; /* P digit */
HDR.Type[1]=ldblk % 10; ldblk /= 10; /* O digit */
HDR.Type[0]=ldblk; /* M digit */
if (HDR.Type[3] != 0) return((Image *) NULL); /* Data format */
if (HDR.Type[2] != 0) return((Image *) NULL); /* Always 0 */
if (HDR.Type[0] == 0)
{
HDR.nRows=ReadBlobLSBLong(image);
HDR.nCols=ReadBlobLSBLong(image);
HDR.imagf=ReadBlobLSBLong(image);
HDR.nameLen=ReadBlobLSBLong(image);
endian=LSBEndian;
}
else
{
HDR.nRows=ReadBlobMSBLong(image);
HDR.nCols=ReadBlobMSBLong(image);
HDR.imagf=ReadBlobMSBLong(image);
HDR.nameLen=ReadBlobMSBLong(image);
endian=MSBEndian;
}
if (HDR.nameLen > 0xFFFF)
return((Image *) NULL);
for (i=0; i < (ssize_t) HDR.nameLen; i++)
{
int
byte;
/*
Skip matrix name.
*/
byte=ReadBlobByte(image);
if (byte == EOF)
return((Image *) NULL);
}
image->columns=(size_t) HDR.nRows;
image->rows=(size_t) HDR.nCols;
SetImageColorspace(image,GRAYColorspace,exception);
if (image_info->ping != MagickFalse)
{
Swap(image->columns,image->rows);
return(image);
}
status=SetImageExtent(image,image->columns,image->rows,exception);
if (status == MagickFalse)
return((Image *) NULL);
quantum_info=AcquireQuantumInfo(image_info,image);
if (quantum_info == (QuantumInfo *) NULL)
return((Image *) NULL);
switch(HDR.Type[1])
{
case 0:
format_type=FloatingPointQuantumFormat;
depth=64;
break;
case 1:
format_type=FloatingPointQuantumFormat;
depth=32;
break;
case 2:
format_type=UnsignedQuantumFormat;
depth=16;
break;
case 3:
format_type=SignedQuantumFormat;
depth=16;
case 4:
format_type=UnsignedQuantumFormat;
depth=8;
break;
default:
format_type=UnsignedQuantumFormat;
depth=8;
break;
}
image->depth=depth;
if (HDR.Type[0] != 0)
SetQuantumEndian(image,quantum_info,MSBEndian);
status=SetQuantumFormat(image,quantum_info,format_type);
status=SetQuantumDepth(image,quantum_info,depth);
status=SetQuantumEndian(image,quantum_info,endian);
SetQuantumScale(quantum_info,1.0);
pixels=(unsigned char *) GetQuantumPixels(quantum_info);
for (y=0; y < (ssize_t) image->rows; y++)
{
int
status;
register Quantum
*magick_restrict q;
count=ReadBlob(image,depth/8*image->columns,(char *) pixels);
if (count == -1)
break;
q=QueueAuthenticPixels(image,0,image->rows-y-1,image->columns,1,exception);
if (q == (Quantum *) NULL)
break;
(void) ImportQuantumPixels(image,(CacheView *) NULL,quantum_info,
GrayQuantum,pixels,exception);
if ((HDR.Type[1] == 2) || (HDR.Type[1] == 3))
FixSignedValues(image,q,(int) image->columns);
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,LoadImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
}
if (HDR.imagf == 1)
for (y=0; y < (ssize_t) image->rows; y++)
{
/*
Read complex pixels.
*/
count=ReadBlob(image,depth/8*image->columns,(char *) pixels);
if (count == -1)
break;
if (HDR.Type[1] == 0)
InsertComplexDoubleRow(image,(double *) pixels,y,0,0,exception);
else
InsertComplexFloatRow(image,(float *) pixels,y,0,0,exception);
}
quantum_info=DestroyQuantumInfo(quantum_info);
rotate_image=RotateImage(image,90.0,exception);
if (rotate_image != (Image *) NULL)
{
image=DestroyImage(image);
image=rotate_image;
}
return(image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% R e a d M A T L A B i m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ReadMATImage() reads an MAT X image file and returns it. It
% allocates the memory necessary for the new Image structure and returns a
% pointer to the new image.
%
% The format of the ReadMATImage method is:
%
% Image *ReadMATImage(const ImageInfo *image_info,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: Method ReadMATImage returns a pointer to the image after
% reading. A null image is returned if there is a memory shortage or if
% the image cannot be read.
%
% o image_info: Specifies a pointer to a ImageInfo structure.
%
% o exception: return any errors or warnings in this structure.
%
*/
static Image *ReadMATImage(const ImageInfo *image_info,ExceptionInfo *exception)
{
Image *image, *image2=NULL,
*rotated_image;
register Quantum *q;
unsigned int status;
MATHeader MATLAB_HDR;
size_t size;
size_t CellType;
QuantumInfo *quantum_info;
ImageInfo *clone_info;
int i;
ssize_t ldblk;
unsigned char *BImgBuff = NULL;
double MinVal, MaxVal;
unsigned z, z2;
unsigned Frames;
int logging;
int sample_size;
MagickOffsetType filepos=0x80;
BlobInfo *blob;
size_t one;
unsigned int (*ReadBlobXXXLong)(Image *image);
unsigned short (*ReadBlobXXXShort)(Image *image);
void (*ReadBlobDoublesXXX)(Image * image, size_t len, double *data);
void (*ReadBlobFloatsXXX)(Image * image, size_t len, float *data);
assert(image_info != (const ImageInfo *) NULL);
assert(image_info->signature == MagickCoreSignature);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
logging = LogMagickEvent(CoderEvent,GetMagickModule(),"enter");
/*
Open image file.
*/
image = AcquireImage(image_info,exception);
status = OpenBlob(image_info, image, ReadBinaryBlobMode, exception);
if (status == MagickFalse)
{
image=DestroyImageList(image);
return((Image *) NULL);
}
/*
Read MATLAB image.
*/
clone_info=CloneImageInfo(image_info);
if (ReadBlob(image,124,(unsigned char *) &MATLAB_HDR.identific) != 124)
ThrowReaderException(CorruptImageError,"ImproperImageHeader");
if (strncmp(MATLAB_HDR.identific,"MATLAB",6) != 0)
{
image2=ReadMATImageV4(image_info,image,exception);
if (image2 == NULL)
goto MATLAB_KO;
image=image2;
goto END_OF_READING;
}
MATLAB_HDR.Version = ReadBlobLSBShort(image);
if(ReadBlob(image,2,(unsigned char *) &MATLAB_HDR.EndianIndicator) != 2)
ThrowReaderException(CorruptImageError,"ImproperImageHeader");
if (logging)
(void) LogMagickEvent(CoderEvent,GetMagickModule()," Endian %c%c",
MATLAB_HDR.EndianIndicator[0],MATLAB_HDR.EndianIndicator[1]);
if (!strncmp(MATLAB_HDR.EndianIndicator, "IM", 2))
{
ReadBlobXXXLong = ReadBlobLSBLong;
ReadBlobXXXShort = ReadBlobLSBShort;
ReadBlobDoublesXXX = ReadBlobDoublesLSB;
ReadBlobFloatsXXX = ReadBlobFloatsLSB;
image->endian = LSBEndian;
}
else if (!strncmp(MATLAB_HDR.EndianIndicator, "MI", 2))
{
ReadBlobXXXLong = ReadBlobMSBLong;
ReadBlobXXXShort = ReadBlobMSBShort;
ReadBlobDoublesXXX = ReadBlobDoublesMSB;
ReadBlobFloatsXXX = ReadBlobFloatsMSB;
image->endian = MSBEndian;
}
else
goto MATLAB_KO; /* unsupported endian */
if (strncmp(MATLAB_HDR.identific, "MATLAB", 6))
MATLAB_KO: ThrowReaderException(CorruptImageError,"ImproperImageHeader");
filepos = TellBlob(image);
while(!EOFBlob(image)) /* object parser loop */
{
Frames = 1;
(void) SeekBlob(image,filepos,SEEK_SET);
/* printf("pos=%X\n",TellBlob(image)); */
MATLAB_HDR.DataType = ReadBlobXXXLong(image);
if(EOFBlob(image)) break;
MATLAB_HDR.ObjectSize = ReadBlobXXXLong(image);
if(EOFBlob(image)) break;
filepos += MATLAB_HDR.ObjectSize + 4 + 4;
image2 = image;
#if defined(MAGICKCORE_ZLIB_DELEGATE)
if(MATLAB_HDR.DataType == miCOMPRESSED)
{
image2 = DecompressBlock(image,MATLAB_HDR.ObjectSize,clone_info,exception);
if(image2==NULL) continue;
MATLAB_HDR.DataType = ReadBlobXXXLong(image2); /* replace compressed object type. */
}
#endif
if(MATLAB_HDR.DataType!=miMATRIX) continue; /* skip another objects. */
MATLAB_HDR.unknown1 = ReadBlobXXXLong(image2);
MATLAB_HDR.unknown2 = ReadBlobXXXLong(image2);
MATLAB_HDR.unknown5 = ReadBlobXXXLong(image2);
MATLAB_HDR.StructureClass = MATLAB_HDR.unknown5 & 0xFF;
MATLAB_HDR.StructureFlag = (MATLAB_HDR.unknown5>>8) & 0xFF;
MATLAB_HDR.unknown3 = ReadBlobXXXLong(image2);
if(image!=image2)
MATLAB_HDR.unknown4 = ReadBlobXXXLong(image2); /* ??? don't understand why ?? */
MATLAB_HDR.unknown4 = ReadBlobXXXLong(image2);
MATLAB_HDR.DimFlag = ReadBlobXXXLong(image2);
MATLAB_HDR.SizeX = ReadBlobXXXLong(image2);
MATLAB_HDR.SizeY = ReadBlobXXXLong(image2);
switch(MATLAB_HDR.DimFlag)
{
case 8: z2=z=1; break; /* 2D matrix*/
case 12: z2=z = ReadBlobXXXLong(image2); /* 3D matrix RGB*/
(void) ReadBlobXXXLong(image2);
if(z!=3) ThrowReaderException(CoderError, "MultidimensionalMatricesAreNotSupported");
break;
case 16: z2=z = ReadBlobXXXLong(image2); /* 4D matrix animation */
if(z!=3 && z!=1)
ThrowReaderException(CoderError, "MultidimensionalMatricesAreNotSupported");
Frames = ReadBlobXXXLong(image2);
if (Frames == 0)
ThrowReaderException(CorruptImageError,"ImproperImageHeader");
break;
default: ThrowReaderException(CoderError, "MultidimensionalMatricesAreNotSupported");
}
MATLAB_HDR.Flag1 = ReadBlobXXXShort(image2);
MATLAB_HDR.NameFlag = ReadBlobXXXShort(image2);
if (logging) (void)LogMagickEvent(CoderEvent,GetMagickModule(),
"MATLAB_HDR.StructureClass %d",MATLAB_HDR.StructureClass);
if (MATLAB_HDR.StructureClass != mxCHAR_CLASS &&
MATLAB_HDR.StructureClass != mxSINGLE_CLASS && /* float + complex float */
MATLAB_HDR.StructureClass != mxDOUBLE_CLASS && /* double + complex double */
MATLAB_HDR.StructureClass != mxINT8_CLASS &&
MATLAB_HDR.StructureClass != mxUINT8_CLASS && /* uint8 + uint8 3D */
MATLAB_HDR.StructureClass != mxINT16_CLASS &&
MATLAB_HDR.StructureClass != mxUINT16_CLASS && /* uint16 + uint16 3D */
MATLAB_HDR.StructureClass != mxINT32_CLASS &&
MATLAB_HDR.StructureClass != mxUINT32_CLASS && /* uint32 + uint32 3D */
MATLAB_HDR.StructureClass != mxINT64_CLASS &&
MATLAB_HDR.StructureClass != mxUINT64_CLASS) /* uint64 + uint64 3D */
ThrowReaderException(CoderError,"UnsupportedCellTypeInTheMatrix");
switch (MATLAB_HDR.NameFlag)
{
case 0:
size = ReadBlobXXXLong(image2); /* Object name string size */
size = 4 * (ssize_t) ((size + 3 + 1) / 4);
(void) SeekBlob(image2, size, SEEK_CUR);
break;
case 1:
case 2:
case 3:
case 4:
(void) ReadBlob(image2, 4, (unsigned char *) &size); /* Object name string */
break;
default:
goto MATLAB_KO;
}
CellType = ReadBlobXXXLong(image2); /* Additional object type */
if (logging)
(void) LogMagickEvent(CoderEvent,GetMagickModule(),
"MATLAB_HDR.CellType: %.20g",(double) CellType);
(void) ReadBlob(image2, 4, (unsigned char *) &size); /* data size */
NEXT_FRAME:
switch (CellType)
{
case miINT8:
case miUINT8:
sample_size = 8;
if(MATLAB_HDR.StructureFlag & FLAG_LOGICAL)
image->depth = 1;
else
image->depth = 8; /* Byte type cell */
ldblk = (ssize_t) MATLAB_HDR.SizeX;
break;
case miINT16:
case miUINT16:
sample_size = 16;
image->depth = 16; /* Word type cell */
ldblk = (ssize_t) (2 * MATLAB_HDR.SizeX);
break;
case miINT32:
case miUINT32:
sample_size = 32;
image->depth = 32; /* Dword type cell */
ldblk = (ssize_t) (4 * MATLAB_HDR.SizeX);
break;
case miINT64:
case miUINT64:
sample_size = 64;
image->depth = 64; /* Qword type cell */
ldblk = (ssize_t) (8 * MATLAB_HDR.SizeX);
break;
case miSINGLE:
sample_size = 32;
image->depth = 32; /* double type cell */
(void) SetImageOption(clone_info,"quantum:format","floating-point");
if (MATLAB_HDR.StructureFlag & FLAG_COMPLEX)
{ /* complex float type cell */
}
ldblk = (ssize_t) (4 * MATLAB_HDR.SizeX);
break;
case miDOUBLE:
sample_size = 64;
image->depth = 64; /* double type cell */
(void) SetImageOption(clone_info,"quantum:format","floating-point");
DisableMSCWarning(4127)
if (sizeof(double) != 8)
RestoreMSCWarning
ThrowReaderException(CoderError, "IncompatibleSizeOfDouble");
if (MATLAB_HDR.StructureFlag & FLAG_COMPLEX)
{ /* complex double type cell */
}
ldblk = (ssize_t) (8 * MATLAB_HDR.SizeX);
break;
default:
ThrowReaderException(CoderError, "UnsupportedCellTypeInTheMatrix");
}
(void) sample_size;
image->columns = MATLAB_HDR.SizeX;
image->rows = MATLAB_HDR.SizeY;
quantum_info=AcquireQuantumInfo(clone_info,image);
if (quantum_info == (QuantumInfo *) NULL)
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
one=1;
image->colors = one << image->depth;
if (image->columns == 0 || image->rows == 0)
goto MATLAB_KO;
/* Image is gray when no complex flag is set and 2D Matrix */
if ((MATLAB_HDR.DimFlag == 8) &&
((MATLAB_HDR.StructureFlag & FLAG_COMPLEX) == 0))
{
image->type=GrayscaleType;
SetImageColorspace(image,GRAYColorspace,exception);
}
/*
If ping is true, then only set image size and colors without
reading any image data.
*/
if (image_info->ping)
{
size_t temp = image->columns;
image->columns = image->rows;
image->rows = temp;
goto done_reading; /* !!!!!! BAD !!!! */
}
status=SetImageExtent(image,image->columns,image->rows,exception);
if (status == MagickFalse)
return(DestroyImageList(image));
/* ----- Load raster data ----- */
BImgBuff = (unsigned char *) AcquireQuantumMemory((size_t) (ldblk),sizeof(double)); /* Ldblk was set in the check phase */
if (BImgBuff == NULL)
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
MinVal = 0;
MaxVal = 0;
if (CellType==miDOUBLE || CellType==miSINGLE) /* Find Min and Max Values for floats */
{
CalcMinMax(image2, image_info->endian, MATLAB_HDR.SizeX, MATLAB_HDR.SizeY, CellType, ldblk, BImgBuff, &quantum_info->minimum, &quantum_info->maximum);
}
/* Main loop for reading all scanlines */
if(z==1) z=0; /* read grey scanlines */
/* else read color scanlines */
do
{
for (i = 0; i < (ssize_t) MATLAB_HDR.SizeY; i++)
{
q=GetAuthenticPixels(image,0,MATLAB_HDR.SizeY-i-1,image->columns,1,exception);
if (q == (Quantum *) NULL)
{
if (logging) (void)LogMagickEvent(CoderEvent,GetMagickModule(),
" MAT set image pixels returns unexpected NULL on a row %u.", (unsigned)(MATLAB_HDR.SizeY-i-1));
goto done_reading; /* Skip image rotation, when cannot set image pixels */
}
if(ReadBlob(image2,ldblk,(unsigned char *)BImgBuff) != (ssize_t) ldblk)
{
if (logging) (void)LogMagickEvent(CoderEvent,GetMagickModule(),
" MAT cannot read scanrow %u from a file.", (unsigned)(MATLAB_HDR.SizeY-i-1));
goto ExitLoop;
}
if((CellType==miINT8 || CellType==miUINT8) && (MATLAB_HDR.StructureFlag & FLAG_LOGICAL))
{
FixLogical((unsigned char *)BImgBuff,ldblk);
if(ImportQuantumPixels(image,(CacheView *) NULL,quantum_info,z2qtype[z],BImgBuff,exception) <= 0)
{
ImportQuantumPixelsFailed:
if (logging) (void)LogMagickEvent(CoderEvent,GetMagickModule(),
" MAT failed to ImportQuantumPixels for a row %u", (unsigned)(MATLAB_HDR.SizeY-i-1));
break;
}
}
else
{
if(ImportQuantumPixels(image,(CacheView *) NULL,quantum_info,z2qtype[z],BImgBuff,exception) <= 0)
goto ImportQuantumPixelsFailed;
if (z<=1 && /* fix only during a last pass z==0 || z==1 */
(CellType==miINT8 || CellType==miINT16 || CellType==miINT32 || CellType==miINT64))
FixSignedValues(image,q,MATLAB_HDR.SizeX);
}
if (!SyncAuthenticPixels(image,exception))
{
if (logging) (void)LogMagickEvent(CoderEvent,GetMagickModule(),
" MAT failed to sync image pixels for a row %u", (unsigned)(MATLAB_HDR.SizeY-i-1));
goto ExitLoop;
}
}
} while(z-- >= 2);
quantum_info=DestroyQuantumInfo(quantum_info);
ExitLoop:
/* Read complex part of numbers here */
if (MATLAB_HDR.StructureFlag & FLAG_COMPLEX)
{ /* Find Min and Max Values for complex parts of floats */
CellType = ReadBlobXXXLong(image2); /* Additional object type */
i = ReadBlobXXXLong(image2); /* size of a complex part - toss away*/
if (CellType==miDOUBLE || CellType==miSINGLE)
{
CalcMinMax(image2, image_info->endian, MATLAB_HDR.SizeX, MATLAB_HDR.SizeY, CellType, ldblk, BImgBuff, &MinVal, &MaxVal);
}
if (CellType==miDOUBLE)
for (i = 0; i < (ssize_t) MATLAB_HDR.SizeY; i++)
{
ReadBlobDoublesXXX(image2, ldblk, (double *)BImgBuff);
InsertComplexDoubleRow(image, (double *)BImgBuff, i, MinVal, MaxVal,
exception);
}
if (CellType==miSINGLE)
for (i = 0; i < (ssize_t) MATLAB_HDR.SizeY; i++)
{
ReadBlobFloatsXXX(image2, ldblk, (float *)BImgBuff);
InsertComplexFloatRow(image,(float *)BImgBuff,i,MinVal,MaxVal,
exception);
}
}
/* Image is gray when no complex flag is set and 2D Matrix AGAIN!!! */
if ((MATLAB_HDR.DimFlag == 8) &&
((MATLAB_HDR.StructureFlag & FLAG_COMPLEX) == 0))
image->type=GrayscaleType;
if (image->depth == 1)
image->type=BilevelType;
if(image2==image)
image2 = NULL; /* Remove shadow copy to an image before rotation. */
/* Rotate image. */
rotated_image = RotateImage(image, 90.0, exception);
if (rotated_image != (Image *) NULL)
{
/* Remove page offsets added by RotateImage */
rotated_image->page.x=0;
rotated_image->page.y=0;
blob = rotated_image->blob;
rotated_image->blob = image->blob;
rotated_image->colors = image->colors;
image->blob = blob;
AppendImageToList(&image,rotated_image);
DeleteImageFromList(&image);
}
done_reading:
if(image2!=NULL)
if(image2!=image)
{
DeleteImageFromList(&image2);
if(clone_info)
{
if(clone_info->file)
{
fclose(clone_info->file);
clone_info->file = NULL;
(void) remove_utf8(clone_info->filename);
}
}
}
/* Allocate next image structure. */
AcquireNextImage(image_info,image,exception);
if (image->next == (Image *) NULL) break;
image=SyncNextImageInList(image);
image->columns=image->rows=0;
image->colors=0;
/* row scan buffer is no longer needed */
RelinquishMagickMemory(BImgBuff);
BImgBuff = NULL;
if(--Frames>0)
{
z = z2;
if(image2==NULL) image2 = image;
goto NEXT_FRAME;
}
if ((image2!=NULL) && (image2!=image)) /* Does shadow temporary decompressed image exist? */
{
/* CloseBlob(image2); */
DeleteImageFromList(&image2);
if(clone_info)
{
if(clone_info->file)
{
fclose(clone_info->file);
clone_info->file = NULL;
(void) remove_utf8(clone_info->filename);
}
}
}
}
RelinquishMagickMemory(BImgBuff);
END_OF_READING:
clone_info=DestroyImageInfo(clone_info);
CloseBlob(image);
{
Image *p;
ssize_t scene=0;
/*
Rewind list, removing any empty images while rewinding.
*/
p=image;
image=NULL;
while (p != (Image *) NULL)
{
Image *tmp=p;
if ((p->rows == 0) || (p->columns == 0)) {
p=p->previous;
DeleteImageFromList(&tmp);
} else {
image=p;
p=p->previous;
}
}
/*
Fix scene numbers
*/
for (p=image; p != (Image *) NULL; p=p->next)
p->scene=scene++;
}
if(clone_info != NULL) /* cleanup garbage file from compression */
{
if(clone_info->file)
{
fclose(clone_info->file);
clone_info->file = NULL;
(void) remove_utf8(clone_info->filename);
}
DestroyImageInfo(clone_info);
clone_info = NULL;
}
if (logging) (void)LogMagickEvent(CoderEvent,GetMagickModule(),"return");
if(image==NULL)
ThrowReaderException(CorruptImageError,"ImproperImageHeader");
return (image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% R e g i s t e r M A T I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Method RegisterMATImage adds attributes for the MAT image format to
% the list of supported formats. The attributes include the image format
% tag, a method to read and/or write the format, whether the format
% supports the saving of more than one frame to the same file or blob,
% whether the format supports native in-memory I/O, and a brief
% description of the format.
%
% The format of the RegisterMATImage method is:
%
% size_t RegisterMATImage(void)
%
*/
ModuleExport size_t RegisterMATImage(void)
{
MagickInfo
*entry;
entry=AcquireMagickInfo("MAT","MAT","MATLAB level 5 image format");
entry->decoder=(DecodeImageHandler *) ReadMATImage;
entry->encoder=(EncodeImageHandler *) WriteMATImage;
entry->flags^=CoderBlobSupportFlag;
entry->flags|=CoderSeekableStreamFlag;
(void) RegisterMagickInfo(entry);
return(MagickImageCoderSignature);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% U n r e g i s t e r M A T I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Method UnregisterMATImage removes format registrations made by the
% MAT module from the list of supported formats.
%
% The format of the UnregisterMATImage method is:
%
% UnregisterMATImage(void)
%
*/
ModuleExport void UnregisterMATImage(void)
{
(void) UnregisterMagickInfo("MAT");
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% W r i t e M A T L A B I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Function WriteMATImage writes an Matlab matrix to a file.
%
% The format of the WriteMATImage method is:
%
% MagickBooleanType WriteMATImage(const ImageInfo *image_info,
% Image *image,ExceptionInfo *exception)
%
% A description of each parameter follows.
%
% o image_info: Specifies a pointer to a ImageInfo structure.
%
% o image: A pointer to an Image structure.
%
% o exception: return any errors or warnings in this structure.
%
*/
static MagickBooleanType WriteMATImage(const ImageInfo *image_info,Image *image,
ExceptionInfo *exception)
{
ssize_t y;
unsigned z;
register const Quantum *p;
unsigned int status;
int logging;
size_t DataSize;
char padding;
char MATLAB_HDR[0x80];
time_t current_time;
struct tm local_time;
unsigned char *pixels;
int is_gray;
MagickOffsetType
scene;
QuantumInfo
*quantum_info;
/*
Open output image file.
*/
assert(image_info != (const ImageInfo *) NULL);
assert(image_info->signature == MagickCoreSignature);
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
logging=LogMagickEvent(CoderEvent,GetMagickModule(),"enter MAT");
(void) logging;
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
status=OpenBlob(image_info,image,WriteBinaryBlobMode,exception);
if (status == MagickFalse)
return(MagickFalse);
image->depth=8;
current_time=time((time_t *) NULL);
#if defined(MAGICKCORE_HAVE_LOCALTIME_R)
(void) localtime_r(&current_time,&local_time);
#else
(void) memcpy(&local_time,localtime(&current_time),sizeof(local_time));
#endif
(void) memset(MATLAB_HDR,' ',MagickMin(sizeof(MATLAB_HDR),124));
FormatLocaleString(MATLAB_HDR,sizeof(MATLAB_HDR),
"MATLAB 5.0 MAT-file, Platform: %s, Created on: %s %s %2d %2d:%2d:%2d %d",
OsDesc,DayOfWTab[local_time.tm_wday],MonthsTab[local_time.tm_mon],
local_time.tm_mday,local_time.tm_hour,local_time.tm_min,
local_time.tm_sec,local_time.tm_year+1900);
MATLAB_HDR[0x7C]=0;
MATLAB_HDR[0x7D]=1;
MATLAB_HDR[0x7E]='I';
MATLAB_HDR[0x7F]='M';
(void) WriteBlob(image,sizeof(MATLAB_HDR),(unsigned char *) MATLAB_HDR);
scene=0;
do
{
(void) TransformImageColorspace(image,sRGBColorspace,exception);
is_gray = SetImageGray(image,exception);
z = is_gray ? 0 : 3;
/*
Store MAT header.
*/
DataSize = image->rows /*Y*/ * image->columns /*X*/;
if(!is_gray) DataSize *= 3 /*Z*/;
padding=((unsigned char)(DataSize-1) & 0x7) ^ 0x7;
(void) WriteBlobLSBLong(image, miMATRIX);
(void) WriteBlobLSBLong(image, (unsigned int) DataSize+padding+(is_gray ? 48 : 56));
(void) WriteBlobLSBLong(image, 0x6); /* 0x88 */
(void) WriteBlobLSBLong(image, 0x8); /* 0x8C */
(void) WriteBlobLSBLong(image, 0x6); /* 0x90 */
(void) WriteBlobLSBLong(image, 0);
(void) WriteBlobLSBLong(image, 0x5); /* 0x98 */
(void) WriteBlobLSBLong(image, is_gray ? 0x8 : 0xC); /* 0x9C - DimFlag */
(void) WriteBlobLSBLong(image, (unsigned int) image->rows); /* x: 0xA0 */
(void) WriteBlobLSBLong(image, (unsigned int) image->columns); /* y: 0xA4 */
if(!is_gray)
{
(void) WriteBlobLSBLong(image, 3); /* z: 0xA8 */
(void) WriteBlobLSBLong(image, 0);
}
(void) WriteBlobLSBShort(image, 1); /* 0xB0 */
(void) WriteBlobLSBShort(image, 1); /* 0xB2 */
(void) WriteBlobLSBLong(image, 'M'); /* 0xB4 */
(void) WriteBlobLSBLong(image, 0x2); /* 0xB8 */
(void) WriteBlobLSBLong(image, (unsigned int) DataSize); /* 0xBC */
/*
Store image data.
*/
quantum_info=AcquireQuantumInfo(image_info,image);
if (quantum_info == (QuantumInfo *) NULL)
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
pixels=(unsigned char *) GetQuantumPixels(quantum_info);
do
{
for (y=0; y < (ssize_t)image->columns; y++)
{
p=GetVirtualPixels(image,y,0,1,image->rows,exception);
if (p == (const Quantum *) NULL)
break;
(void) ExportQuantumPixels(image,(CacheView *) NULL,quantum_info,
z2qtype[z],pixels,exception);
(void) WriteBlob(image,image->rows,pixels);
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
} while(z-- >= 2);
while(padding-->0) (void) WriteBlobByte(image,0);
quantum_info=DestroyQuantumInfo(quantum_info);
if (GetNextImageInList(image) == (Image *) NULL)
break;
image=SyncNextImageInList(image);
status=SetImageProgress(image,SaveImagesTag,scene++,
GetImageListLength(image));
if (status == MagickFalse)
break;
} while (image_info->adjoin != MagickFalse);
(void) CloseBlob(image);
return(MagickTrue);
}