| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % FFFFF OOO U U RRRR IIIII EEEEE RRRR % |
| % F O O U U R R I E R R % |
| % FFF O O U U RRRR I EEE RRRR % |
| % F O O U U R R I E R R % |
| % F OOO UUU R R IIIII EEEEE R R % |
| % % |
| % % |
| % MagickCore Discrete Fourier Transform Methods % |
| % % |
| % Software Design % |
| % Sean Burke % |
| % Fred Weinhaus % |
| % John Cristy % |
| % July 2009 % |
| % % |
| % % |
| % Copyright 1999-2011 ImageMagick Studio LLC, a non-profit organization % |
| % dedicated to making software imaging solutions freely available. % |
| % % |
| % You may not use this file except in compliance with the License. You may % |
| % obtain a copy of the License at % |
| % % |
| % http://www.imagemagick.org/script/license.php % |
| % % |
| % Unless required by applicable law or agreed to in writing, software % |
| % distributed under the License is distributed on an "AS IS" BASIS, % |
| % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % |
| % See the License for the specific language governing permissions and % |
| % limitations under the License. % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % |
| % |
| */ |
| |
| /* |
| Include declarations. |
| */ |
| #include "magick/studio.h" |
| #include "magick/cache.h" |
| #include "magick/image.h" |
| #include "magick/image-private.h" |
| #include "magick/list.h" |
| #include "magick/fourier.h" |
| #include "magick/log.h" |
| #include "magick/memory_.h" |
| #include "magick/monitor.h" |
| #include "magick/property.h" |
| #include "magick/quantum-private.h" |
| #include "magick/thread-private.h" |
| #if defined(MAGICKCORE_FFTW_DELEGATE) |
| #if defined(MAGICKCORE_HAVE_COMPLEX_H) |
| #include <complex.h> |
| #endif |
| #include <fftw3.h> |
| #if !defined(MAGICKCORE_HAVE_CABS) |
| #define cabs(z) (sqrt(z[0]*z[0]+z[1]*z[1])) |
| #endif |
| #if !defined(MAGICKCORE_HAVE_CARG) |
| #define carg(z) (atan2(cimag(z),creal(z))) |
| #endif |
| #if !defined(MAGICKCORE_HAVE_CIMAG) |
| #define cimag(z) (z[1]) |
| #endif |
| #if !defined(MAGICKCORE_HAVE_CREAL) |
| #define creal(z) (z[0]) |
| #endif |
| #endif |
| |
| /* |
| Typedef declarations. |
| */ |
| typedef struct _FourierInfo |
| { |
| ChannelType |
| channel; |
| |
| MagickBooleanType |
| modulus; |
| |
| size_t |
| width, |
| height; |
| |
| ssize_t |
| center; |
| } FourierInfo; |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % F o r w a r d F o u r i e r T r a n s f o r m I m a g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ForwardFourierTransformImage() implements the discrete Fourier transform |
| % (DFT) of the image either as a magnitude / phase or real / imaginary image |
| % pair. |
| % |
| % The format of the ForwadFourierTransformImage method is: |
| % |
| % Image *ForwardFourierTransformImage(const Image *image, |
| % const MagickBooleanType modulus,ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o modulus: if true, return as transform as a magnitude / phase pair |
| % otherwise a real / imaginary image pair. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| |
| #if defined(MAGICKCORE_FFTW_DELEGATE) |
| |
| static MagickBooleanType RollFourier(const size_t width,const size_t height, |
| const ssize_t x_offset,const ssize_t y_offset,double *fourier) |
| { |
| double |
| *roll; |
| |
| register ssize_t |
| i, |
| x; |
| |
| ssize_t |
| u, |
| v, |
| y; |
| |
| /* |
| Move zero frequency (DC, average color) from (0,0) to (width/2,height/2). |
| */ |
| roll=(double *) AcquireQuantumMemory((size_t) height,width*sizeof(*roll)); |
| if (roll == (double *) NULL) |
| return(MagickFalse); |
| i=0L; |
| for (y=0L; y < (ssize_t) height; y++) |
| { |
| if (y_offset < 0L) |
| v=((y+y_offset) < 0L) ? y+y_offset+(ssize_t) height : y+y_offset; |
| else |
| v=((y+y_offset) > ((ssize_t) height-1L)) ? y+y_offset-(ssize_t) height : |
| y+y_offset; |
| for (x=0L; x < (ssize_t) width; x++) |
| { |
| if (x_offset < 0L) |
| u=((x+x_offset) < 0L) ? x+x_offset+(ssize_t) width : x+x_offset; |
| else |
| u=((x+x_offset) > ((ssize_t) width-1L)) ? x+x_offset-(ssize_t) width : |
| x+x_offset; |
| roll[v*width+u]=fourier[i++]; |
| } |
| } |
| (void) CopyMagickMemory(fourier,roll,height*width*sizeof(*roll)); |
| roll=(double *) RelinquishMagickMemory(roll); |
| return(MagickTrue); |
| } |
| |
| static MagickBooleanType ForwardQuadrantSwap(const size_t width, |
| const size_t height,double *source,double *destination) |
| { |
| MagickBooleanType |
| status; |
| |
| register ssize_t |
| x; |
| |
| ssize_t |
| center, |
| y; |
| |
| /* |
| Swap quadrants. |
| */ |
| center=(ssize_t) floor((double) width/2L)+1L; |
| status=RollFourier((size_t) center,height,0L,(ssize_t) height/2L,source); |
| if (status == MagickFalse) |
| return(MagickFalse); |
| for (y=0L; y < (ssize_t) height; y++) |
| for (x=0L; x < (ssize_t) (width/2L-1L); x++) |
| destination[width*y+x+width/2L]=source[center*y+x]; |
| for (y=1; y < (ssize_t) height; y++) |
| for (x=0L; x < (ssize_t) (width/2L-1L); x++) |
| destination[width*(height-y)+width/2L-x-1L]=source[center*y+x+1L]; |
| for (x=0L; x < (ssize_t) (width/2L); x++) |
| destination[-x+width/2L-1L]=destination[x+width/2L+1L]; |
| return(MagickTrue); |
| } |
| |
| static void CorrectPhaseLHS(const size_t width,const size_t height, |
| double *fourier) |
| { |
| ssize_t |
| y; |
| |
| register ssize_t |
| x; |
| |
| for (y=0L; y < (ssize_t) height; y++) |
| for (x=0L; x < (ssize_t) (width/2L); x++) |
| fourier[y*width+x]*=(-1.0); |
| } |
| |
| static MagickBooleanType ForwardFourier(const FourierInfo *fourier_info, |
| Image *image,double *magnitude,double *phase,ExceptionInfo *exception) |
| { |
| CacheView |
| *magnitude_view, |
| *phase_view; |
| |
| double |
| *magnitude_source, |
| *phase_source; |
| |
| Image |
| *magnitude_image, |
| *phase_image; |
| |
| MagickBooleanType |
| status; |
| |
| register IndexPacket |
| *indexes; |
| |
| register ssize_t |
| x; |
| |
| register PixelPacket |
| *q; |
| |
| ssize_t |
| i, |
| y; |
| |
| magnitude_image=GetFirstImageInList(image); |
| phase_image=GetNextImageInList(image); |
| if (phase_image == (Image *) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(),ImageError, |
| "ImageSequenceRequired","`%s'",image->filename); |
| return(MagickFalse); |
| } |
| /* |
| Create "Fourier Transform" image from constituent arrays. |
| */ |
| magnitude_source=(double *) AcquireQuantumMemory((size_t) |
| fourier_info->height,fourier_info->width*sizeof(*magnitude_source)); |
| if (magnitude_source == (double *) NULL) |
| return(MagickFalse); |
| (void) ResetMagickMemory(magnitude_source,0,fourier_info->height* |
| fourier_info->width*sizeof(*magnitude_source)); |
| phase_source=(double *) AcquireQuantumMemory((size_t) fourier_info->height, |
| fourier_info->width*sizeof(*phase_source)); |
| if (phase_source == (double *) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); |
| magnitude_source=(double *) RelinquishMagickMemory(magnitude_source); |
| return(MagickFalse); |
| } |
| status=ForwardQuadrantSwap(fourier_info->height,fourier_info->height, |
| magnitude,magnitude_source); |
| if (status != MagickFalse) |
| status=ForwardQuadrantSwap(fourier_info->height,fourier_info->height,phase, |
| phase_source); |
| CorrectPhaseLHS(fourier_info->height,fourier_info->height,phase_source); |
| if (fourier_info->modulus != MagickFalse) |
| { |
| i=0L; |
| for (y=0L; y < (ssize_t) fourier_info->height; y++) |
| for (x=0L; x < (ssize_t) fourier_info->width; x++) |
| { |
| phase_source[i]/=(2.0*MagickPI); |
| phase_source[i]+=0.5; |
| i++; |
| } |
| } |
| magnitude_view=AcquireCacheView(magnitude_image); |
| phase_view=AcquireCacheView(phase_image); |
| i=0L; |
| for (y=0L; y < (ssize_t) fourier_info->height; y++) |
| { |
| q=GetCacheViewAuthenticPixels(magnitude_view,0L,y,fourier_info->height,1UL, |
| exception); |
| if (q == (PixelPacket *) NULL) |
| break; |
| indexes=GetCacheViewAuthenticIndexQueue(magnitude_view); |
| for (x=0L; x < (ssize_t) fourier_info->width; x++) |
| { |
| switch (fourier_info->channel) |
| { |
| case RedChannel: |
| default: |
| { |
| q->red=ClampToQuantum(QuantumRange*magnitude_source[i]); |
| break; |
| } |
| case GreenChannel: |
| { |
| q->green=ClampToQuantum(QuantumRange*magnitude_source[i]); |
| break; |
| } |
| case BlueChannel: |
| { |
| q->blue=ClampToQuantum(QuantumRange*magnitude_source[i]); |
| break; |
| } |
| case OpacityChannel: |
| { |
| q->opacity=ClampToQuantum(QuantumRange*magnitude_source[i]); |
| break; |
| } |
| case IndexChannel: |
| { |
| indexes[x]=ClampToQuantum(QuantumRange*magnitude_source[i]); |
| break; |
| } |
| case GrayChannels: |
| { |
| SetGrayPixelComponent(q,ClampToQuantum(QuantumRange* |
| magnitude_source[i])); |
| break; |
| } |
| } |
| i++; |
| q++; |
| } |
| status=SyncCacheViewAuthenticPixels(magnitude_view,exception); |
| if (status == MagickFalse) |
| break; |
| } |
| i=0L; |
| for (y=0L; y < (ssize_t) fourier_info->height; y++) |
| { |
| q=GetCacheViewAuthenticPixels(phase_view,0L,y,fourier_info->height,1UL, |
| exception); |
| if (q == (PixelPacket *) NULL) |
| break; |
| indexes=GetCacheViewAuthenticIndexQueue(phase_view); |
| for (x=0L; x < (ssize_t) fourier_info->width; x++) |
| { |
| switch (fourier_info->channel) |
| { |
| case RedChannel: |
| default: |
| { |
| q->red=ClampToQuantum(QuantumRange*phase_source[i]); |
| break; |
| } |
| case GreenChannel: |
| { |
| q->green=ClampToQuantum(QuantumRange*phase_source[i]); |
| break; |
| } |
| case BlueChannel: |
| { |
| q->blue=ClampToQuantum(QuantumRange*phase_source[i]); |
| break; |
| } |
| case OpacityChannel: |
| { |
| q->opacity=ClampToQuantum(QuantumRange*phase_source[i]); |
| break; |
| } |
| case IndexChannel: |
| { |
| indexes[x]=ClampToQuantum(QuantumRange*phase_source[i]); |
| break; |
| } |
| case GrayChannels: |
| { |
| SetGrayPixelComponent(q,ClampToQuantum(QuantumRange*phase_source[i])); |
| break; |
| } |
| } |
| i++; |
| q++; |
| } |
| status=SyncCacheViewAuthenticPixels(phase_view,exception); |
| if (status == MagickFalse) |
| break; |
| } |
| phase_view=DestroyCacheView(phase_view); |
| magnitude_view=DestroyCacheView(magnitude_view); |
| phase_source=(double *) RelinquishMagickMemory(phase_source); |
| magnitude_source=(double *) RelinquishMagickMemory(magnitude_source); |
| return(status); |
| } |
| |
| static MagickBooleanType ForwardFourierTransform(FourierInfo *fourier_info, |
| const Image *image,double *magnitude,double *phase,ExceptionInfo *exception) |
| { |
| CacheView |
| *image_view; |
| |
| double |
| n, |
| *source; |
| |
| fftw_complex |
| *fourier; |
| |
| fftw_plan |
| fftw_r2c_plan; |
| |
| register const IndexPacket |
| *indexes; |
| |
| register const PixelPacket |
| *p; |
| |
| register ssize_t |
| i, |
| x; |
| |
| ssize_t |
| y; |
| |
| /* |
| Generate the forward Fourier transform. |
| */ |
| source=(double *) AcquireQuantumMemory((size_t) fourier_info->height, |
| fourier_info->width*sizeof(*source)); |
| if (source == (double *) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); |
| return(MagickFalse); |
| } |
| ResetMagickMemory(source,0,fourier_info->height*fourier_info->width* |
| sizeof(*source)); |
| i=0L; |
| image_view=AcquireCacheView(image); |
| for (y=0L; y < (ssize_t) fourier_info->height; y++) |
| { |
| p=GetCacheViewVirtualPixels(image_view,0L,y,fourier_info->width,1UL, |
| exception); |
| if (p == (const PixelPacket *) NULL) |
| break; |
| indexes=GetCacheViewVirtualIndexQueue(image_view); |
| for (x=0L; x < (ssize_t) fourier_info->width; x++) |
| { |
| switch (fourier_info->channel) |
| { |
| case RedChannel: |
| default: |
| { |
| source[i]=QuantumScale*GetRedPixelComponent(p); |
| break; |
| } |
| case GreenChannel: |
| { |
| source[i]=QuantumScale*GetGreenPixelComponent(p); |
| break; |
| } |
| case BlueChannel: |
| { |
| source[i]=QuantumScale*GetBluePixelComponent(p); |
| break; |
| } |
| case OpacityChannel: |
| { |
| source[i]=QuantumScale*GetOpacityPixelComponent(p); |
| break; |
| } |
| case IndexChannel: |
| { |
| source[i]=QuantumScale*indexes[x]; |
| break; |
| } |
| case GrayChannels: |
| { |
| source[i]=QuantumScale*GetGrayPixelComponent(p); |
| break; |
| } |
| } |
| i++; |
| p++; |
| } |
| } |
| image_view=DestroyCacheView(image_view); |
| fourier=(fftw_complex *) AcquireQuantumMemory((size_t) fourier_info->height, |
| fourier_info->center*sizeof(*fourier)); |
| if (fourier == (fftw_complex *) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); |
| source=(double *) RelinquishMagickMemory(source); |
| return(MagickFalse); |
| } |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp critical (MagickCore_ForwardFourierTransform) |
| #endif |
| fftw_r2c_plan=fftw_plan_dft_r2c_2d(fourier_info->width,fourier_info->width, |
| source,fourier,FFTW_ESTIMATE); |
| fftw_execute(fftw_r2c_plan); |
| fftw_destroy_plan(fftw_r2c_plan); |
| source=(double *) RelinquishMagickMemory(source); |
| /* |
| Normalize Fourier transform. |
| */ |
| n=(double) fourier_info->width*(double) fourier_info->width; |
| i=0L; |
| for (y=0L; y < (ssize_t) fourier_info->height; y++) |
| for (x=0L; x < (ssize_t) fourier_info->center; x++) |
| { |
| #if defined(MAGICKCORE_HAVE_COMPLEX_H) |
| fourier[i]/=n; |
| #else |
| fourier[i][0]/=n; |
| fourier[i][1]/=n; |
| #endif |
| i++; |
| } |
| /* |
| Generate magnitude and phase (or real and imaginary). |
| */ |
| i=0L; |
| if (fourier_info->modulus != MagickFalse) |
| for (y=0L; y < (ssize_t) fourier_info->height; y++) |
| for (x=0L; x < (ssize_t) fourier_info->center; x++) |
| { |
| magnitude[i]=cabs(fourier[i]); |
| phase[i]=carg(fourier[i]); |
| i++; |
| } |
| else |
| for (y=0L; y < (ssize_t) fourier_info->height; y++) |
| for (x=0L; x < (ssize_t) fourier_info->center; x++) |
| { |
| magnitude[i]=creal(fourier[i]); |
| phase[i]=cimag(fourier[i]); |
| i++; |
| } |
| fourier=(fftw_complex *) RelinquishMagickMemory(fourier); |
| return(MagickTrue); |
| } |
| |
| static MagickBooleanType ForwardFourierTransformChannel(const Image *image, |
| const ChannelType channel,const MagickBooleanType modulus, |
| Image *fourier_image,ExceptionInfo *exception) |
| { |
| double |
| *magnitude, |
| *phase; |
| |
| fftw_complex |
| *fourier; |
| |
| FourierInfo |
| fourier_info; |
| |
| MagickBooleanType |
| status; |
| |
| size_t |
| extent; |
| |
| fourier_info.width=image->columns; |
| if ((image->columns != image->rows) || ((image->columns % 2) != 0) || |
| ((image->rows % 2) != 0)) |
| { |
| extent=image->columns < image->rows ? image->rows : image->columns; |
| fourier_info.width=(extent & 0x01) == 1 ? extent+1UL : extent; |
| } |
| fourier_info.height=fourier_info.width; |
| fourier_info.center=(ssize_t) floor((double) fourier_info.width/2.0)+1L; |
| fourier_info.channel=channel; |
| fourier_info.modulus=modulus; |
| magnitude=(double *) AcquireQuantumMemory((size_t) fourier_info.height, |
| fourier_info.center*sizeof(*magnitude)); |
| if (magnitude == (double *) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); |
| return(MagickFalse); |
| } |
| phase=(double *) AcquireQuantumMemory((size_t) fourier_info.height, |
| fourier_info.center*sizeof(*phase)); |
| if (phase == (double *) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); |
| magnitude=(double *) RelinquishMagickMemory(magnitude); |
| return(MagickFalse); |
| } |
| fourier=(fftw_complex *) AcquireQuantumMemory((size_t) fourier_info.height, |
| fourier_info.center*sizeof(*fourier)); |
| if (fourier == (fftw_complex *) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); |
| phase=(double *) RelinquishMagickMemory(phase); |
| magnitude=(double *) RelinquishMagickMemory(magnitude); |
| return(MagickFalse); |
| } |
| status=ForwardFourierTransform(&fourier_info,image,magnitude,phase,exception); |
| if (status != MagickFalse) |
| status=ForwardFourier(&fourier_info,fourier_image,magnitude,phase, |
| exception); |
| fourier=(fftw_complex *) RelinquishMagickMemory(fourier); |
| phase=(double *) RelinquishMagickMemory(phase); |
| magnitude=(double *) RelinquishMagickMemory(magnitude); |
| return(status); |
| } |
| #endif |
| |
| MagickExport Image *ForwardFourierTransformImage(const Image *image, |
| const MagickBooleanType modulus,ExceptionInfo *exception) |
| { |
| Image |
| *fourier_image; |
| |
| fourier_image=NewImageList(); |
| #if !defined(MAGICKCORE_FFTW_DELEGATE) |
| (void) modulus; |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| MissingDelegateWarning,"DelegateLibrarySupportNotBuiltIn","`%s' (FFTW)", |
| image->filename); |
| #else |
| { |
| Image |
| *magnitude_image; |
| |
| size_t |
| extent, |
| width; |
| |
| width=image->columns; |
| if ((image->columns != image->rows) || ((image->columns % 2) != 0) || |
| ((image->rows % 2) != 0)) |
| { |
| extent=image->columns < image->rows ? image->rows : image->columns; |
| width=(extent & 0x01) == 1 ? extent+1UL : extent; |
| } |
| magnitude_image=CloneImage(image,width,width,MagickFalse,exception); |
| if (magnitude_image != (Image *) NULL) |
| { |
| Image |
| *phase_image; |
| |
| magnitude_image->storage_class=DirectClass; |
| magnitude_image->depth=32UL; |
| phase_image=CloneImage(image,width,width,MagickFalse,exception); |
| if (phase_image == (Image *) NULL) |
| magnitude_image=DestroyImage(magnitude_image); |
| else |
| { |
| MagickBooleanType |
| is_gray, |
| status; |
| |
| phase_image->storage_class=DirectClass; |
| phase_image->depth=32UL; |
| AppendImageToList(&fourier_image,magnitude_image); |
| AppendImageToList(&fourier_image,phase_image); |
| status=MagickTrue; |
| is_gray=IsGrayImage(image,exception); |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel sections |
| #endif |
| { |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp section |
| #endif |
| { |
| MagickBooleanType |
| thread_status; |
| |
| if (is_gray != MagickFalse) |
| thread_status=ForwardFourierTransformChannel(image, |
| GrayChannels,modulus,fourier_image,exception); |
| else |
| thread_status=ForwardFourierTransformChannel(image, |
| RedChannel,modulus,fourier_image,exception); |
| if (thread_status == MagickFalse) |
| status=thread_status; |
| } |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp section |
| #endif |
| { |
| MagickBooleanType |
| thread_status; |
| |
| thread_status=MagickTrue; |
| if (is_gray == MagickFalse) |
| thread_status=ForwardFourierTransformChannel(image, |
| GreenChannel,modulus,fourier_image,exception); |
| if (thread_status == MagickFalse) |
| status=thread_status; |
| } |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp section |
| #endif |
| { |
| MagickBooleanType |
| thread_status; |
| |
| thread_status=MagickTrue; |
| if (is_gray == MagickFalse) |
| thread_status=ForwardFourierTransformChannel(image, |
| BlueChannel,modulus,fourier_image,exception); |
| if (thread_status == MagickFalse) |
| status=thread_status; |
| } |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp section |
| #endif |
| { |
| MagickBooleanType |
| thread_status; |
| |
| thread_status=MagickTrue; |
| if (image->matte != MagickFalse) |
| thread_status=ForwardFourierTransformChannel(image, |
| OpacityChannel,modulus,fourier_image,exception); |
| if (thread_status == MagickFalse) |
| status=thread_status; |
| } |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp section |
| #endif |
| { |
| MagickBooleanType |
| thread_status; |
| |
| thread_status=MagickTrue; |
| if (image->colorspace == CMYKColorspace) |
| thread_status=ForwardFourierTransformChannel(image, |
| IndexChannel,modulus,fourier_image,exception); |
| if (thread_status == MagickFalse) |
| status=thread_status; |
| } |
| } |
| if (status == MagickFalse) |
| fourier_image=DestroyImageList(fourier_image); |
| fftw_cleanup(); |
| } |
| } |
| } |
| #endif |
| return(fourier_image); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % I n v e r s e F o u r i e r T r a n s f o r m I m a g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % InverseFourierTransformImage() implements the inverse discrete Fourier |
| % transform (DFT) of the image either as a magnitude / phase or real / |
| % imaginary image pair. |
| % |
| % The format of the InverseFourierTransformImage method is: |
| % |
| % Image *InverseFourierTransformImage(const Image *magnitude_image, |
| % const Image *phase_image,const MagickBooleanType modulus, |
| % ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o magnitude_image: the magnitude or real image. |
| % |
| % o phase_image: the phase or imaginary image. |
| % |
| % o modulus: if true, return transform as a magnitude / phase pair |
| % otherwise a real / imaginary image pair. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| |
| #if defined(MAGICKCORE_FFTW_DELEGATE) |
| static MagickBooleanType InverseQuadrantSwap(const size_t width, |
| const size_t height,const double *source,double *destination) |
| { |
| register ssize_t |
| x; |
| |
| ssize_t |
| center, |
| y; |
| |
| /* |
| Swap quadrants. |
| */ |
| center=(ssize_t) floor((double) width/2.0)+1L; |
| for (y=1L; y < (ssize_t) height; y++) |
| for (x=0L; x < (ssize_t) (width/2L+1L); x++) |
| destination[center*(height-y)-x+width/2L]=source[y*width+x]; |
| for (y=0L; y < (ssize_t) height; y++) |
| destination[center*y]=source[y*width+width/2L]; |
| for (x=0L; x < center; x++) |
| destination[x]=source[center-x-1L]; |
| return(RollFourier(center,height,0L,(ssize_t) height/-2L,destination)); |
| } |
| |
| static MagickBooleanType InverseFourier(FourierInfo *fourier_info, |
| const Image *magnitude_image,const Image *phase_image,fftw_complex *fourier, |
| ExceptionInfo *exception) |
| { |
| CacheView |
| *magnitude_view, |
| *phase_view; |
| |
| double |
| *magnitude, |
| *phase, |
| *magnitude_source, |
| *phase_source; |
| |
| MagickBooleanType |
| status; |
| |
| register const IndexPacket |
| *indexes; |
| |
| register const PixelPacket |
| *p; |
| |
| register ssize_t |
| i, |
| x; |
| |
| ssize_t |
| y; |
| |
| /* |
| Inverse fourier - read image and break down into a double array. |
| */ |
| magnitude_source=(double *) AcquireQuantumMemory((size_t) |
| fourier_info->height,fourier_info->width*sizeof(*magnitude_source)); |
| if (magnitude_source == (double *) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'", |
| magnitude_image->filename); |
| return(MagickFalse); |
| } |
| phase_source=(double *) AcquireQuantumMemory((size_t) fourier_info->height, |
| fourier_info->width*sizeof(*phase_source)); |
| if (phase_source == (double *) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'", |
| magnitude_image->filename); |
| magnitude_source=(double *) RelinquishMagickMemory(magnitude_source); |
| return(MagickFalse); |
| } |
| i=0L; |
| magnitude_view=AcquireCacheView(magnitude_image); |
| for (y=0L; y < (ssize_t) fourier_info->height; y++) |
| { |
| p=GetCacheViewVirtualPixels(magnitude_view,0L,y,fourier_info->width,1UL, |
| exception); |
| if (p == (const PixelPacket *) NULL) |
| break; |
| indexes=GetCacheViewAuthenticIndexQueue(magnitude_view); |
| for (x=0L; x < (ssize_t) fourier_info->width; x++) |
| { |
| switch (fourier_info->channel) |
| { |
| case RedChannel: |
| default: |
| { |
| magnitude_source[i]=QuantumScale*GetRedPixelComponent(p); |
| break; |
| } |
| case GreenChannel: |
| { |
| magnitude_source[i]=QuantumScale*GetGreenPixelComponent(p); |
| break; |
| } |
| case BlueChannel: |
| { |
| magnitude_source[i]=QuantumScale*GetBluePixelComponent(p); |
| break; |
| } |
| case OpacityChannel: |
| { |
| magnitude_source[i]=QuantumScale*GetOpacityPixelComponent(p); |
| break; |
| } |
| case IndexChannel: |
| { |
| magnitude_source[i]=QuantumScale*indexes[x]; |
| break; |
| } |
| case GrayChannels: |
| { |
| magnitude_source[i]=QuantumScale*GetGrayPixelComponent(p); |
| break; |
| } |
| } |
| i++; |
| p++; |
| } |
| } |
| i=0L; |
| phase_view=AcquireCacheView(phase_image); |
| for (y=0L; y < (ssize_t) fourier_info->height; y++) |
| { |
| p=GetCacheViewVirtualPixels(phase_view,0,y,fourier_info->width,1, |
| exception); |
| if (p == (const PixelPacket *) NULL) |
| break; |
| indexes=GetCacheViewAuthenticIndexQueue(phase_view); |
| for (x=0L; x < (ssize_t) fourier_info->width; x++) |
| { |
| switch (fourier_info->channel) |
| { |
| case RedChannel: |
| default: |
| { |
| phase_source[i]=QuantumScale*GetRedPixelComponent(p); |
| break; |
| } |
| case GreenChannel: |
| { |
| phase_source[i]=QuantumScale*GetGreenPixelComponent(p); |
| break; |
| } |
| case BlueChannel: |
| { |
| phase_source[i]=QuantumScale*GetBluePixelComponent(p); |
| break; |
| } |
| case OpacityChannel: |
| { |
| phase_source[i]=QuantumScale*GetOpacityPixelComponent(p); |
| break; |
| } |
| case IndexChannel: |
| { |
| phase_source[i]=QuantumScale*indexes[x]; |
| break; |
| } |
| case GrayChannels: |
| { |
| phase_source[i]=QuantumScale*GetGrayPixelComponent(p); |
| break; |
| } |
| } |
| i++; |
| p++; |
| } |
| } |
| if (fourier_info->modulus != MagickFalse) |
| { |
| i=0L; |
| for (y=0L; y < (ssize_t) fourier_info->height; y++) |
| for (x=0L; x < (ssize_t) fourier_info->width; x++) |
| { |
| phase_source[i]-=0.5; |
| phase_source[i]*=(2.0*MagickPI); |
| i++; |
| } |
| } |
| magnitude_view=DestroyCacheView(magnitude_view); |
| phase_view=DestroyCacheView(phase_view); |
| magnitude=(double *) AcquireQuantumMemory((size_t) fourier_info->height, |
| fourier_info->center*sizeof(*magnitude)); |
| if (magnitude == (double *) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'", |
| magnitude_image->filename); |
| magnitude_source=(double *) RelinquishMagickMemory(magnitude_source); |
| phase_source=(double *) RelinquishMagickMemory(phase_source); |
| return(MagickFalse); |
| } |
| status=InverseQuadrantSwap(fourier_info->width,fourier_info->height, |
| magnitude_source,magnitude); |
| magnitude_source=(double *) RelinquishMagickMemory(magnitude_source); |
| phase=(double *) AcquireQuantumMemory((size_t) fourier_info->height, |
| fourier_info->width*sizeof(*phase)); |
| if (phase == (double *) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'", |
| magnitude_image->filename); |
| phase_source=(double *) RelinquishMagickMemory(phase_source); |
| return(MagickFalse); |
| } |
| CorrectPhaseLHS(fourier_info->width,fourier_info->width,phase_source); |
| if (status != MagickFalse) |
| status=InverseQuadrantSwap(fourier_info->width,fourier_info->height, |
| phase_source,phase); |
| phase_source=(double *) RelinquishMagickMemory(phase_source); |
| /* |
| Merge two sets. |
| */ |
| i=0L; |
| if (fourier_info->modulus != MagickFalse) |
| for (y=0L; y < (ssize_t) fourier_info->height; y++) |
| for (x=0L; x < (ssize_t) fourier_info->center; x++) |
| { |
| #if defined(MAGICKCORE_HAVE_COMPLEX_H) |
| fourier[i]=magnitude[i]*cos(phase[i])+I*magnitude[i]*sin(phase[i]); |
| #else |
| fourier[i][0]=magnitude[i]*cos(phase[i]); |
| fourier[i][1]=magnitude[i]*sin(phase[i]); |
| #endif |
| i++; |
| } |
| else |
| for (y=0L; y < (ssize_t) fourier_info->height; y++) |
| for (x=0L; x < (ssize_t) fourier_info->center; x++) |
| { |
| #if defined(MAGICKCORE_HAVE_COMPLEX_H) |
| fourier[i]=magnitude[i]+I*phase[i]; |
| #else |
| fourier[i][0]=magnitude[i]; |
| fourier[i][1]=phase[i]; |
| #endif |
| i++; |
| } |
| phase=(double *) RelinquishMagickMemory(phase); |
| magnitude=(double *) RelinquishMagickMemory(magnitude); |
| return(status); |
| } |
| |
| static MagickBooleanType InverseFourierTransform(FourierInfo *fourier_info, |
| fftw_complex *fourier,Image *image,ExceptionInfo *exception) |
| { |
| CacheView |
| *image_view; |
| |
| double |
| *source; |
| |
| fftw_plan |
| fftw_c2r_plan; |
| |
| register IndexPacket |
| *indexes; |
| |
| register PixelPacket |
| *q; |
| |
| register ssize_t |
| i, |
| x; |
| |
| ssize_t |
| y; |
| |
| source=(double *) AcquireQuantumMemory((size_t) fourier_info->height, |
| fourier_info->width*sizeof(*source)); |
| if (source == (double *) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); |
| return(MagickFalse); |
| } |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp critical (MagickCore_InverseFourierTransform) |
| #endif |
| { |
| fftw_c2r_plan=fftw_plan_dft_c2r_2d(fourier_info->width,fourier_info->height, |
| fourier,source,FFTW_ESTIMATE); |
| fftw_execute(fftw_c2r_plan); |
| fftw_destroy_plan(fftw_c2r_plan); |
| } |
| i=0L; |
| image_view=AcquireCacheView(image); |
| for (y=0L; y < (ssize_t) fourier_info->height; y++) |
| { |
| if (y >= (ssize_t) image->rows) |
| break; |
| q=GetCacheViewAuthenticPixels(image_view,0L,y,fourier_info->width > |
| image->columns ? image->columns : fourier_info->width,1UL,exception); |
| if (q == (PixelPacket *) NULL) |
| break; |
| indexes=GetCacheViewAuthenticIndexQueue(image_view); |
| for (x=0L; x < (ssize_t) fourier_info->width; x++) |
| { |
| switch (fourier_info->channel) |
| { |
| case RedChannel: |
| default: |
| { |
| q->red=ClampToQuantum(QuantumRange*source[i]); |
| break; |
| } |
| case GreenChannel: |
| { |
| q->green=ClampToQuantum(QuantumRange*source[i]); |
| break; |
| } |
| case BlueChannel: |
| { |
| q->blue=ClampToQuantum(QuantumRange*source[i]); |
| break; |
| } |
| case OpacityChannel: |
| { |
| q->opacity=ClampToQuantum(QuantumRange*source[i]); |
| break; |
| } |
| case IndexChannel: |
| { |
| indexes[x]=ClampToQuantum(QuantumRange*source[i]); |
| break; |
| } |
| case GrayChannels: |
| { |
| SetGrayPixelComponent(q,ClampToQuantum(QuantumRange*source[i])); |
| break; |
| } |
| } |
| i++; |
| q++; |
| } |
| if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) |
| break; |
| } |
| image_view=DestroyCacheView(image_view); |
| source=(double *) RelinquishMagickMemory(source); |
| return(MagickTrue); |
| } |
| |
| static MagickBooleanType InverseFourierTransformChannel( |
| const Image *magnitude_image,const Image *phase_image, |
| const ChannelType channel,const MagickBooleanType modulus, |
| Image *fourier_image,ExceptionInfo *exception) |
| { |
| double |
| *magnitude, |
| *phase; |
| |
| fftw_complex |
| *fourier; |
| |
| FourierInfo |
| fourier_info; |
| |
| MagickBooleanType |
| status; |
| |
| size_t |
| extent; |
| |
| fourier_info.width=magnitude_image->columns; |
| if ((magnitude_image->columns != magnitude_image->rows) || |
| ((magnitude_image->columns % 2) != 0) || |
| ((magnitude_image->rows % 2) != 0)) |
| { |
| extent=magnitude_image->columns < magnitude_image->rows ? |
| magnitude_image->rows : magnitude_image->columns; |
| fourier_info.width=(extent & 0x01) == 1 ? extent+1UL : extent; |
| } |
| fourier_info.height=fourier_info.width; |
| fourier_info.center=(ssize_t) floor((double) fourier_info.width/2.0)+1L; |
| fourier_info.channel=channel; |
| fourier_info.modulus=modulus; |
| magnitude=(double *) AcquireQuantumMemory((size_t) fourier_info.height, |
| fourier_info.center*sizeof(*magnitude)); |
| if (magnitude == (double *) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'", |
| magnitude_image->filename); |
| return(MagickFalse); |
| } |
| phase=(double *) AcquireQuantumMemory((size_t) fourier_info.height, |
| fourier_info.center*sizeof(*phase)); |
| if (phase == (double *) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'", |
| magnitude_image->filename); |
| magnitude=(double *) RelinquishMagickMemory(magnitude); |
| return(MagickFalse); |
| } |
| fourier=(fftw_complex *) AcquireQuantumMemory((size_t) fourier_info.height, |
| fourier_info.center*sizeof(*fourier)); |
| if (fourier == (fftw_complex *) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'", |
| magnitude_image->filename); |
| phase=(double *) RelinquishMagickMemory(phase); |
| magnitude=(double *) RelinquishMagickMemory(magnitude); |
| return(MagickFalse); |
| } |
| status=InverseFourier(&fourier_info,magnitude_image,phase_image,fourier, |
| exception); |
| if (status != MagickFalse) |
| status=InverseFourierTransform(&fourier_info,fourier,fourier_image, |
| exception); |
| fourier=(fftw_complex *) RelinquishMagickMemory(fourier); |
| phase=(double *) RelinquishMagickMemory(phase); |
| magnitude=(double *) RelinquishMagickMemory(magnitude); |
| return(status); |
| } |
| #endif |
| |
| MagickExport Image *InverseFourierTransformImage(const Image *magnitude_image, |
| const Image *phase_image,const MagickBooleanType modulus, |
| ExceptionInfo *exception) |
| { |
| Image |
| *fourier_image; |
| |
| assert(magnitude_image != (Image *) NULL); |
| assert(magnitude_image->signature == MagickSignature); |
| if (magnitude_image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s", |
| magnitude_image->filename); |
| if (phase_image == (Image *) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(),ImageError, |
| "ImageSequenceRequired","`%s'",magnitude_image->filename); |
| return((Image *) NULL); |
| } |
| #if !defined(MAGICKCORE_FFTW_DELEGATE) |
| fourier_image=(Image *) NULL; |
| (void) modulus; |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| MissingDelegateWarning,"DelegateLibrarySupportNotBuiltIn","`%s' (FFTW)", |
| magnitude_image->filename); |
| #else |
| { |
| fourier_image=CloneImage(magnitude_image,magnitude_image->columns, |
| magnitude_image->rows,MagickFalse,exception); |
| if (fourier_image != (Image *) NULL) |
| { |
| MagickBooleanType |
| is_gray, |
| status; |
| |
| status=MagickTrue; |
| is_gray=IsGrayImage(magnitude_image,exception); |
| if (is_gray != MagickFalse) |
| is_gray=IsGrayImage(phase_image,exception); |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel sections |
| #endif |
| { |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp section |
| #endif |
| { |
| MagickBooleanType |
| thread_status; |
| |
| if (is_gray != MagickFalse) |
| thread_status=InverseFourierTransformChannel(magnitude_image, |
| phase_image,GrayChannels,modulus,fourier_image,exception); |
| else |
| thread_status=InverseFourierTransformChannel(magnitude_image, |
| phase_image,RedChannel,modulus,fourier_image,exception); |
| if (thread_status == MagickFalse) |
| status=thread_status; |
| } |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp section |
| #endif |
| { |
| MagickBooleanType |
| thread_status; |
| |
| thread_status=MagickTrue; |
| if (is_gray == MagickFalse) |
| thread_status=InverseFourierTransformChannel(magnitude_image, |
| phase_image,GreenChannel,modulus,fourier_image,exception); |
| if (thread_status == MagickFalse) |
| status=thread_status; |
| } |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp section |
| #endif |
| { |
| MagickBooleanType |
| thread_status; |
| |
| thread_status=MagickTrue; |
| if (is_gray == MagickFalse) |
| thread_status=InverseFourierTransformChannel(magnitude_image, |
| phase_image,BlueChannel,modulus,fourier_image,exception); |
| if (thread_status == MagickFalse) |
| status=thread_status; |
| } |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp section |
| #endif |
| { |
| MagickBooleanType |
| thread_status; |
| |
| thread_status=MagickTrue; |
| if (magnitude_image->matte != MagickFalse) |
| thread_status=InverseFourierTransformChannel(magnitude_image, |
| phase_image,OpacityChannel,modulus,fourier_image,exception); |
| if (thread_status == MagickFalse) |
| status=thread_status; |
| } |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp section |
| #endif |
| { |
| MagickBooleanType |
| thread_status; |
| |
| thread_status=MagickTrue; |
| if (magnitude_image->colorspace == CMYKColorspace) |
| thread_status=InverseFourierTransformChannel(magnitude_image, |
| phase_image,IndexChannel,modulus,fourier_image,exception); |
| if (thread_status == MagickFalse) |
| status=thread_status; |
| } |
| } |
| if (status == MagickFalse) |
| fourier_image=DestroyImage(fourier_image); |
| } |
| fftw_cleanup(); |
| } |
| #endif |
| return(fourier_image); |
| } |