blob: af697670067e2cf6f873283c37c80387dd5b8378 [file] [log] [blame]
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% EEEEE FFFFF FFFFF EEEEE CCCC TTTTT %
% E F F E C T %
% EEE FFF FFF EEE C T %
% E F F E C T %
% EEEEE F F EEEEE CCCC T %
% %
% %
% MagickCore Image Effects Methods %
% %
% Software Design %
% John Cristy %
% October 1996 %
% %
% %
% Copyright 1999-2012 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% http://www.imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
*/
/*
Include declarations.
*/
#include "MagickCore/studio.h"
#include "MagickCore/accelerate.h"
#include "MagickCore/blob.h"
#include "MagickCore/cache-view.h"
#include "MagickCore/color.h"
#include "MagickCore/color-private.h"
#include "MagickCore/colorspace.h"
#include "MagickCore/constitute.h"
#include "MagickCore/decorate.h"
#include "MagickCore/distort.h"
#include "MagickCore/draw.h"
#include "MagickCore/enhance.h"
#include "MagickCore/exception.h"
#include "MagickCore/exception-private.h"
#include "MagickCore/effect.h"
#include "MagickCore/fx.h"
#include "MagickCore/gem.h"
#include "MagickCore/gem-private.h"
#include "MagickCore/geometry.h"
#include "MagickCore/image-private.h"
#include "MagickCore/list.h"
#include "MagickCore/log.h"
#include "MagickCore/memory_.h"
#include "MagickCore/monitor.h"
#include "MagickCore/monitor-private.h"
#include "MagickCore/montage.h"
#include "MagickCore/morphology.h"
#include "MagickCore/paint.h"
#include "MagickCore/pixel-accessor.h"
#include "MagickCore/property.h"
#include "MagickCore/quantize.h"
#include "MagickCore/quantum.h"
#include "MagickCore/quantum-private.h"
#include "MagickCore/random_.h"
#include "MagickCore/random-private.h"
#include "MagickCore/resample.h"
#include "MagickCore/resample-private.h"
#include "MagickCore/resize.h"
#include "MagickCore/resource_.h"
#include "MagickCore/segment.h"
#include "MagickCore/shear.h"
#include "MagickCore/signature-private.h"
#include "MagickCore/statistic.h"
#include "MagickCore/string_.h"
#include "MagickCore/thread-private.h"
#include "MagickCore/transform.h"
#include "MagickCore/threshold.h"
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% A d a p t i v e B l u r I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% AdaptiveBlurImage() adaptively blurs the image by blurring less
% intensely near image edges and more intensely far from edges. We blur the
% image with a Gaussian operator of the given radius and standard deviation
% (sigma). For reasonable results, radius should be larger than sigma. Use a
% radius of 0 and AdaptiveBlurImage() selects a suitable radius for you.
%
% The format of the AdaptiveBlurImage method is:
%
% Image *AdaptiveBlurImage(const Image *image,const double radius,
% const double sigma,const double bias,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the Gaussian, in pixels, not counting the center
% pixel.
%
% o sigma: the standard deviation of the Laplacian, in pixels.
%
% o bias: the bias.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType AdaptiveLevelImage(Image *image,
const char *levels,ExceptionInfo *exception)
{
double
black_point,
gamma,
white_point;
GeometryInfo
geometry_info;
MagickBooleanType
status;
MagickStatusType
flags;
/*
Parse levels.
*/
if (levels == (char *) NULL)
return(MagickFalse);
flags=ParseGeometry(levels,&geometry_info);
black_point=geometry_info.rho;
white_point=(double) QuantumRange;
if ((flags & SigmaValue) != 0)
white_point=geometry_info.sigma;
gamma=1.0;
if ((flags & XiValue) != 0)
gamma=geometry_info.xi;
if ((flags & PercentValue) != 0)
{
black_point*=(double) image->columns*image->rows/100.0;
white_point*=(double) image->columns*image->rows/100.0;
}
if ((flags & SigmaValue) == 0)
white_point=(double) QuantumRange-black_point;
if ((flags & AspectValue ) == 0)
status=LevelImage(image,black_point,white_point,gamma,exception);
else
status=LevelizeImage(image,black_point,white_point,gamma,exception);
return(status);
}
MagickExport Image *AdaptiveBlurImage(const Image *image,const double radius,
const double sigma,const double bias,ExceptionInfo *exception)
{
#define AdaptiveBlurImageTag "Convolve/Image"
#define MagickSigma (fabs(sigma) <= MagickEpsilon ? 1.0 : sigma)
CacheView
*blur_view,
*edge_view,
*image_view;
double
**kernel,
normalize;
Image
*blur_image,
*edge_image,
*gaussian_image;
MagickBooleanType
status;
MagickOffsetType
progress;
register ssize_t
i;
size_t
width;
ssize_t
j,
k,
u,
v,
y;
assert(image != (const Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
blur_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception);
if (blur_image == (Image *) NULL)
return((Image *) NULL);
if (fabs(sigma) <= MagickEpsilon)
return(blur_image);
if (SetImageStorageClass(blur_image,DirectClass,exception) == MagickFalse)
{
blur_image=DestroyImage(blur_image);
return((Image *) NULL);
}
/*
Edge detect the image brighness channel, level, blur, and level again.
*/
edge_image=EdgeImage(image,radius,sigma,exception);
if (edge_image == (Image *) NULL)
{
blur_image=DestroyImage(blur_image);
return((Image *) NULL);
}
(void) AdaptiveLevelImage(edge_image,"20%,95%",exception);
gaussian_image=GaussianBlurImage(edge_image,radius,sigma,bias,exception);
if (gaussian_image != (Image *) NULL)
{
edge_image=DestroyImage(edge_image);
edge_image=gaussian_image;
}
(void) AdaptiveLevelImage(edge_image,"10%,95%",exception);
/*
Create a set of kernels from maximum (radius,sigma) to minimum.
*/
width=GetOptimalKernelWidth2D(radius,sigma);
kernel=(double **) AcquireQuantumMemory((size_t) width,sizeof(*kernel));
if (kernel == (double **) NULL)
{
edge_image=DestroyImage(edge_image);
blur_image=DestroyImage(blur_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
(void) ResetMagickMemory(kernel,0,(size_t) width*sizeof(*kernel));
for (i=0; i < (ssize_t) width; i+=2)
{
kernel[i]=(double *) AcquireQuantumMemory((size_t) (width-i),(width-i)*
sizeof(**kernel));
if (kernel[i] == (double *) NULL)
break;
normalize=0.0;
j=(ssize_t) (width-i)/2;
k=0;
for (v=(-j); v <= j; v++)
{
for (u=(-j); u <= j; u++)
{
kernel[i][k]=(double) (exp(-((double) u*u+v*v)/(2.0*MagickSigma*
MagickSigma))/(2.0*MagickPI*MagickSigma*MagickSigma));
normalize+=kernel[i][k];
k++;
}
}
if (fabs(normalize) <= MagickEpsilon)
normalize=1.0;
normalize=1.0/normalize;
for (k=0; k < (j*j); k++)
kernel[i][k]=normalize*kernel[i][k];
}
if (i < (ssize_t) width)
{
for (i-=2; i >= 0; i-=2)
kernel[i]=(double *) RelinquishMagickMemory(kernel[i]);
kernel=(double **) RelinquishMagickMemory(kernel);
edge_image=DestroyImage(edge_image);
blur_image=DestroyImage(blur_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
/*
Adaptively blur image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireCacheView(image);
edge_view=AcquireCacheView(edge_image);
blur_view=AcquireCacheView(blur_image);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status)
#endif
for (y=0; y < (ssize_t) blur_image->rows; y++)
{
register const Quantum
*restrict r;
register Quantum
*restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
r=GetCacheViewVirtualPixels(edge_view,0,y,edge_image->columns,1,exception);
q=QueueCacheViewAuthenticPixels(blur_view,0,y,blur_image->columns,1,
exception);
if ((r == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) blur_image->columns; x++)
{
register const Quantum
*restrict p;
register ssize_t
i;
ssize_t
center,
j;
j=(ssize_t) ceil((double) width*QuantumScale*
GetPixelIntensity(edge_image,r)-0.5);
if (j < 0)
j=0;
else
if (j > (ssize_t) width)
j=(ssize_t) width;
if ((j & 0x01) != 0)
j--;
p=GetCacheViewVirtualPixels(image_view,x-((ssize_t) (width-j)/2L),y-
(ssize_t) ((width-j)/2L),width-j,width-j,exception);
if (p == (const Quantum *) NULL)
break;
center=(ssize_t) GetPixelChannels(image)*(width-j)*
((width-j)/2L)+GetPixelChannels(image)*((width-j)/2L);
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
MagickRealType
alpha,
gamma,
pixel;
PixelChannel
channel;
PixelTrait
blur_traits,
traits;
register const double
*restrict k;
register const Quantum
*restrict pixels;
register ssize_t
u;
ssize_t
v;
channel=GetPixelChannelMapChannel(image,i);
traits=GetPixelChannelMapTraits(image,channel);
blur_traits=GetPixelChannelMapTraits(blur_image,channel);
if ((traits == UndefinedPixelTrait) ||
(blur_traits == UndefinedPixelTrait))
continue;
if ((blur_traits & CopyPixelTrait) != 0)
{
SetPixelChannel(blur_image,channel,p[center+i],q);
continue;
}
k=kernel[j];
pixels=p;
pixel=bias;
gamma=0.0;
if ((blur_traits & BlendPixelTrait) == 0)
{
/*
No alpha blending.
*/
for (v=0; v < (ssize_t) (width-j); v++)
{
for (u=0; u < (ssize_t) (width-j); u++)
{
pixel+=(*k)*pixels[i];
gamma+=(*k);
k++;
pixels+=GetPixelChannels(image);
}
}
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q);
continue;
}
/*
Alpha blending.
*/
for (v=0; v < (ssize_t) (width-j); v++)
{
for (u=0; u < (ssize_t) (width-j); u++)
{
alpha=(MagickRealType) (QuantumScale*GetPixelAlpha(image,pixels));
pixel+=(*k)*alpha*pixels[i];
gamma+=(*k)*alpha;
k++;
pixels+=GetPixelChannels(image);
}
}
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q);
}
q+=GetPixelChannels(blur_image);
r+=GetPixelChannels(edge_image);
}
if (SyncCacheViewAuthenticPixels(blur_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_AdaptiveBlurImage)
#endif
proceed=SetImageProgress(image,AdaptiveBlurImageTag,progress++,
image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
blur_image->type=image->type;
blur_view=DestroyCacheView(blur_view);
edge_view=DestroyCacheView(edge_view);
image_view=DestroyCacheView(image_view);
edge_image=DestroyImage(edge_image);
for (i=0; i < (ssize_t) width; i+=2)
kernel[i]=(double *) RelinquishMagickMemory(kernel[i]);
kernel=(double **) RelinquishMagickMemory(kernel);
if (status == MagickFalse)
blur_image=DestroyImage(blur_image);
return(blur_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% A d a p t i v e S h a r p e n I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% AdaptiveSharpenImage() adaptively sharpens the image by sharpening more
% intensely near image edges and less intensely far from edges. We sharpen the
% image with a Gaussian operator of the given radius and standard deviation
% (sigma). For reasonable results, radius should be larger than sigma. Use a
% radius of 0 and AdaptiveSharpenImage() selects a suitable radius for you.
%
% The format of the AdaptiveSharpenImage method is:
%
% Image *AdaptiveSharpenImage(const Image *image,const double radius,
% const double sigma,const double bias,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the Gaussian, in pixels, not counting the center
% pixel.
%
% o sigma: the standard deviation of the Laplacian, in pixels.
%
% o bias: the bias.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *AdaptiveSharpenImage(const Image *image,const double radius,
const double sigma,const double bias,ExceptionInfo *exception)
{
#define AdaptiveSharpenImageTag "Convolve/Image"
#define MagickSigma (fabs(sigma) <= MagickEpsilon ? 1.0 : sigma)
CacheView
*sharp_view,
*edge_view,
*image_view;
double
**kernel,
normalize;
Image
*sharp_image,
*edge_image,
*gaussian_image;
MagickBooleanType
status;
MagickOffsetType
progress;
register ssize_t
i;
size_t
width;
ssize_t
j,
k,
u,
v,
y;
assert(image != (const Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
sharp_image=CloneImage(image,0,0,MagickTrue,exception);
if (sharp_image == (Image *) NULL)
return((Image *) NULL);
if (fabs(sigma) <= MagickEpsilon)
return(sharp_image);
if (SetImageStorageClass(sharp_image,DirectClass,exception) == MagickFalse)
{
sharp_image=DestroyImage(sharp_image);
return((Image *) NULL);
}
/*
Edge detect the image brighness channel, level, sharp, and level again.
*/
edge_image=EdgeImage(image,radius,sigma,exception);
if (edge_image == (Image *) NULL)
{
sharp_image=DestroyImage(sharp_image);
return((Image *) NULL);
}
(void) AdaptiveLevelImage(edge_image,"20%,95%",exception);
gaussian_image=GaussianBlurImage(edge_image,radius,sigma,bias,exception);
if (gaussian_image != (Image *) NULL)
{
edge_image=DestroyImage(edge_image);
edge_image=gaussian_image;
}
(void) AdaptiveLevelImage(edge_image,"10%,95%",exception);
/*
Create a set of kernels from maximum (radius,sigma) to minimum.
*/
width=GetOptimalKernelWidth2D(radius,sigma);
kernel=(double **) AcquireQuantumMemory((size_t) width,sizeof(*kernel));
if (kernel == (double **) NULL)
{
edge_image=DestroyImage(edge_image);
sharp_image=DestroyImage(sharp_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
(void) ResetMagickMemory(kernel,0,(size_t) width*sizeof(*kernel));
for (i=0; i < (ssize_t) width; i+=2)
{
kernel[i]=(double *) AcquireQuantumMemory((size_t) (width-i),(width-i)*
sizeof(**kernel));
if (kernel[i] == (double *) NULL)
break;
normalize=0.0;
j=(ssize_t) (width-i)/2;
k=0;
for (v=(-j); v <= j; v++)
{
for (u=(-j); u <= j; u++)
{
kernel[i][k]=(double) (-exp(-((double) u*u+v*v)/(2.0*MagickSigma*
MagickSigma))/(2.0*MagickPI*MagickSigma*MagickSigma));
normalize+=kernel[i][k];
k++;
}
}
if (fabs(normalize) <= MagickEpsilon)
normalize=1.0;
normalize=1.0/normalize;
for (k=0; k < (j*j); k++)
kernel[i][k]=normalize*kernel[i][k];
}
if (i < (ssize_t) width)
{
for (i-=2; i >= 0; i-=2)
kernel[i]=(double *) RelinquishMagickMemory(kernel[i]);
kernel=(double **) RelinquishMagickMemory(kernel);
edge_image=DestroyImage(edge_image);
sharp_image=DestroyImage(sharp_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
/*
Adaptively sharpen image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireCacheView(image);
edge_view=AcquireCacheView(edge_image);
sharp_view=AcquireCacheView(sharp_image);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status)
#endif
for (y=0; y < (ssize_t) sharp_image->rows; y++)
{
register const Quantum
*restrict r;
register Quantum
*restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
r=GetCacheViewVirtualPixels(edge_view,0,y,edge_image->columns,1,exception);
q=QueueCacheViewAuthenticPixels(sharp_view,0,y,sharp_image->columns,1,
exception);
if ((r == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) sharp_image->columns; x++)
{
register const Quantum
*restrict p;
register ssize_t
i;
ssize_t
center,
j;
j=(ssize_t) ceil((double) width*QuantumScale*
GetPixelIntensity(edge_image,r)-0.5);
if (j < 0)
j=0;
else
if (j > (ssize_t) width)
j=(ssize_t) width;
if ((j & 0x01) != 0)
j--;
p=GetCacheViewVirtualPixels(image_view,x-((ssize_t) (width-j)/2L),y-
(ssize_t) ((width-j)/2L),width-j,width-j,exception);
if (p == (const Quantum *) NULL)
break;
center=(ssize_t) GetPixelChannels(image)*(width-j)*
((width-j)/2L)+GetPixelChannels(image)*((width-j)/2);
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
MagickRealType
alpha,
gamma,
pixel;
PixelChannel
channel;
PixelTrait
sharp_traits,
traits;
register const double
*restrict k;
register const Quantum
*restrict pixels;
register ssize_t
u;
ssize_t
v;
channel=GetPixelChannelMapChannel(image,i);
traits=GetPixelChannelMapTraits(image,channel);
sharp_traits=GetPixelChannelMapTraits(sharp_image,channel);
if ((traits == UndefinedPixelTrait) ||
(sharp_traits == UndefinedPixelTrait))
continue;
if ((sharp_traits & CopyPixelTrait) != 0)
{
SetPixelChannel(sharp_image,channel,p[center+i],q);
continue;
}
k=kernel[j];
pixels=p;
pixel=bias;
gamma=0.0;
if ((sharp_traits & BlendPixelTrait) == 0)
{
/*
No alpha blending.
*/
for (v=0; v < (ssize_t) (width-j); v++)
{
for (u=0; u < (ssize_t) (width-j); u++)
{
pixel+=(*k)*pixels[i];
gamma+=(*k);
k++;
pixels+=GetPixelChannels(image);
}
}
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
SetPixelChannel(sharp_image,channel,ClampToQuantum(gamma*pixel),q);
continue;
}
/*
Alpha blending.
*/
for (v=0; v < (ssize_t) (width-j); v++)
{
for (u=0; u < (ssize_t) (width-j); u++)
{
alpha=(MagickRealType) (QuantumScale*GetPixelAlpha(image,pixels));
pixel+=(*k)*alpha*pixels[i];
gamma+=(*k)*alpha;
k++;
pixels+=GetPixelChannels(image);
}
}
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
SetPixelChannel(sharp_image,channel,ClampToQuantum(gamma*pixel),q);
}
q+=GetPixelChannels(sharp_image);
r+=GetPixelChannels(edge_image);
}
if (SyncCacheViewAuthenticPixels(sharp_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_AdaptiveSharpenImage)
#endif
proceed=SetImageProgress(image,AdaptiveSharpenImageTag,progress++,
image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
sharp_image->type=image->type;
sharp_view=DestroyCacheView(sharp_view);
edge_view=DestroyCacheView(edge_view);
image_view=DestroyCacheView(image_view);
edge_image=DestroyImage(edge_image);
for (i=0; i < (ssize_t) width; i+=2)
kernel[i]=(double *) RelinquishMagickMemory(kernel[i]);
kernel=(double **) RelinquishMagickMemory(kernel);
if (status == MagickFalse)
sharp_image=DestroyImage(sharp_image);
return(sharp_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% B l u r I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% BlurImage() blurs an image. We convolve the image with a Gaussian operator
% of the given radius and standard deviation (sigma). For reasonable results,
% the radius should be larger than sigma. Use a radius of 0 and BlurImage()
% selects a suitable radius for you.
%
% BlurImage() differs from GaussianBlurImage() in that it uses a separable
% kernel which is faster but mathematically equivalent to the non-separable
% kernel.
%
% The format of the BlurImage method is:
%
% Image *BlurImage(const Image *image,const double radius,
% const double sigma,const double bias,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the Gaussian, in pixels, not counting the center
% pixel.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o bias: the bias.
%
% o exception: return any errors or warnings in this structure.
%
*/
static double *GetBlurKernel(const size_t width,const double sigma)
{
double
*kernel,
normalize;
register ssize_t
i;
ssize_t
j,
k;
/*
Generate a 1-D convolution kernel.
*/
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
kernel=(double *) AcquireQuantumMemory((size_t) width,sizeof(*kernel));
if (kernel == (double *) NULL)
return(0);
normalize=0.0;
j=(ssize_t) width/2;
i=0;
for (k=(-j); k <= j; k++)
{
kernel[i]=(double) (exp(-((double) k*k)/(2.0*MagickSigma*MagickSigma))/
(MagickSQ2PI*MagickSigma));
normalize+=kernel[i];
i++;
}
for (i=0; i < (ssize_t) width; i++)
kernel[i]/=normalize;
return(kernel);
}
MagickExport Image *BlurImage(const Image *image,const double radius,
const double sigma,const double bias,ExceptionInfo *exception)
{
#define BlurImageTag "Blur/Image"
CacheView
*blur_view,
*image_view;
double
*kernel;
Image
*blur_image;
MagickBooleanType
status;
MagickOffsetType
progress;
register ssize_t
i;
size_t
width;
ssize_t
center,
x,
y;
/*
Initialize blur image attributes.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
blur_image=CloneImage(image,0,0,MagickTrue,exception);
if (blur_image == (Image *) NULL)
return((Image *) NULL);
if (fabs(sigma) <= MagickEpsilon)
return(blur_image);
if (SetImageStorageClass(blur_image,DirectClass,exception) == MagickFalse)
{
blur_image=DestroyImage(blur_image);
return((Image *) NULL);
}
width=GetOptimalKernelWidth1D(radius,sigma);
kernel=GetBlurKernel(width,sigma);
if (kernel == (double *) NULL)
{
blur_image=DestroyImage(blur_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
if (image->debug != MagickFalse)
{
char
format[MaxTextExtent],
*message;
register const double
*k;
(void) LogMagickEvent(TransformEvent,GetMagickModule(),
" BlurImage with %.20g kernel:",(double) width);
message=AcquireString("");
k=kernel;
for (i=0; i < (ssize_t) width; i++)
{
*message='\0';
(void) FormatLocaleString(format,MaxTextExtent,"%.20g: ",(double) i);
(void) ConcatenateString(&message,format);
(void) FormatLocaleString(format,MaxTextExtent,"%g ",*k++);
(void) ConcatenateString(&message,format);
(void) LogMagickEvent(TransformEvent,GetMagickModule(),"%s",message);
}
message=DestroyString(message);
}
/*
Blur rows.
*/
status=MagickTrue;
progress=0;
center=(ssize_t) GetPixelChannels(image)*(width/2L);
image_view=AcquireCacheView(image);
blur_view=AcquireCacheView(blur_image);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
register const Quantum
*restrict p;
register Quantum
*restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,-((ssize_t) width/2L),y,
image->columns+width,1,exception);
q=GetCacheViewAuthenticPixels(blur_view,0,y,blur_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
MagickRealType
alpha,
gamma,
pixel;
PixelChannel
channel;
PixelTrait
blur_traits,
traits;
register const double
*restrict k;
register const Quantum
*restrict pixels;
register ssize_t
u;
channel=GetPixelChannelMapChannel(image,i);
traits=GetPixelChannelMapTraits(image,channel);
blur_traits=GetPixelChannelMapTraits(blur_image,channel);
if ((traits == UndefinedPixelTrait) ||
(blur_traits == UndefinedPixelTrait))
continue;
if ((blur_traits & CopyPixelTrait) != 0)
{
SetPixelChannel(blur_image,channel,p[center+i],q);
continue;
}
k=kernel;
pixels=p;
pixel=0.0;
if ((blur_traits & BlendPixelTrait) == 0)
{
/*
No alpha blending.
*/
for (u=0; u < (ssize_t) width; u++)
{
pixel+=(*k)*pixels[i];
k++;
pixels+=GetPixelChannels(image);
}
SetPixelChannel(blur_image,channel,ClampToQuantum(pixel),q);
continue;
}
/*
Alpha blending.
*/
gamma=0.0;
for (u=0; u < (ssize_t) width; u++)
{
alpha=(MagickRealType) (QuantumScale*GetPixelAlpha(image,pixels));
pixel+=(*k)*alpha*pixels[i];
gamma+=(*k)*alpha;
k++;
pixels+=GetPixelChannels(image);
}
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q);
}
p+=GetPixelChannels(image);
q+=GetPixelChannels(blur_image);
}
if (SyncCacheViewAuthenticPixels(blur_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_BlurImage)
#endif
proceed=SetImageProgress(image,BlurImageTag,progress++,blur_image->rows+
blur_image->columns);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
blur_view=DestroyCacheView(blur_view);
image_view=DestroyCacheView(image_view);
/*
Blur columns.
*/
image_view=AcquireCacheView(blur_image);
blur_view=AcquireCacheView(blur_image);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status)
#endif
for (x=0; x < (ssize_t) blur_image->columns; x++)
{
register const Quantum
*restrict p;
register Quantum
*restrict q;
register ssize_t
y;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,x,-((ssize_t) width/2L),1,
blur_image->rows+width,exception);
q=GetCacheViewAuthenticPixels(blur_view,x,0,1,blur_image->rows,exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (y=0; y < (ssize_t) blur_image->rows; y++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(blur_image); i++)
{
MagickRealType
alpha,
gamma,
pixel;
PixelChannel
channel;
PixelTrait
blur_traits,
traits;
register const double
*restrict k;
register const Quantum
*restrict pixels;
register ssize_t
u;
channel=GetPixelChannelMapChannel(blur_image,i);
traits=GetPixelChannelMapTraits(blur_image,channel);
blur_traits=GetPixelChannelMapTraits(blur_image,channel);
if ((traits == UndefinedPixelTrait) ||
(blur_traits == UndefinedPixelTrait))
continue;
if ((blur_traits & CopyPixelTrait) != 0)
{
SetPixelChannel(blur_image,channel,p[center+i],q);
continue;
}
k=kernel;
pixels=p;
pixel=0.0;
if ((blur_traits & BlendPixelTrait) == 0)
{
/*
No alpha blending.
*/
for (u=0; u < (ssize_t) width; u++)
{
pixel+=(*k)*pixels[i];
k++;
pixels+=GetPixelChannels(blur_image);
}
SetPixelChannel(blur_image,channel,ClampToQuantum(pixel),q);
continue;
}
/*
Alpha blending.
*/
gamma=0.0;
for (u=0; u < (ssize_t) width; u++)
{
alpha=(MagickRealType) (QuantumScale*GetPixelAlpha(blur_image,
pixels));
pixel+=(*k)*alpha*pixels[i];
gamma+=(*k)*alpha;
k++;
pixels+=GetPixelChannels(blur_image);
}
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q);
}
p+=GetPixelChannels(blur_image);
q+=GetPixelChannels(blur_image);
}
if (SyncCacheViewAuthenticPixels(blur_view,exception) == MagickFalse)
status=MagickFalse;
if (blur_image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_BlurImage)
#endif
proceed=SetImageProgress(blur_image,BlurImageTag,progress++,
blur_image->rows+blur_image->columns);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
blur_view=DestroyCacheView(blur_view);
image_view=DestroyCacheView(image_view);
kernel=(double *) RelinquishMagickMemory(kernel);
if (status == MagickFalse)
blur_image=DestroyImage(blur_image);
blur_image->type=image->type;
return(blur_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% C o n v o l v e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ConvolveImage() applies a custom convolution kernel to the image.
%
% The format of the ConvolveImage method is:
%
% Image *ConvolveImage(const Image *image,const KernelInfo *kernel,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o kernel: the filtering kernel.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *ConvolveImage(const Image *image,
const KernelInfo *kernel_info,ExceptionInfo *exception)
{
#define ConvolveImageTag "Convolve/Image"
CacheView
*convolve_view,
*image_view;
Image
*convolve_image;
MagickBooleanType
status;
MagickOffsetType
progress;
ssize_t
center,
y;
/*
Initialize convolve image attributes.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
if ((kernel_info->width % 2) == 0)
ThrowImageException(OptionError,"KernelWidthMustBeAnOddNumber");
convolve_image=CloneImage(image,image->columns,image->rows,MagickTrue,
exception);
if (convolve_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(convolve_image,DirectClass,exception) == MagickFalse)
{
convolve_image=DestroyImage(convolve_image);
return((Image *) NULL);
}
if (image->debug != MagickFalse)
{
char
format[MaxTextExtent],
*message;
register const MagickRealType
*k;
register ssize_t
u;
ssize_t
v;
(void) LogMagickEvent(TransformEvent,GetMagickModule(),
" ConvolveImage with %.20gx%.20g kernel:",(double) kernel_info->width,
(double) kernel_info->height);
message=AcquireString("");
k=kernel_info->values;
for (v=0; v < (ssize_t) kernel_info->width; v++)
{
*message='\0';
(void) FormatLocaleString(format,MaxTextExtent,"%.20g: ",(double) v);
(void) ConcatenateString(&message,format);
for (u=0; u < (ssize_t) kernel_info->height; u++)
{
(void) FormatLocaleString(format,MaxTextExtent,"%g ",*k++);
(void) ConcatenateString(&message,format);
}
(void) LogMagickEvent(TransformEvent,GetMagickModule(),"%s",message);
}
message=DestroyString(message);
}
status=AccelerateConvolveImage(image,kernel_info,convolve_image,exception);
if (status == MagickTrue)
return(convolve_image);
/*
Convolve image.
*/
center=(ssize_t) GetPixelChannels(image)*(image->columns+kernel_info->width)*
(kernel_info->height/2L)+GetPixelChannels(image)*(kernel_info->width/2L);
status=MagickTrue;
progress=0;
image_view=AcquireCacheView(image);
convolve_view=AcquireCacheView(convolve_image);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
register const Quantum
*restrict p;
register Quantum
*restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,-((ssize_t) kernel_info->width/2L),y-
(ssize_t) (kernel_info->height/2L),image->columns+kernel_info->width,
kernel_info->height,exception);
q=QueueCacheViewAuthenticPixels(convolve_view,0,y,convolve_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
MagickRealType
alpha,
gamma,
pixel;
PixelChannel
channel;
PixelTrait
convolve_traits,
traits;
register const MagickRealType
*restrict k;
register const Quantum
*restrict pixels;
register ssize_t
u;
ssize_t
v;
channel=GetPixelChannelMapChannel(image,i);
traits=GetPixelChannelMapTraits(image,channel);
convolve_traits=GetPixelChannelMapTraits(convolve_image,channel);
if ((traits == UndefinedPixelTrait) ||
(convolve_traits == UndefinedPixelTrait))
continue;
if ((convolve_traits & CopyPixelTrait) != 0)
{
SetPixelChannel(convolve_image,channel,p[center+i],q);
continue;
}
k=kernel_info->values;
pixels=p;
pixel=kernel_info->bias;
if ((convolve_traits & BlendPixelTrait) == 0)
{
/*
No alpha blending.
*/
for (v=0; v < (ssize_t) kernel_info->height; v++)
{
for (u=0; u < (ssize_t) kernel_info->width; u++)
{
pixel+=(*k)*pixels[i];
k++;
pixels+=GetPixelChannels(image);
}
pixels+=image->columns*GetPixelChannels(image);
}
SetPixelChannel(convolve_image,channel,ClampToQuantum(pixel),q);
continue;
}
/*
Alpha blending.
*/
gamma=0.0;
for (v=0; v < (ssize_t) kernel_info->height; v++)
{
for (u=0; u < (ssize_t) kernel_info->width; u++)
{
alpha=(MagickRealType) (QuantumScale*GetPixelAlpha(image,pixels));
pixel+=(*k)*alpha*pixels[i];
gamma+=(*k)*alpha;
k++;
pixels+=GetPixelChannels(image);
}
pixels+=image->columns*GetPixelChannels(image);
}
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
SetPixelChannel(convolve_image,channel,ClampToQuantum(gamma*pixel),q);
}
p+=GetPixelChannels(image);
q+=GetPixelChannels(convolve_image);
}
if (SyncCacheViewAuthenticPixels(convolve_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_ConvolveImage)
#endif
proceed=SetImageProgress(image,ConvolveImageTag,progress++,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
convolve_image->type=image->type;
convolve_view=DestroyCacheView(convolve_view);
image_view=DestroyCacheView(image_view);
if (status == MagickFalse)
convolve_image=DestroyImage(convolve_image);
return(convolve_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% D e s p e c k l e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DespeckleImage() reduces the speckle noise in an image while perserving the
% edges of the original image.
%
% The format of the DespeckleImage method is:
%
% Image *DespeckleImage(const Image *image,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
static void Hull(const ssize_t x_offset,const ssize_t y_offset,
const size_t columns,const size_t rows,Quantum *f,Quantum *g,
const int polarity)
{
MagickRealType
v;
register Quantum
*p,
*q,
*r,
*s;
register ssize_t
x;
ssize_t
y;
assert(f != (Quantum *) NULL);
assert(g != (Quantum *) NULL);
p=f+(columns+2);
q=g+(columns+2);
r=p+(y_offset*((ssize_t) columns+2)+x_offset);
for (y=0; y < (ssize_t) rows; y++)
{
p++;
q++;
r++;
if (polarity > 0)
for (x=(ssize_t) columns; x != 0; x--)
{
v=(MagickRealType) (*p);
if ((MagickRealType) *r >= (v+(MagickRealType) ScaleCharToQuantum(2)))
v+=ScaleCharToQuantum(1);
*q=(Quantum) v;
p++;
q++;
r++;
}
else
for (x=(ssize_t) columns; x != 0; x--)
{
v=(MagickRealType) (*p);
if ((MagickRealType) *r <= (v-(MagickRealType) ScaleCharToQuantum(2)))
v-=(ssize_t) ScaleCharToQuantum(1);
*q=(Quantum) v;
p++;
q++;
r++;
}
p++;
q++;
r++;
}
p=f+(columns+2);
q=g+(columns+2);
r=q+(y_offset*((ssize_t) columns+2)+x_offset);
s=q-(y_offset*((ssize_t) columns+2)+x_offset);
for (y=0; y < (ssize_t) rows; y++)
{
p++;
q++;
r++;
s++;
if (polarity > 0)
for (x=(ssize_t) columns; x != 0; x--)
{
v=(MagickRealType) (*q);
if (((MagickRealType) *s >=
(v+(MagickRealType) ScaleCharToQuantum(2))) &&
((MagickRealType) *r > v))
v+=ScaleCharToQuantum(1);
*p=(Quantum) v;
p++;
q++;
r++;
s++;
}
else
for (x=(ssize_t) columns; x != 0; x--)
{
v=(MagickRealType) (*q);
if (((MagickRealType) *s <=
(v-(MagickRealType) ScaleCharToQuantum(2))) &&
((MagickRealType) *r < v))
v-=(MagickRealType) ScaleCharToQuantum(1);
*p=(Quantum) v;
p++;
q++;
r++;
s++;
}
p++;
q++;
r++;
s++;
}
}
MagickExport Image *DespeckleImage(const Image *image,ExceptionInfo *exception)
{
#define DespeckleImageTag "Despeckle/Image"
CacheView
*despeckle_view,
*image_view;
Image
*despeckle_image;
MagickBooleanType
status;
Quantum
*restrict buffers,
*restrict pixels;
register ssize_t
i;
size_t
length;
static const ssize_t
X[4] = {0, 1, 1,-1},
Y[4] = {1, 0, 1, 1};
/*
Allocate despeckled image.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
despeckle_image=CloneImage(image,0,0,MagickTrue,exception);
if (despeckle_image == (Image *) NULL)
return((Image *) NULL);
status=SetImageStorageClass(despeckle_image,DirectClass,exception);
if (status == MagickFalse)
{
despeckle_image=DestroyImage(despeckle_image);
return((Image *) NULL);
}
/*
Allocate image buffers.
*/
length=(size_t) ((image->columns+2)*(image->rows+2));
pixels=(Quantum *) AcquireQuantumMemory(length,2*sizeof(*pixels));
buffers=(Quantum *) AcquireQuantumMemory(length,2*sizeof(*pixels));
if ((pixels == (Quantum *) NULL) || (buffers == (Quantum *) NULL))
{
if (buffers != (Quantum *) NULL)
buffers=(Quantum *) RelinquishMagickMemory(buffers);
if (pixels != (Quantum *) NULL)
pixels=(Quantum *) RelinquishMagickMemory(pixels);
despeckle_image=DestroyImage(despeckle_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
/*
Reduce speckle in the image.
*/
status=MagickTrue;
image_view=AcquireCacheView(image);
despeckle_view=AcquireCacheView(despeckle_image);
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel
channel;
PixelTrait
despeckle_traits,
traits;
register Quantum
*buffer,
*pixel;
register ssize_t
k,
x;
ssize_t
j,
y;
if (status == MagickFalse)
continue;
channel=GetPixelChannelMapChannel(image,i);
traits=GetPixelChannelMapTraits(image,channel);
despeckle_traits=GetPixelChannelMapTraits(despeckle_image,channel);
if ((traits == UndefinedPixelTrait) ||
(despeckle_traits == UndefinedPixelTrait))
continue;
if ((despeckle_traits & CopyPixelTrait) != 0)
continue;
pixel=pixels;
(void) ResetMagickMemory(pixel,0,length*sizeof(*pixel));
buffer=buffers;
j=(ssize_t) image->columns+2;
for (y=0; y < (ssize_t) image->rows; y++)
{
register const Quantum
*restrict p;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
continue;
}
j++;
for (x=0; x < (ssize_t) image->columns; x++)
{
pixel[j++]=p[i];
p+=GetPixelChannels(image);
}
j++;
}
(void) ResetMagickMemory(buffer,0,length*sizeof(*buffer));
for (k=0; k < 4; k++)
{
Hull(X[k],Y[k],image->columns,image->rows,pixel,buffer,1);
Hull(-X[k],-Y[k],image->columns,image->rows,pixel,buffer,1);
Hull(-X[k],-Y[k],image->columns,image->rows,pixel,buffer,-1);
Hull(X[k],Y[k],image->columns,image->rows,pixel,buffer,-1);
}
j=(ssize_t) image->columns+2;
for (y=0; y < (ssize_t) image->rows; y++)
{
MagickBooleanType
sync;
register Quantum
*restrict q;
q=GetCacheViewAuthenticPixels(despeckle_view,0,y,despeckle_image->columns,
1,exception);
if (q == (Quantum *) NULL)
{
status=MagickFalse;
continue;
}
j++;
for (x=0; x < (ssize_t) image->columns; x++)
{
SetPixelChannel(despeckle_image,channel,pixel[j++],q);
q+=GetPixelChannels(despeckle_image);
}
sync=SyncCacheViewAuthenticPixels(despeckle_view,exception);
if (sync == MagickFalse)
status=MagickFalse;
j++;
}
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
proceed=SetImageProgress(image,DespeckleImageTag,(MagickOffsetType) i,
GetPixelChannels(image));
if (proceed == MagickFalse)
status=MagickFalse;
}
}
despeckle_view=DestroyCacheView(despeckle_view);
image_view=DestroyCacheView(image_view);
buffers=(Quantum *) RelinquishMagickMemory(buffers);
pixels=(Quantum *) RelinquishMagickMemory(pixels);
despeckle_image->type=image->type;
if (status == MagickFalse)
despeckle_image=DestroyImage(despeckle_image);
return(despeckle_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% E d g e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% EdgeImage() finds edges in an image. Radius defines the radius of the
% convolution filter. Use a radius of 0 and EdgeImage() selects a suitable
% radius for you.
%
% The format of the EdgeImage method is:
%
% Image *EdgeImage(const Image *image,const double radius,
% const double sigma,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the pixel neighborhood.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *EdgeImage(const Image *image,const double radius,
const double sigma,ExceptionInfo *exception)
{
Image
*edge_image;
KernelInfo
*kernel_info;
register ssize_t
i;
size_t
width;
ssize_t
j,
u,
v;
assert(image != (const Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
width=GetOptimalKernelWidth1D(radius,sigma);
kernel_info=AcquireKernelInfo((const char *) NULL);
if (kernel_info == (KernelInfo *) NULL)
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
kernel_info->width=width;
kernel_info->height=width;
kernel_info->values=(MagickRealType *) AcquireAlignedMemory(
kernel_info->width,kernel_info->width*sizeof(*kernel_info->values));
if (kernel_info->values == (MagickRealType *) NULL)
{
kernel_info=DestroyKernelInfo(kernel_info);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
j=(ssize_t) kernel_info->width/2;
i=0;
for (v=(-j); v <= j; v++)
{
for (u=(-j); u <= j; u++)
{
kernel_info->values[i]=(-1.0);
i++;
}
}
kernel_info->values[i/2]=(double) (width*width-1.0);
kernel_info->bias=image->bias; /* FUTURE: User bias on a edge image? */
edge_image=ConvolveImage(image,kernel_info,exception);
kernel_info=DestroyKernelInfo(kernel_info);
return(edge_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% E m b o s s I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% EmbossImage() returns a grayscale image with a three-dimensional effect.
% We convolve the image with a Gaussian operator of the given radius and
% standard deviation (sigma). For reasonable results, radius should be
% larger than sigma. Use a radius of 0 and Emboss() selects a suitable
% radius for you.
%
% The format of the EmbossImage method is:
%
% Image *EmbossImage(const Image *image,const double radius,
% const double sigma,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the pixel neighborhood.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *EmbossImage(const Image *image,const double radius,
const double sigma,ExceptionInfo *exception)
{
Image
*emboss_image;
KernelInfo
*kernel_info;
register ssize_t
i;
size_t
width;
ssize_t
j,
k,
u,
v;
assert(image != (const Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
width=GetOptimalKernelWidth1D(radius,sigma);
kernel_info=AcquireKernelInfo((const char *) NULL);
if (kernel_info == (KernelInfo *) NULL)
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
kernel_info->width=width;
kernel_info->height=width;
kernel_info->values=(MagickRealType *) AcquireAlignedMemory(
kernel_info->width,kernel_info->width*sizeof(*kernel_info->values));
if (kernel_info->values == (MagickRealType *) NULL)
{
kernel_info=DestroyKernelInfo(kernel_info);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
j=(ssize_t) kernel_info->width/2;
k=j;
i=0;
for (v=(-j); v <= j; v++)
{
for (u=(-j); u <= j; u++)
{
kernel_info->values[i]=(double) (((u < 0) || (v < 0) ? -8.0 : 8.0)*
exp(-((double) u*u+v*v)/(2.0*MagickSigma*MagickSigma))/
(2.0*MagickPI*MagickSigma*MagickSigma));
if (u != k)
kernel_info->values[i]=0.0;
i++;
}
k--;
}
kernel_info->bias=image->bias; /* FUTURE: user bias on an edge image */
emboss_image=ConvolveImage(image,kernel_info,exception);
kernel_info=DestroyKernelInfo(kernel_info);
if (emboss_image != (Image *) NULL)
(void) EqualizeImage(emboss_image,exception);
return(emboss_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G a u s s i a n B l u r I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GaussianBlurImage() blurs an image. We convolve the image with a
% Gaussian operator of the given radius and standard deviation (sigma).
% For reasonable results, the radius should be larger than sigma. Use a
% radius of 0 and GaussianBlurImage() selects a suitable radius for you
%
% The format of the GaussianBlurImage method is:
%
% Image *GaussianBlurImage(const Image *image,onst double radius,
% const double sigma,const double bias,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the Gaussian, in pixels, not counting the center
% pixel.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o bias: the bias.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *GaussianBlurImage(const Image *image,const double radius,
const double sigma,const double bias,ExceptionInfo *exception)
{
Image
*blur_image;
KernelInfo
*kernel_info;
register ssize_t
i;
size_t
width;
ssize_t
j,
u,
v;
assert(image != (const Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
width=GetOptimalKernelWidth2D(radius,sigma);
kernel_info=AcquireKernelInfo((const char *) NULL);
if (kernel_info == (KernelInfo *) NULL)
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
(void) ResetMagickMemory(kernel_info,0,sizeof(*kernel_info));
kernel_info->width=width;
kernel_info->height=width;
kernel_info->bias=bias; /* FUTURE: user bias on Gaussian Blur! non-sense */
kernel_info->signature=MagickSignature;
kernel_info->values=(MagickRealType *) AcquireAlignedMemory(
kernel_info->width,kernel_info->width*sizeof(*kernel_info->values));
if (kernel_info->values == (MagickRealType *) NULL)
{
kernel_info=DestroyKernelInfo(kernel_info);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
j=(ssize_t) kernel_info->width/2;
i=0;
for (v=(-j); v <= j; v++)
{
for (u=(-j); u <= j; u++)
{
kernel_info->values[i]=(double) (exp(-((double) u*u+v*v)/(2.0*
MagickSigma*MagickSigma))/(2.0*MagickPI*MagickSigma*MagickSigma));
i++;
}
}
blur_image=ConvolveImage(image,kernel_info,exception);
kernel_info=DestroyKernelInfo(kernel_info);
return(blur_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% M o t i o n B l u r I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% MotionBlurImage() simulates motion blur. We convolve the image with a
% Gaussian operator of the given radius and standard deviation (sigma).
% For reasonable results, radius should be larger than sigma. Use a
% radius of 0 and MotionBlurImage() selects a suitable radius for you.
% Angle gives the angle of the blurring motion.
%
% Andrew Protano contributed this effect.
%
% The format of the MotionBlurImage method is:
%
% Image *MotionBlurImage(const Image *image,const double radius,
% const double sigma,const double angle,const double bias,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the Gaussian, in pixels, not counting
% the center pixel.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o angle: Apply the effect along this angle.
%
% o bias: the bias.
%
% o exception: return any errors or warnings in this structure.
%
*/
static double *GetMotionBlurKernel(const size_t width,const double sigma)
{
double
*kernel,
normalize;
register ssize_t
i;
/*
Generate a 1-D convolution kernel.
*/
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
kernel=(double *) AcquireQuantumMemory((size_t) width,sizeof(*kernel));
if (kernel == (double *) NULL)
return(kernel);
normalize=0.0;
for (i=0; i < (ssize_t) width; i++)
{
kernel[i]=(double) (exp((-((double) i*i)/(double) (2.0*MagickSigma*
MagickSigma)))/(MagickSQ2PI*MagickSigma));
normalize+=kernel[i];
}
for (i=0; i < (ssize_t) width; i++)
kernel[i]/=normalize;
return(kernel);
}
MagickExport Image *MotionBlurImage(const Image *image,const double radius,
const double sigma,const double angle,const double bias,
ExceptionInfo *exception)
{
CacheView
*blur_view,
*image_view;
double
*kernel;
Image
*blur_image;
MagickBooleanType
status;
MagickOffsetType
progress;
OffsetInfo
*offset;
PointInfo
point;
register ssize_t
i;
size_t
width;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
width=GetOptimalKernelWidth1D(radius,sigma);
kernel=GetMotionBlurKernel(width,sigma);
if (kernel == (double *) NULL)
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
offset=(OffsetInfo *) AcquireQuantumMemory(width,sizeof(*offset));
if (offset == (OffsetInfo *) NULL)
{
kernel=(double *) RelinquishMagickMemory(kernel);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
blur_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception);
if (blur_image == (Image *) NULL)
{
kernel=(double *) RelinquishMagickMemory(kernel);
offset=(OffsetInfo *) RelinquishMagickMemory(offset);
return((Image *) NULL);
}
if (SetImageStorageClass(blur_image,DirectClass,exception) == MagickFalse)
{
kernel=(double *) RelinquishMagickMemory(kernel);
offset=(OffsetInfo *) RelinquishMagickMemory(offset);
blur_image=DestroyImage(blur_image);
return((Image *) NULL);
}
point.x=(double) width*sin(DegreesToRadians(angle));
point.y=(double) width*cos(DegreesToRadians(angle));
for (i=0; i < (ssize_t) width; i++)
{
offset[i].x=(ssize_t) ceil((double) (i*point.y)/hypot(point.x,point.y)-0.5);
offset[i].y=(ssize_t) ceil((double) (i*point.x)/hypot(point.x,point.y)-0.5);
}
/*
Motion blur image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireCacheView(image);
blur_view=AcquireCacheView(blur_image);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,1) shared(progress,status)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
register const Quantum
*restrict p;
register Quantum
*restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(blur_view,0,y,image->columns,1,exception);
q=GetCacheViewAuthenticPixels(blur_view,0,y,blur_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
MagickRealType
alpha,
gamma,
pixel;
PixelChannel
channel;
PixelTrait
blur_traits,
traits;
register const Quantum
*restrict r;
register double
*restrict k;
register ssize_t
j;
channel=GetPixelChannelMapChannel(image,i);
traits=GetPixelChannelMapTraits(image,channel);
blur_traits=GetPixelChannelMapTraits(blur_image,channel);
if ((traits == UndefinedPixelTrait) ||
(blur_traits == UndefinedPixelTrait))
continue;
if ((blur_traits & CopyPixelTrait) != 0)
{
SetPixelChannel(blur_image,channel,p[i],q);
continue;
}
k=kernel;
pixel=bias;
if ((blur_traits & BlendPixelTrait) == 0)
{
for (j=0; j < (ssize_t) width; j++)
{
r=GetCacheViewVirtualPixels(image_view,x+offset[j].x,y+
offset[j].y,1,1,exception);
if (r == (const Quantum *) NULL)
{
status=MagickFalse;
continue;
}
pixel+=(*k)*r[i];
k++;
}
SetPixelChannel(blur_image,channel,ClampToQuantum(pixel),q);
continue;
}
alpha=0.0;
gamma=0.0;
for (j=0; j < (ssize_t) width; j++)
{
r=GetCacheViewVirtualPixels(image_view,x+offset[j].x,y+offset[j].y,1,
1,exception);
if (r == (const Quantum *) NULL)
{
status=MagickFalse;
continue;
}
alpha=(MagickRealType) (QuantumScale*GetPixelAlpha(image,r));
pixel+=(*k)*alpha*r[i];
gamma+=(*k)*alpha;
k++;
}
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q);
}
p+=GetPixelChannels(image);
q+=GetPixelChannels(blur_image);
}
if (SyncCacheViewAuthenticPixels(blur_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_MotionBlurImage)
#endif
proceed=SetImageProgress(image,BlurImageTag,progress++,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
blur_view=DestroyCacheView(blur_view);
image_view=DestroyCacheView(image_view);
kernel=(double *) RelinquishMagickMemory(kernel);
offset=(OffsetInfo *) RelinquishMagickMemory(offset);
if (status == MagickFalse)
blur_image=DestroyImage(blur_image);
return(blur_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% P r e v i e w I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% PreviewImage() tiles 9 thumbnails of the specified image with an image
% processing operation applied with varying parameters. This may be helpful
% pin-pointing an appropriate parameter for a particular image processing
% operation.
%
% The format of the PreviewImages method is:
%
% Image *PreviewImages(const Image *image,const PreviewType preview,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o preview: the image processing operation.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *PreviewImage(const Image *image,const PreviewType preview,
ExceptionInfo *exception)
{
#define NumberTiles 9
#define PreviewImageTag "Preview/Image"
#define DefaultPreviewGeometry "204x204+10+10"
char
factor[MaxTextExtent],
label[MaxTextExtent];
double
degrees,
gamma,
percentage,
radius,
sigma,
threshold;
Image
*images,
*montage_image,
*preview_image,
*thumbnail;
ImageInfo
*preview_info;
MagickBooleanType
proceed;
MontageInfo
*montage_info;
QuantizeInfo
quantize_info;
RectangleInfo
geometry;
register ssize_t
i,
x;
size_t
colors;
ssize_t
y;
/*
Open output image file.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
colors=2;
degrees=0.0;
gamma=(-0.2f);
preview_info=AcquireImageInfo();
SetGeometry(image,&geometry);
(void) ParseMetaGeometry(DefaultPreviewGeometry,&geometry.x,&geometry.y,
&geometry.width,&geometry.height);
images=NewImageList();
percentage=12.5;
GetQuantizeInfo(&quantize_info);
radius=0.0;
sigma=1.0;
threshold=0.0;
x=0;
y=0;
for (i=0; i < NumberTiles; i++)
{
thumbnail=ThumbnailImage(image,geometry.width,geometry.height,exception);
if (thumbnail == (Image *) NULL)
break;
(void) SetImageProgressMonitor(thumbnail,(MagickProgressMonitor) NULL,
(void *) NULL);
(void) SetImageProperty(thumbnail,"label",DefaultTileLabel,exception);
if (i == (NumberTiles/2))
{
(void) QueryColorCompliance("#dfdfdf",AllCompliance,
&thumbnail->matte_color,exception);
AppendImageToList(&images,thumbnail);
continue;
}
switch (preview)
{
case RotatePreview:
{
degrees+=45.0;
preview_image=RotateImage(thumbnail,degrees,exception);
(void) FormatLocaleString(label,MaxTextExtent,"rotate %g",degrees);
break;
}
case ShearPreview:
{
degrees+=5.0;
preview_image=ShearImage(thumbnail,degrees,degrees,exception);
(void) FormatLocaleString(label,MaxTextExtent,"shear %gx%g",
degrees,2.0*degrees);
break;
}
case RollPreview:
{
x=(ssize_t) ((i+1)*thumbnail->columns)/NumberTiles;
y=(ssize_t) ((i+1)*thumbnail->rows)/NumberTiles;
preview_image=RollImage(thumbnail,x,y,exception);
(void) FormatLocaleString(label,MaxTextExtent,"roll %+.20gx%+.20g",
(double) x,(double) y);
break;
}
case HuePreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
(void) FormatLocaleString(factor,MaxTextExtent,"100,100,%g",
2.0*percentage);
(void) ModulateImage(preview_image,factor,exception);
(void) FormatLocaleString(label,MaxTextExtent,"modulate %s",factor);
break;
}
case SaturationPreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
(void) FormatLocaleString(factor,MaxTextExtent,"100,%g",
2.0*percentage);
(void) ModulateImage(preview_image,factor,exception);
(void) FormatLocaleString(label,MaxTextExtent,"modulate %s",factor);
break;
}
case BrightnessPreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
(void) FormatLocaleString(factor,MaxTextExtent,"%g",2.0*percentage);
(void) ModulateImage(preview_image,factor,exception);
(void) FormatLocaleString(label,MaxTextExtent,"modulate %s",factor);
break;
}
case GammaPreview:
default:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
gamma+=0.4f;
(void) GammaImage(preview_image,gamma,exception);
(void) FormatLocaleString(label,MaxTextExtent,"gamma %g",gamma);
break;
}
case SpiffPreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image != (Image *) NULL)
for (x=0; x < i; x++)
(void) ContrastImage(preview_image,MagickTrue,exception);
(void) FormatLocaleString(label,MaxTextExtent,"contrast (%.20g)",
(double) i+1);
break;
}
case DullPreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
for (x=0; x < i; x++)
(void) ContrastImage(preview_image,MagickFalse,exception);
(void) FormatLocaleString(label,MaxTextExtent,"+contrast (%.20g)",
(double) i+1);
break;
}
case GrayscalePreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
colors<<=1;
quantize_info.number_colors=colors;
quantize_info.colorspace=GRAYColorspace;
(void) QuantizeImage(&quantize_info,preview_image,exception);
(void) FormatLocaleString(label,MaxTextExtent,
"-colorspace gray -colors %.20g",(double) colors);
break;
}
case QuantizePreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
colors<<=1;
quantize_info.number_colors=colors;
(void) QuantizeImage(&quantize_info,preview_image,exception);
(void) FormatLocaleString(label,MaxTextExtent,"colors %.20g",(double)
colors);
break;
}
case DespecklePreview:
{
for (x=0; x < (i-1); x++)
{
preview_image=DespeckleImage(thumbnail,exception);
if (preview_image == (Image *) NULL)
break;
thumbnail=DestroyImage(thumbnail);
thumbnail=preview_image;
}
preview_image=DespeckleImage(thumbnail,exception);
if (preview_image == (Image *) NULL)
break;
(void) FormatLocaleString(label,MaxTextExtent,"despeckle (%.20g)",
(double) i+1);
break;
}
case ReduceNoisePreview:
{
preview_image=StatisticImage(thumbnail,NonpeakStatistic,(size_t) radius,
(size_t) radius,exception);
(void) FormatLocaleString(label,MaxTextExtent,"noise %g",radius);
break;
}
case AddNoisePreview:
{
switch ((int) i)
{
case 0:
{
(void) CopyMagickString(factor,"uniform",MaxTextExtent);
break;
}
case 1:
{
(void) CopyMagickString(factor,"gaussian",MaxTextExtent);
break;
}
case 2:
{
(void) CopyMagickString(factor,"multiplicative",MaxTextExtent);
break;
}
case 3:
{
(void) CopyMagickString(factor,"impulse",MaxTextExtent);
break;
}
case 4:
{
(void) CopyMagickString(factor,"laplacian",MaxTextExtent);
break;
}
case 5:
{
(void) CopyMagickString(factor,"Poisson",MaxTextExtent);
break;
}
default:
{
(void) CopyMagickString(thumbnail->magick,"NULL",MaxTextExtent);
break;
}
}
preview_image=StatisticImage(thumbnail,NonpeakStatistic,(size_t) i,
(size_t) i,exception);
(void) FormatLocaleString(label,MaxTextExtent,"+noise %s",factor);
break;
}
case SharpenPreview:
{
/* FUTURE: user bias on sharpen! This is non-sensical! */
preview_image=SharpenImage(thumbnail,radius,sigma,image->bias,
exception);
(void) FormatLocaleString(label,MaxTextExtent,"sharpen %gx%g",
radius,sigma);
break;
}
case BlurPreview:
{
/* FUTURE: user bias on blur! This is non-sensical! */
preview_image=BlurImage(thumbnail,radius,sigma,image->bias,exception);
(void) FormatLocaleString(label,MaxTextExtent,"blur %gx%g",radius,
sigma);
break;
}
case ThresholdPreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
(void) BilevelImage(thumbnail,(double) (percentage*((MagickRealType)
QuantumRange+1.0))/100.0,exception);
(void) FormatLocaleString(label,MaxTextExtent,"threshold %g",
(double) (percentage*((MagickRealType) QuantumRange+1.0))/100.0);
break;
}
case EdgeDetectPreview:
{
preview_image=EdgeImage(thumbnail,radius,sigma,exception);
(void) FormatLocaleString(label,MaxTextExtent,"edge %g",radius);
break;
}
case SpreadPreview:
{
preview_image=SpreadImage(thumbnail,radius,thumbnail->interpolate,
exception);
(void) FormatLocaleString(label,MaxTextExtent,"spread %g",
radius+0.5);
break;
}
case SolarizePreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
(void) SolarizeImage(preview_image,(double) QuantumRange*
percentage/100.0,exception);
(void) FormatLocaleString(label,MaxTextExtent,"solarize %g",
(QuantumRange*percentage)/100.0);
break;
}
case ShadePreview:
{
degrees+=10.0;
preview_image=ShadeImage(thumbnail,MagickTrue,degrees,degrees,
exception);
(void) FormatLocaleString(label,MaxTextExtent,"shade %gx%g",
degrees,degrees);
break;
}
case RaisePreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
geometry.width=(size_t) (2*i+2);
geometry.height=(size_t) (2*i+2);
geometry.x=i/2;
geometry.y=i/2;
(void) RaiseImage(preview_image,&geometry,MagickTrue,exception);
(void) FormatLocaleString(label,MaxTextExtent,
"raise %.20gx%.20g%+.20g%+.20g",(double) geometry.width,(double)
geometry.height,(double) geometry.x,(double) geometry.y);
break;
}
case SegmentPreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
threshold+=0.4f;
(void) SegmentImage(preview_image,RGBColorspace,MagickFalse,threshold,
threshold,exception);
(void) FormatLocaleString(label,MaxTextExtent,"segment %gx%g",
threshold,threshold);
break;
}
case SwirlPreview:
{
preview_image=SwirlImage(thumbnail,degrees,image->interpolate,
exception);
(void) FormatLocaleString(label,MaxTextExtent,"swirl %g",degrees);
degrees+=45.0;
break;
}
case ImplodePreview:
{
degrees+=0.1f;
preview_image=ImplodeImage(thumbnail,degrees,image->interpolate,
exception);
(void) FormatLocaleString(label,MaxTextExtent,"implode %g",degrees);
break;
}
case WavePreview:
{
degrees+=5.0f;
preview_image=WaveImage(thumbnail,0.5*degrees,2.0*degrees,
image->interpolate,exception);
(void) FormatLocaleString(label,MaxTextExtent,"wave %gx%g",
0.5*degrees,2.0*degrees);
break;
}
case OilPaintPreview:
{
preview_image=OilPaintImage(thumbnail,(double) radius,(double) sigma,
exception);
(void) FormatLocaleString(label,MaxTextExtent,"charcoal %gx%g",
radius,sigma);
break;
}
case CharcoalDrawingPreview:
{
/* FUTURE: user bias on charcoal! This is non-sensical! */
preview_image=CharcoalImage(thumbnail,(double) radius,(double) sigma,
image->bias,exception);
(void) FormatLocaleString(label,MaxTextExtent,"charcoal %gx%g",
radius,sigma);
break;
}
case JPEGPreview:
{
char
filename[MaxTextExtent];
int
file;
MagickBooleanType
status;
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
preview_info->quality=(size_t) percentage;
(void) FormatLocaleString(factor,MaxTextExtent,"%.20g",(double)
preview_info->quality);
file=AcquireUniqueFileResource(filename);
if (file != -1)
file=close(file)-1;
(void) FormatLocaleString(preview_image->filename,MaxTextExtent,
"jpeg:%s",filename);
status=WriteImage(preview_info,preview_image,exception);
if (status != MagickFalse)
{
Image
*quality_image;
(void) CopyMagickString(preview_info->filename,
preview_image->filename,MaxTextExtent);
quality_image=ReadImage(preview_info,exception);
if (quality_image != (Image *) NULL)
{
preview_image=DestroyImage(preview_image);
preview_image=quality_image;
}
}
(void) RelinquishUniqueFileResource(preview_image->filename);
if ((GetBlobSize(preview_image)/1024) >= 1024)
(void) FormatLocaleString(label,MaxTextExtent,"quality %s\n%gmb ",
factor,(double) ((MagickOffsetType) GetBlobSize(preview_image))/
1024.0/1024.0);
else
if (GetBlobSize(preview_image) >= 1024)
(void) FormatLocaleString(label,MaxTextExtent,
"quality %s\n%gkb ",factor,(double) ((MagickOffsetType)
GetBlobSize(preview_image))/1024.0);
else
(void) FormatLocaleString(label,MaxTextExtent,"quality %s\n%.20gb ",
factor,(double) ((MagickOffsetType) GetBlobSize(thumbnail)));
break;
}
}
thumbnail=DestroyImage(thumbnail);
percentage+=12.5;
radius+=0.5;
sigma+=0.25;
if (preview_image == (Image *) NULL)
break;
(void) DeleteImageProperty(preview_image,"label");
(void) SetImageProperty(preview_image,"label",label,exception);
AppendImageToList(&images,preview_image);
proceed=SetImageProgress(image,PreviewImageTag,(MagickOffsetType) i,
NumberTiles);
if (proceed == MagickFalse)
break;
}
if (images == (Image *) NULL)
{
preview_info=DestroyImageInfo(preview_info);
return((Image *) NULL);
}
/*
Create the montage.
*/
montage_info=CloneMontageInfo(preview_info,(MontageInfo *) NULL);
(void) CopyMagickString(montage_info->filename,image->filename,MaxTextExtent);
montage_info->shadow=MagickTrue;
(void) CloneString(&montage_info->tile,"3x3");
(void) CloneString(&montage_info->geometry,DefaultPreviewGeometry);
(void) CloneString(&montage_info->frame,DefaultTileFrame);
montage_image=MontageImages(images,montage_info,exception);
montage_info=DestroyMontageInfo(montage_info);
images=DestroyImageList(images);
if (montage_image == (Image *) NULL)
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
if (montage_image->montage != (char *) NULL)
{
/*
Free image directory.
*/
montage_image->montage=(char *) RelinquishMagickMemory(
montage_image->montage);
if (image->directory != (char *) NULL)
montage_image->directory=(char *) RelinquishMagickMemory(
montage_image->directory);
}
preview_info=DestroyImageInfo(preview_info);
return(montage_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% R a d i a l B l u r I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% RadialBlurImage() applies a radial blur to the image.
%
% Andrew Protano contributed this effect.
%
% The format of the RadialBlurImage method is:
%
% Image *RadialBlurImage(const Image *image,const double angle,
% const double blur,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o angle: the angle of the radial blur.
%
% o blur: the blur.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *RadialBlurImage(const Image *image,const double angle,
const double bias,ExceptionInfo *exception)
{
CacheView
*blur_view,
*image_view;
Image
*blur_image;
MagickBooleanType
status;
MagickOffsetType
progress;
MagickRealType
blur_radius,
*cos_theta,
offset,
*sin_theta,
theta;
PointInfo
blur_center;
register ssize_t
i;
size_t
n;
ssize_t
y;
/*
Allocate blur image.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
blur_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception);
if (blur_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(blur_image,DirectClass,exception) == MagickFalse)
{
blur_image=DestroyImage(blur_image);
return((Image *) NULL);
}
blur_center.x=(double) image->columns/2.0;
blur_center.y=(double) image->rows/2.0;
blur_radius=hypot(blur_center.x,blur_center.y);
n=(size_t) fabs(4.0*DegreesToRadians(angle)*sqrt((double) blur_radius)+2UL);
theta=DegreesToRadians(angle)/(MagickRealType) (n-1);
cos_theta=(MagickRealType *) AcquireQuantumMemory((size_t) n,
sizeof(*cos_theta));
sin_theta=(MagickRealType *) AcquireQuantumMemory((size_t) n,
sizeof(*sin_theta));
if ((cos_theta == (MagickRealType *) NULL) ||
(sin_theta == (MagickRealType *) NULL))
{
blur_image=DestroyImage(blur_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
offset=theta*(MagickRealType) (n-1)/2.0;
for (i=0; i < (ssize_t) n; i++)
{
cos_theta[i]=cos((double) (theta*i-offset));
sin_theta[i]=sin((double) (theta*i-offset));
}
/*
Radial blur image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireCacheView(image);
blur_view=AcquireCacheView(blur_image);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
register const Quantum
*restrict p;
register Quantum
*restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(blur_view,0,y,image->columns,1,exception);
q=GetCacheViewAuthenticPixels(blur_view,0,y,blur_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
MagickRealType
radius;
PointInfo
center;
register ssize_t
i;
size_t
step;
center.x=(double) x-blur_center.x;
center.y=(double) y-blur_center.y;
radius=hypot((double) center.x,center.y);
if (radius == 0)
step=1;
else
{
step=(size_t) (blur_radius/radius);
if (step == 0)
step=1;
else
if (step >= n)
step=n-1;
}
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
MagickRealType
gamma,
pixel;
PixelChannel
channel;
PixelTrait
blur_traits,
traits;
register const Quantum
*restrict r;
register ssize_t
j;
channel=GetPixelChannelMapChannel(image,i);
traits=GetPixelChannelMapTraits(image,channel);
blur_traits=GetPixelChannelMapTraits(blur_image,channel);
if ((traits == UndefinedPixelTrait) ||
(blur_traits == UndefinedPixelTrait))
continue;
if ((blur_traits & CopyPixelTrait) != 0)
{
SetPixelChannel(blur_image,channel,p[i],q);
continue;
}
gamma=0.0;
pixel=bias;
if ((blur_traits & BlendPixelTrait) == 0)
{
for (j=0; j < (ssize_t) n; j+=(ssize_t) step)
{
r=GetCacheViewVirtualPixels(image_view, (ssize_t) (blur_center.x+
center.x*cos_theta[j]-center.y*sin_theta[j]+0.5),(ssize_t)
(blur_center.y+center.x*sin_theta[j]+center.y*cos_theta[j]+0.5),
1,1,exception);
if (r == (const Quantum *) NULL)
{
status=MagickFalse;
continue;
}
pixel+=r[i];
gamma++;
}
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q);
continue;
}
for (j=0; j < (ssize_t) n; j+=(ssize_t) step)
{
r=GetCacheViewVirtualPixels(image_view, (ssize_t) (blur_center.x+
center.x*cos_theta[j]-center.y*sin_theta[j]+0.5),(ssize_t)
(blur_center.y+center.x*sin_theta[j]+center.y*cos_theta[j]+0.5),
1,1,exception);
if (r == (const Quantum *) NULL)
{
status=MagickFalse;
continue;
}
pixel+=GetPixelAlpha(image,r)*r[i];
gamma+=GetPixelAlpha(image,r);
}
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q);
}
p+=GetPixelChannels(image);
q+=GetPixelChannels(blur_image);
}
if (SyncCacheViewAuthenticPixels(blur_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_RadialBlurImage)
#endif
proceed=SetImageProgress(image,BlurImageTag,progress++,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
blur_view=DestroyCacheView(blur_view);
image_view=DestroyCacheView(image_view);
cos_theta=(MagickRealType *) RelinquishMagickMemory(cos_theta);
sin_theta=(MagickRealType *) RelinquishMagickMemory(sin_theta);
if (status == MagickFalse)
blur_image=DestroyImage(blur_image);
return(blur_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S e l e c t i v e B l u r I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SelectiveBlurImage() selectively blur pixels within a contrast threshold.
% It is similar to the unsharpen mask that sharpens everything with contrast
% above a certain threshold.
%
% The format of the SelectiveBlurImage method is:
%
% Image *SelectiveBlurImage(const Image *image,const double radius,
% const double sigma,const double threshold,const double bias,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the Gaussian, in pixels, not counting the center
% pixel.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o threshold: only pixels within this contrast threshold are included
% in the blur operation.
%
% o bias: the bias.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *SelectiveBlurImage(const Image *image,const double radius,
const double sigma,const double threshold,const double bias,
ExceptionInfo *exception)
{
#define SelectiveBlurImageTag "SelectiveBlur/Image"
CacheView
*blur_view,
*image_view;
double
*kernel;
Image
*blur_image;
MagickBooleanType
status;
MagickOffsetType
progress;
register ssize_t
i;
size_t
width;
ssize_t
center,
j,
u,
v,
y;
/*
Initialize blur image attributes.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
width=GetOptimalKernelWidth1D(radius,sigma);
kernel=(double *) AcquireQuantumMemory((size_t) width,width*sizeof(*kernel));
if (kernel == (double *) NULL)
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
j=(ssize_t) width/2;
i=0;
for (v=(-j); v <= j; v++)
{
for (u=(-j); u <= j; u++)
kernel[i++]=(double) (exp(-((double) u*u+v*v)/(2.0*MagickSigma*
MagickSigma))/(2.0*MagickPI*MagickSigma*MagickSigma));
}
if (image->debug != MagickFalse)
{
char
format[MaxTextExtent],
*message;
register const double
*k;
ssize_t
u,
v;
(void) LogMagickEvent(TransformEvent,GetMagickModule(),
" SelectiveBlurImage with %.20gx%.20g kernel:",(double) width,(double)
width);
message=AcquireString("");
k=kernel;
for (v=0; v < (ssize_t) width; v++)
{
*message='\0';
(void) FormatLocaleString(format,MaxTextExtent,"%.20g: ",(double) v);
(void) ConcatenateString(&message,format);
for (u=0; u < (ssize_t) width; u++)
{
(void) FormatLocaleString(format,MaxTextExtent,"%+f ",*k++);
(void) ConcatenateString(&message,format);
}
(void) LogMagickEvent(TransformEvent,GetMagickModule(),"%s",message);
}
message=DestroyString(message);
}
blur_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception);
if (blur_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(blur_image,DirectClass,exception) == MagickFalse)
{
blur_image=DestroyImage(blur_image);
return((Image *) NULL);
}
/*
Threshold blur image.
*/
status=MagickTrue;
progress=0;
center=(ssize_t) (GetPixelChannels(image)*(image->columns+width)*(width/2L)+
GetPixelChannels(image)*(width/2L));
image_view=AcquireCacheView(image);
blur_view=AcquireCacheView(blur_image);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
double
contrast;
MagickBooleanType
sync;
register const Quantum
*restrict p;
register Quantum
*restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,-((ssize_t) width/2L),y-(ssize_t)
(width/2L),image->columns+width,width,exception);
q=GetCacheViewAuthenticPixels(blur_view,0,y,blur_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
MagickRealType
alpha,
gamma,
intensity,
pixel;
PixelChannel
channel;
PixelTrait
blur_traits,
traits;
register const double
*restrict k;
register const Quantum
*restrict pixels;
register ssize_t
u;
ssize_t
v;
channel=GetPixelChannelMapChannel(image,i);
traits=GetPixelChannelMapTraits(image,channel);
blur_traits=GetPixelChannelMapTraits(blur_image,channel);
if ((traits == UndefinedPixelTrait) ||
(blur_traits == UndefinedPixelTrait))
continue;
if ((blur_traits & CopyPixelTrait) != 0)
{
SetPixelChannel(blur_image,channel,p[center+i],q);
continue;
}
k=kernel;
pixel=bias;
pixels=p;
intensity=(MagickRealType) GetPixelIntensity(image,p+center);
gamma=0.0;
if ((blur_traits & BlendPixelTrait) == 0)
{
for (v=0; v < (ssize_t) width; v++)
{
for (u=0; u < (ssize_t) width; u++)
{
contrast=GetPixelIntensity(image,pixels)-intensity;
if (fabs(contrast) < threshold)
{
pixel+=(*k)*pixels[i];
gamma+=(*k);
}
k++;
pixels+=GetPixelChannels(image);
}
pixels+=image->columns*GetPixelChannels(image);
}
if (fabs((double) gamma) < MagickEpsilon)
{
SetPixelChannel(blur_image,channel,p[center+i],q);
continue;
}
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q);
continue;
}
for (v=0; v < (ssize_t) width; v++)
{
for (u=0; u < (ssize_t) width; u++)
{
contrast=GetPixelIntensity(image,pixels)-intensity;
if (fabs(contrast) < threshold)
{
alpha=(MagickRealType) (QuantumScale*
GetPixelAlpha(image,pixels));
pixel+=(*k)*alpha*pixels[i];
gamma+=(*k)*alpha;
}
k++;
pixels+=GetPixelChannels(image);
}
pixels+=image->columns*GetPixelChannels(image);
}
if (fabs((double) gamma) < MagickEpsilon)
{
SetPixelChannel(blur_image,channel,p[center+i],q);
continue;
}
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q);
}
p+=GetPixelChannels(image);
q+=GetPixelChannels(blur_image);
}
sync=SyncCacheViewAuthenticPixels(blur_view,exception);
if (sync == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_SelectiveBlurImage)
#endif
proceed=SetImageProgress(image,SelectiveBlurImageTag,progress++,
image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
blur_image->type=image->type;
blur_view=DestroyCacheView(blur_view);
image_view=DestroyCacheView(image_view);
kernel=(double *) RelinquishMagickMemory(kernel);
if (status == MagickFalse)
blur_image=DestroyImage(blur_image);
return(blur_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S h a d e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ShadeImage() shines a distant light on an image to create a
% three-dimensional effect. You control the positioning of the light with
% azimuth and elevation; azimuth is measured in degrees off the x axis
% and elevation is measured in pixels above the Z axis.
%
% The format of the ShadeImage method is:
%
% Image *ShadeImage(const Image *image,const MagickBooleanType gray,
% const double azimuth,const double elevation,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o gray: A value other than zero shades the intensity of each pixel.
%
% o azimuth, elevation: Define the light source direction.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *ShadeImage(const Image *image,const MagickBooleanType gray,
const double azimuth,const double elevation,ExceptionInfo *exception)
{
#define ShadeImageTag "Shade/Image"
CacheView
*image_view,
*shade_view;
Image
*shade_image;
MagickBooleanType
status;
MagickOffsetType
progress;
PrimaryInfo
light;
ssize_t
y;
/*
Initialize shaded image attributes.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
shade_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception);
if (shade_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(shade_image,DirectClass,exception) == MagickFalse)
{
shade_image=DestroyImage(shade_image);
return((Image *) NULL);
}
/*
Compute the light vector.
*/
light.x=(double) QuantumRange*cos(DegreesToRadians(azimuth))*
cos(DegreesToRadians(elevation));
light.y=(double) QuantumRange*sin(DegreesToRadians(azimuth))*
cos(DegreesToRadians(elevation));
light.z=(double) QuantumRange*sin(DegreesToRadians(elevation));
/*
Shade image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireCacheView(image);
shade_view=AcquireCacheView(shade_image);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
MagickRealType
distance,
normal_distance,
shade;
PrimaryInfo
normal;
register const Quantum
*restrict center,
*restrict p,
*restrict post,
*restrict pre;
register Quantum
*restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,-1,y-1,image->columns+2,3,exception);
q=QueueCacheViewAuthenticPixels(shade_view,0,y,shade_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
/*
Shade this row of pixels.
*/
normal.z=2.0*(double) QuantumRange; /* constant Z of surface normal */
pre=p+GetPixelChannels(image);
center=pre+(image->columns+2)*GetPixelChannels(image);
post=center+(image->columns+2)*GetPixelChannels(image);
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
/*
Determine the surface normal and compute shading.
*/
normal.x=(double) (GetPixelIntensity(image,pre-GetPixelChannels(image))+
GetPixelIntensity(image,center-GetPixelChannels(image))+
GetPixelIntensity(image,post-GetPixelChannels(image))-
GetPixelIntensity(image,pre+GetPixelChannels(image))-
GetPixelIntensity(image,center+GetPixelChannels(image))-
GetPixelIntensity(image,post+GetPixelChannels(image)));
normal.y=(double) (GetPixelIntensity(image,post-GetPixelChannels(image))+
GetPixelIntensity(image,post)+GetPixelIntensity(image,post+
GetPixelChannels(image))-GetPixelIntensity(image,pre-
GetPixelChannels(image))-GetPixelIntensity(image,pre)-
GetPixelIntensity(image,pre+GetPixelChannels(image)));
if ((normal.x == 0.0) && (normal.y == 0.0))
shade=light.z;
else
{
shade=0.0;
distance=normal.x*light.x+normal.y*light.y+normal.z*light.z;
if (distance > MagickEpsilon)
{
normal_distance=
normal.x*normal.x+normal.y*normal.y+normal.z*normal.z;
if (normal_distance > (MagickEpsilon*MagickEpsilon))
shade=distance/sqrt((double) normal_distance);
}
}
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel
channel;
PixelTrait
shade_traits,
traits;
channel=GetPixelChannelMapChannel(image,i);
traits=GetPixelChannelMapTraits(image,channel);
shade_traits=GetPixelChannelMapTraits(shade_image,channel);
if ((traits == UndefinedPixelTrait) ||
(shade_traits == UndefinedPixelTrait))
continue;
if ((shade_traits & CopyPixelTrait) != 0)
{
SetPixelChannel(shade_image,channel,center[i],q);
continue;
}
if (gray != MagickFalse)
{
SetPixelChannel(shade_image,channel,ClampToQuantum(shade),q);
continue;
}
SetPixelChannel(shade_image,channel,ClampToQuantum(QuantumScale*shade*
center[i]),q);
}
pre+=GetPixelChannels(image);
center+=GetPixelChannels(image);
post+=GetPixelChannels(image);
q+=GetPixelChannels(shade_image);
}
if (SyncCacheViewAuthenticPixels(shade_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_ShadeImage)
#endif
proceed=SetImageProgress(image,ShadeImageTag,progress++,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
shade_view=DestroyCacheView(shade_view);
image_view=DestroyCacheView(image_view);
if (status == MagickFalse)
shade_image=DestroyImage(shade_image);
return(shade_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S h a r p e n I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SharpenImage() sharpens the image. We convolve the image with a Gaussian
% operator of the given radius and standard deviation (sigma). For
% reasonable results, radius should be larger than sigma. Use a radius of 0
% and SharpenImage() selects a suitable radius for you.
%
% Using a separable kernel would be faster, but the negative weights cancel
% out on the corners of the kernel producing often undesirable ringing in the
% filtered result; this can be avoided by using a 2D gaussian shaped image
% sharpening kernel instead.
%
% The format of the SharpenImage method is:
%
% Image *SharpenImage(const Image *image,const double radius,
% const double sigma,const double bias,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the Gaussian, in pixels, not counting the center
% pixel.
%
% o sigma: the standard deviation of the Laplacian, in pixels.
%
% o bias: bias.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *SharpenImage(const Image *image,const double radius,
const double sigma,const double bias,ExceptionInfo *exception)
{
double
normalize;
Image
*sharp_image;
KernelInfo
*kernel_info;
register ssize_t
i;
size_t
width;
ssize_t
j,
u,
v;
assert(image != (const Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
width=GetOptimalKernelWidth2D(radius,sigma);
kernel_info=AcquireKernelInfo((const char *) NULL);
if (kernel_info == (KernelInfo *) NULL)
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
(void) ResetMagickMemory(kernel_info,0,sizeof(*kernel_info));
kernel_info->width=width;
kernel_info->height=width;
kernel_info->bias=bias; /* FUTURE: user bias - non-sensical! */
kernel_info->signature=MagickSignature;
kernel_info->values=(MagickRealType *) AcquireAlignedMemory(
kernel_info->width,kernel_info->width*sizeof(*kernel_info->values));
if (kernel_info->values == (MagickRealType *) NULL)
{
kernel_info=DestroyKernelInfo(kernel_info);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
normalize=0.0;
j=(ssize_t) kernel_info->width/2;
i=0;
for (v=(-j); v <= j; v++)
{
for (u=(-j); u <= j; u++)
{
kernel_info->values[i]=(double) (-exp(-((double) u*u+v*v)/(2.0*
MagickSigma*MagickSigma))/(2.0*MagickPI*MagickSigma*MagickSigma));
normalize+=kernel_info->values[i];
i++;
}
}
kernel_info->values[i/2]=(double) ((-2.0)*normalize);
sharp_image=ConvolveImage(image,kernel_info,exception);
kernel_info=DestroyKernelInfo(kernel_info);
return(sharp_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S p r e a d I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SpreadImage() is a special effects method that randomly displaces each
% pixel in a block defined by the radius parameter.
%
% The format of the SpreadImage method is:
%
% Image *SpreadImage(const Image *image,const double radius,
% const PixelInterpolateMethod method,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: choose a random pixel in a neighborhood of this extent.
%
% o method: the pixel interpolation method.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *SpreadImage(const Image *image,const double radius,
const PixelInterpolateMethod method,ExceptionInfo *exception)
{
#define SpreadImageTag "Spread/Image"
CacheView
*image_view,
*spread_view;
Image
*spread_image;
MagickBooleanType
status;
MagickOffsetType
progress;
RandomInfo
**restrict random_info;
size_t
width;
ssize_t
y;
/*
Initialize spread image attributes.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
spread_image=CloneImage(image,image->columns,image->rows,MagickTrue,
exception);
if (spread_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(spread_image,DirectClass,exception) == MagickFalse)
{
spread_image=DestroyImage(spread_image);
return((Image *) NULL);
}
/*
Spread image.
*/
status=MagickTrue;
progress=0;
width=GetOptimalKernelWidth1D(radius,0.5);
random_info=AcquireRandomInfoThreadSet();
image_view=AcquireCacheView(image);
spread_view=AcquireCacheView(spread_image);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,1) shared(progress,status)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
const int
id = GetOpenMPThreadId();
register const Quantum
*restrict p;
register Quantum
*restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
q=QueueCacheViewAuthenticPixels(spread_view,0,y,spread_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
PointInfo
point;
point.x=GetPseudoRandomValue(random_info[id]);
point.y=GetPseudoRandomValue(random_info[id]);
status=InterpolatePixelChannels(image,image_view,spread_image,method,
(double) x+width*point.x-0.5,(double) y+width*point.y-0.5,q,exception);
q+=GetPixelChannels(spread_image);
}
if (SyncCacheViewAuthenticPixels(spread_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_SpreadImage)
#endif
proceed=SetImageProgress(image,SpreadImageTag,progress++,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
spread_view=DestroyCacheView(spread_view);
image_view=DestroyCacheView(image_view);
random_info=DestroyRandomInfoThreadSet(random_info);
return(spread_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% U n s h a r p M a s k I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% UnsharpMaskImage() sharpens one or more image channels. We convolve the
% image with a Gaussian operator of the given radius and standard deviation
% (sigma). For reasonable results, radius should be larger than sigma. Use a
% radius of 0 and UnsharpMaskImage() selects a suitable radius for you.
%
% The format of the UnsharpMaskImage method is:
%
% Image *UnsharpMaskImage(const Image *image,const double radius,
% const double sigma,const double amount,const double threshold,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the Gaussian, in pixels, not counting the center
% pixel.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o amount: the percentage of the difference between the original and the
% blur image that is added back into the original.
%
% o threshold: the threshold in pixels needed to apply the diffence amount.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *UnsharpMaskImage(const Image *image,const double radius,
const double sigma,const double amount,const double threshold,
ExceptionInfo *exception)
{
#define SharpenImageTag "Sharpen/Image"
CacheView
*image_view,
*unsharp_view;
Image
*unsharp_image;
MagickBooleanType
status;
MagickOffsetType
progress;
MagickRealType
quantum_threshold;
ssize_t
y;
assert(image != (const Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
/* FUTURE: use of bias on sharpen is non-sensical */
unsharp_image=BlurImage(image,radius,sigma,image->bias,exception);
if (unsharp_image == (Image *) NULL)
return((Image *) NULL);
quantum_threshold=(MagickRealType) QuantumRange*threshold;
/*
Unsharp-mask image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireCacheView(image);
unsharp_view=AcquireCacheView(unsharp_image);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
register const Quantum
*restrict p;
register Quantum
*restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
q=GetCacheViewAuthenticPixels(unsharp_view,0,y,unsharp_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
MagickRealType
pixel;
PixelChannel
channel;
PixelTrait
traits,
unsharp_traits;
channel=GetPixelChannelMapChannel(image,i);
traits=GetPixelChannelMapTraits(image,channel);
unsharp_traits=GetPixelChannelMapTraits(unsharp_image,channel);
if ((traits == UndefinedPixelTrait) ||
(unsharp_traits == UndefinedPixelTrait))
continue;
if ((unsharp_traits & CopyPixelTrait) != 0)
{
SetPixelChannel(unsharp_image,channel,p[i],q);
continue;
}
pixel=p[i]-(MagickRealType) GetPixelChannel(unsharp_image,channel,q);
if (fabs(2.0*pixel) < quantum_threshold)
pixel=(MagickRealType) p[i];
else
pixel=(MagickRealType) p[i]+amount*pixel;
SetPixelChannel(unsharp_image,channel,ClampToQuantum(pixel),q);
}
p+=GetPixelChannels(image);
q+=GetPixelChannels(unsharp_image);
}
if (SyncCacheViewAuthenticPixels(unsharp_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_UnsharpMaskImage)
#endif
proceed=SetImageProgress(image,SharpenImageTag,progress++,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
unsharp_image->type=image->type;
unsharp_view=DestroyCacheView(unsharp_view);
image_view=DestroyCacheView(image_view);
if (status == MagickFalse)
unsharp_image=DestroyImage(unsharp_image);
return(unsharp_image);
}