blob: d18465ea6d03628e837e8187f0fc28cc583e48cc [file] [log] [blame]
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% RRRR EEEEE SSSSS IIIII ZZZZZ EEEEE %
% R R E SS I ZZ E %
% RRRR EEE SSS I ZZZ EEE %
% R R E SS I ZZ E %
% R R EEEEE SSSSS IIIII ZZZZZ EEEEE %
% %
% %
% MagickCore Image Resize Methods %
% %
% Software Design %
% John Cristy %
% July 1992 %
% %
% %
% Copyright 1999-2010 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% http://www.imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
*/
/*
Include declarations.
*/
#include "magick/studio.h"
#include "magick/artifact.h"
#include "magick/blob.h"
#include "magick/cache.h"
#include "magick/cache-view.h"
#include "magick/color.h"
#include "magick/color-private.h"
#include "magick/draw.h"
#include "magick/exception.h"
#include "magick/exception-private.h"
#include "magick/gem.h"
#include "magick/image.h"
#include "magick/image-private.h"
#include "magick/list.h"
#include "magick/memory_.h"
#include "magick/pixel-private.h"
#include "magick/property.h"
#include "magick/monitor.h"
#include "magick/monitor-private.h"
#include "magick/pixel.h"
#include "magick/option.h"
#include "magick/resample.h"
#include "magick/resize.h"
#include "magick/resize-private.h"
#include "magick/string_.h"
#include "magick/string-private.h"
#include "magick/thread-private.h"
#include "magick/utility.h"
#include "magick/version.h"
#if defined(MAGICKCORE_LQR_DELEGATE)
#include <lqr.h>
#endif
/*
Typedef declarations.
*/
struct _ResizeFilter
{
MagickRealType
(*filter)(const MagickRealType,const ResizeFilter *),
(*window)(const MagickRealType,const ResizeFilter *),
support, /* filter region of support - the filter support limit */
window_support, /* window support, usally equal to support (expert only) */
scale, /* dimension to scale to fit window support (usally 1.0) */
blur, /* x-scale (blur-sharpen) */
cubic[8]; /* cubic coefficents for smooth Cubic filters */
size_t
signature;
};
/*
Forward declaractions.
*/
static MagickRealType
I0(MagickRealType x),
BesselOrderOne(MagickRealType);
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ F i l t e r F u n c t i o n s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% These are the various filter and windowing functions that are provided.
%
% They are internal to this module only. See AcquireResizeFilterInfo() for
% details of the access to these functions, via the GetResizeFilterSupport()
% and GetResizeFilterWeight() API interface.
%
% The individual filter functions have this format...
%
% static MagickRealtype *FilterName(const MagickRealType x,
% const MagickRealType support)
%
% A description of each parameter follows:
%
% o x: the distance from the sampling point generally in the range of 0 to
% support. The GetResizeFilterWeight() ensures this a positive value.
%
% o resize_filter: current filter information. This allows function to
% access support, and possibly other pre-calculated information defining
% the functions.
%
*/
static MagickRealType Bessel(const MagickRealType x,
const ResizeFilter *magick_unused(resize_filter))
{
/*
See Pratt "Digital Image Processing" p.97 for Bessel functions.
This function actually a X-scaled Jinc(x) function. See
http://mathworld.wolfram.com/JincFunction.html and page 11 of
http://www.ph.ed.ac.uk/%7ewjh/teaching/mo/slides/lens/lens.pdf.
*/
if (x == 0.0)
return((MagickRealType) (MagickPI/4.0));
return(BesselOrderOne(MagickPI*x)/(2.0*x));
}
static MagickRealType Blackman(const MagickRealType x,
const ResizeFilter *magick_unused(resize_filter))
{
/*
Blackman: 2rd Order cosine windowing function.
*/
return(0.42+0.5*cos(MagickPI*(double) x)+0.08*cos(2.0*MagickPI*(double) x));
}
static MagickRealType Bohman(const MagickRealType x,
const ResizeFilter *magick_unused(resize_filter))
{
/*
Bohman: 2rd Order cosine windowing function.
*/
return((1-x)*cos(MagickPI*(double) x)+sin(MagickPI*(double) x)/MagickPI);
}
static MagickRealType Box(const MagickRealType magick_unused(x),
const ResizeFilter *magick_unused(resize_filter))
{
/*
Just return 1.0, filter will still be clipped by its support window.
*/
return(1.0);
}
static MagickRealType CubicBC(const MagickRealType x,
const ResizeFilter *resize_filter)
{
/*
Cubic Filters using B,C determined values:
Mitchell-Netravali B=1/3 C=1/3 Qualitively ideal Cubic Filter
Catmull-Rom B= 0 C=1/2 Cublic Interpolation Function
Cubic B-Spline B= 1 C= 0 Spline Approximation of Gaussian
Hermite B= 0 C= 0 Quadratic Spline (support = 1)
See paper by Mitchell and Netravali, Reconstruction Filters in Computer
Graphics Computer Graphics, Volume 22, Number 4, August 1988
http://www.cs.utexas.edu/users/fussell/courses/cs384g/lectures/mitchell/
Mitchell.pdf.
Coefficents are determined from B,C values:
P0 = ( 6 - 2*B )/6
P1 = 0
P2 = (-18 +12*B + 6*C )/6
P3 = ( 12 - 9*B - 6*C )/6
Q0 = ( 8*B +24*C )/6
Q1 = ( -12*B -48*C )/6
Q2 = ( 6*B +30*C )/6
Q3 = ( - 1*B - 6*C )/6
which are used to define the filter:
P0 + P1*x + P2*x^2 + P3*x^3 0 <= x < 1
Q0 + Q1*x + Q2*x^2 + Q3*x^3 1 <= x <= 2
which ensures function is continuous in value and derivative (slope).
*/
if (x < 1.0)
return(resize_filter->cubic[0]+x*(resize_filter->cubic[1]+x*
(resize_filter->cubic[2]+x*resize_filter->cubic[3])));
if (x < 2.0)
return(resize_filter->cubic[4]+x*(resize_filter->cubic[5]+x*
(resize_filter->cubic[6] +x*resize_filter->cubic[7])));
return(0.0);
}
static MagickRealType Gaussian(const MagickRealType x,
const ResizeFilter *magick_unused(resize_filter))
{
return(exp((double) (-2.0*x*x))*sqrt(2.0/MagickPI));
}
static MagickRealType Hanning(const MagickRealType x,
const ResizeFilter *magick_unused(resize_filter))
{
/*
A Cosine windowing function.
*/
return(0.5+0.5*cos(MagickPI*(double) x));
}
static MagickRealType Hamming(const MagickRealType x,
const ResizeFilter *magick_unused(resize_filter))
{
/*
A offset Cosine windowing function.
*/
return(0.54+0.46*cos(MagickPI*(double) x));
}
static MagickRealType Kaiser(const MagickRealType x,
const ResizeFilter *magick_unused(resize_filter))
{
#define Alpha 6.5
#define I0A (1.0/I0(Alpha))
/*
Kaiser Windowing Function (bessel windowing): Alpha is a free value from 5
to 8 (currently hardcoded to 6.5). Future: make alpha the IOA
pre-calculation, a 'expert' setting.
*/
return(I0A*I0(Alpha*sqrt((double) (1.0-x*x))));
}
static MagickRealType Lagrange(const MagickRealType x,
const ResizeFilter *resize_filter)
{
ssize_t
n,
order;
MagickRealType
value;
register ssize_t
i;
/*
Lagrange Piece-Wise polynomial fit of Sinc: N is the 'order' of the
lagrange function and depends on the overall support window size of the
filter. That is for a support of 2, gives a lagrange-4 or piece-wise cubic
functions.
Note that n is the specific piece of the piece-wise function to calculate.
See Survey: Interpolation Methods, IEEE Transactions on Medical Imaging,
Vol 18, No 11, November 1999, p1049-1075, -- Equation 27 on p1064.
*/
if (x > resize_filter->support)
return(0.0);
order=(ssize_t) (2.0*resize_filter->window_support); /* number of pieces */
n=(ssize_t) ((1.0*order)/2.0+x); /* which piece does x bessize_t to */
value=1.0f;
for (i=0; i < order; i++)
if (i != n)
value*=(n-i-x)/(n-i);
return(value);
}
static MagickRealType Quadratic(const MagickRealType x,
const ResizeFilter *magick_unused(resize_filter))
{
/*
2rd order (quadratic) B-Spline approximation of Gaussian.
*/
if (x < 0.5)
return(0.75-x*x);
if (x < 1.5)
return(0.5*(x-1.5)*(x-1.5));
return(0.0);
}
static MagickRealType Sinc(const MagickRealType x,
const ResizeFilter *magick_unused(resize_filter))
{
/*
This function actually a X-scaled Sinc(x) function.
*/
if (x == 0.0)
return(1.0);
return(sin(MagickPI*(double) x)/(MagickPI*(double) x));
}
static MagickRealType Triangle(const MagickRealType x,
const ResizeFilter *magick_unused(resize_filter))
{
/*
1rd order (linear) B-Spline, bilinear interpolation, Tent 1D filter, or a
Bartlett 2D Cone filter.
*/
if (x < 1.0)
return(1.0-x);
return(0.0);
}
static MagickRealType Welsh(const MagickRealType x,
const ResizeFilter *magick_unused(resize_filter))
{
/*
Welsh parabolic windowing filter.
*/
if (x < 1.0)
return(1.0-x*x);
return(0.0);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ A c q u i r e R e s i z e F i l t e r %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% AcquireResizeFilter() allocates the ResizeFilter structure. Choose from
% these filters:
%
% FIR (Finite impulse Response) Filters
% Box Triangle Quadratic
% Cubic Hermite Catrom
% Mitchell
%
% IIR (Infinite impulse Response) Filters
% Gaussian Sinc Bessel
%
% Windowed Sinc/Bessel Method
% Blackman Hanning Hamming
% Kaiser Lancos (Sinc)
%
% FIR filters are used as is, and are limited by that filters support window
% (unless over-ridden). 'Gaussian' while classed as an IIR filter, is also
% simply clipped by its support size (1.5).
%
% Requesting a windowed filter will return either a windowed Sinc, for a one
% dimentional orthogonal filtering method, such as ResizeImage(), or a
% windowed Bessel for image operations requiring a two dimentional
% cylindrical filtering method, such a DistortImage(). Which function is
% is used set by the "cylindrical" boolean argument.
%
% Directly requesting 'Sinc' or 'Bessel' will force the use of that filter
% function, with a default 'Blackman' windowing method. This not however
% recommended as it removes the correct filter selection for different
% filtering image operations. Selecting a window filtering method is better.
%
% Lanczos is purely special case of a Sinc windowed Sinc, but defaulting to
% a 3 lobe support, rather that the default 4 lobe support.
%
% Special options can be used to override specific, or all the filter
% settings. However doing so is not advisible unless you have expert
% knowledge of the use of resampling filtered techniques. Extreme caution is
% advised.
%
% "filter:filter" Select this function as the filter.
% If a "filter:window" operation is not provided, then no windowing
% will be performed on the selected filter, (support clipped)
%
% This can be used to force the use of a windowing method as filter,
% request a 'Sinc' filter in a radially filtered operation, or the
% 'Bessel' filter for a othogonal filtered operation.
%
% "filter:window" Select this windowing function for the filter.
% While any filter could be used as a windowing function,
% using that filters first lobe over the whole support window,
% using a non-windowing method is not advisible.
%
% "filter:lobes" Number of lobes to use for the Sinc/Bessel filter.
% This a simper method of setting filter support size that will
% correctly handle the Sinc/Bessel switch for an operators filtering
% requirements.
%
% "filter:support" Set the support size for filtering to the size given
% This not recommended for Sinc/Bessel windowed filters, but is
% used for simple filters like FIR filters, and the Gaussian Filter.
% This will override any 'filter:lobes' option.
%
% "filter:blur" Scale the filter and support window by this amount.
% A value >1 will generally result in a more burred image with
% more ringing effects, while a value <1 will sharpen the
% resulting image with more aliasing and Morie effects.
%
% "filter:win-support" Scale windowing function to this size instead.
% This causes the windowing (or self-windowing Lagrange filter)
% to act is if the support winodw it much much larger than what
% is actually supplied to the calling operator. The filter however
% is still clipped to the real support size given. If unset this
% will equal the normal filter support size.
%
% "filter:b"
% "filter:c" Override the preset B,C values for a Cubic type of filter
% If only one of these are given it is assumes to be a 'Keys'
% type of filter such that B+2C=1, where Keys 'alpha' value = C
%
% "filter:verbose" Output verbose plotting data for graphing the
% resulting filter over the whole support range (with blur effect).
%
% Set a true un-windowed Sinc filter with 10 lobes (very slow)
% -set option:filter:filter Sinc
% -set option:filter:lobes 8
%
% For example force an 8 lobe Lanczos (Sinc or Bessel) filter...
% -filter Lanczos
% -set option:filter:lobes 8
%
% The format of the AcquireResizeFilter method is:
%
% ResizeFilter *AcquireResizeFilter(const Image *image,
% const FilterTypes filter_type, const MagickBooleanType radial,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o filter: the filter type, defining a preset filter, window and support.
%
% o blur: blur the filter by this amount, use 1.0 if unknown. Image
% artifact "filter:blur" will override this old usage
%
% o radial: 1D orthogonal filter (Sinc) or 2D radial filter (Bessel)
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport ResizeFilter *AcquireResizeFilter(const Image *image,
const FilterTypes filter,const MagickRealType blur,
const MagickBooleanType cylindrical,ExceptionInfo *exception)
{
const char
*artifact;
FilterTypes
filter_type,
window_type;
ssize_t
option;
MagickRealType
B,
C;
register ResizeFilter
*resize_filter;
/*
Table Mapping given Filter, into Weighting and Windowing functions. A
'Box' windowing function means its a simble non-windowed filter. A 'Sinc'
filter function (must be windowed) could be upgraded to a 'Bessel' filter
if a "cylindrical" filter is requested, unless a "Sinc" filter specifically
request.
*/
static struct
{
FilterTypes
filter,
window;
} const mapping[SentinelFilter] =
{
{ UndefinedFilter, BoxFilter }, /* undefined */
{ PointFilter, BoxFilter }, /* special, nearest-neighbour filter */
{ BoxFilter, BoxFilter }, /* Box averaging Filter */
{ TriangleFilter, BoxFilter }, /* Linear Interpolation Filter */
{ HermiteFilter, BoxFilter }, /* Hermite interpolation filter */
{ SincFilter, HanningFilter }, /* Hanning -- Cosine-Sinc */
{ SincFilter, HammingFilter }, /* Hamming -- '' variation */
{ SincFilter, BlackmanFilter }, /* Blackman -- 2*Cosine-Sinc */
{ GaussianFilter, BoxFilter }, /* Gaussain Blurring filter */
{ QuadraticFilter, BoxFilter }, /* Quadratic Gaussian approximation */
{ CubicFilter, BoxFilter }, /* Cubic Gaussian approximation */
{ CatromFilter, BoxFilter }, /* Cubic Interpolator */
{ MitchellFilter, BoxFilter }, /* 'ideal' Cubic Filter */
{ LanczosFilter, SincFilter }, /* Special, 3 lobed Sinc-Sinc */
{ BesselFilter, BlackmanFilter }, /* 3 lobed bessel -specific request */
{ SincFilter, BlackmanFilter }, /* 4 lobed sinc - specific request */
{ SincFilter, KaiserFilter }, /* Kaiser -- SqRoot-Sinc */
{ SincFilter, WelshFilter }, /* Welsh -- Parabolic-Sinc */
{ SincFilter, CubicFilter }, /* Parzen -- Cubic-Sinc */
{ LagrangeFilter, BoxFilter }, /* Lagrange self-windowing filter */
{ SincFilter, BohmanFilter }, /* Bohman -- 2*Cosine-Sinc */
{ SincFilter, TriangleFilter } /* Bartlett -- Triangle-Sinc */
};
/*
Table maping the filter/window function from the above table to the actual
filter/window function call to use. The default support size for that
filter as a weighting function, and the point to scale when that function is
used as a windowing function (typ 1.0).
*/
static struct
{
MagickRealType
(*function)(const MagickRealType, const ResizeFilter*),
support, /* default support size for function as a filter */
scale, /* size windowing function, for scaling windowing function */
B,
C; /* Cubic Filter factors for a CubicBC function, else ignored */
} const filters[SentinelFilter] =
{
{ Box, 0.0f, 0.5f, 0.0f, 0.0f }, /* Undefined */
{ Box, 0.0f, 0.5f, 0.0f, 0.0f }, /* Point */
{ Box, 0.5f, 0.5f, 0.0f, 0.0f }, /* Box */
{ Triangle, 1.0f, 1.0f, 0.0f, 0.0f }, /* Triangle */
{ CubicBC, 1.0f, 1.0f, 0.0f, 0.0f }, /* Hermite, Cubic B=C=0 */
{ Hanning, 1.0f, 1.0f, 0.0f, 0.0f }, /* Hanning, Cosine window */
{ Hamming, 1.0f, 1.0f, 0.0f, 0.0f }, /* Hamming, '' variation */
{ Blackman, 1.0f, 1.0f, 0.0f, 0.0f }, /* Blackman, 2*cos window */
{ Gaussian, 1.5f, 1.5f, 0.0f, 0.0f }, /* Gaussian */
{ Quadratic, 1.5f, 1.5f, 0.0f, 0.0f }, /* Quadratic Gaussian */
{ CubicBC, 2.0f, 2.0f, 1.0f, 0.0f }, /* B-Spline of Gaussian B=1 C=0 */
{ CubicBC, 2.0f, 1.0f, 0.0f, 0.5f }, /* Catmull-Rom B=0 C=1/2 */
{ CubicBC, 2.0f, 1.0f, 1.0f/3.0f, 1.0f/3.0f }, /* Mitchel B=C=1/3 */
{ Sinc, 3.0f, 1.0f, 0.0f, 0.0f }, /* Lanczos, 3 lobed Sinc-Sinc */
{ Bessel, 3.2383f,1.2197f,.0f,.0f }, /* 3 lobed Blackman-Bessel */
{ Sinc, 4.0f, 1.0f, 0.0f, 0.0f }, /* 4 lobed Blackman-Sinc */
{ Kaiser, 1.0f, 1.0f, 0.0f, 0.0f }, /* Kaiser, sq-root windowing */
{ Welsh, 1.0f, 1.0f, 0.0f, 0.0f }, /* Welsh, Parabolic windowing */
{ CubicBC, 2.0f, 2.0f, 1.0f, 0.0f }, /* Parzen, B-Spline windowing */
{ Lagrange, 2.0f, 1.0f, 0.0f, 0.0f }, /* Lagrangian Filter */
{ Bohman, 1.0f, 1.0f, 0.0f, 0.0f }, /* Bohman, 2*Cosine windowing */
{ Triangle, 1.0f, 1.0f, 0.0f, 0.0f } /* Bartlett, Triangle windowing */
};
/*
The known zero crossings of the Bessel() or the Jinc(x*PI) function found
by using http://cose.math.bas.bg/webMathematica/webComputing/
BesselZeros.jsp. For Jv-function with v=1, divide X-roots by PI (tabled
below).
*/
static MagickRealType
bessel_zeros[16] =
{
1.21966989126651f,
2.23313059438153f,
3.23831548416624f,
4.24106286379607f,
5.24276437687019f,
6.24392168986449f,
7.24475986871996f,
8.24539491395205f,
9.24589268494948f,
10.2462933487549f,
11.2466227948779f,
12.2468984611381f,
13.2471325221811f,
14.2473337358069f,
15.2475085630373f,
16.247661874701f
};
/*
Allocate resize filter.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(UndefinedFilter < filter && filter < SentinelFilter);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
resize_filter=(ResizeFilter *) AcquireAlignedMemory(1,sizeof(*resize_filter));
if (resize_filter == (ResizeFilter *) NULL)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
/*
Defaults for the requested filter.
*/
filter_type=mapping[filter].filter;
window_type=mapping[filter].window;
/*
Filter blur -- scaling both filter and support window.
*/
resize_filter->blur=blur;
artifact=GetImageArtifact(image,"filter:blur");
if (artifact != (const char *) NULL)
resize_filter->blur=StringToDouble(artifact);
if (resize_filter->blur < MagickEpsilon)
resize_filter->blur=(MagickRealType) MagickEpsilon;
if ((cylindrical != MagickFalse) && (filter != SincFilter))
switch (filter_type)
{
case SincFilter:
{
/*
Promote 1D Sinc Filter to a 2D Bessel filter.
*/
filter_type=BesselFilter;
break;
}
case LanczosFilter:
{
/*
Promote Lanczos (Sinc-Sinc) to Lanczos (Bessel-Bessel).
*/
filter_type=BesselFilter;
window_type=BesselFilter;
break;
}
case GaussianFilter:
{
/*
Gaussian is scaled by 4*ln(2) and not 4*sqrt(2/MagickPI) according to
Paul Heckbert's paper on EWA resampling.
FUTURE: to be reviewed.
*/
resize_filter->blur*=2.0*log(2.0)/sqrt(2.0/MagickPI);
break;
}
case BesselFilter:
{
/*
Filters with a 1.0 zero root crossing by the first bessel zero.
*/
resize_filter->blur*=bessel_zeros[0];
break;
}
default:
break;
}
artifact=GetImageArtifact(image,"filter:filter");
if (artifact != (const char *) NULL)
{
option=ParseMagickOption(MagickFilterOptions,MagickFalse,
artifact);
if ((UndefinedFilter < option) && (option < SentinelFilter))
{
/*
Raw filter request - no window function.
*/
filter_type=(FilterTypes) option;
window_type=BoxFilter;
}
if (option == LanczosFilter)
{
/*
Lanczos is nor a real filter but a self windowing Sinc/Bessel.
*/
filter_type=cylindrical != MagickFalse ? BesselFilter : LanczosFilter;
window_type=cylindrical != MagickFalse ? BesselFilter : SincFilter;
}
/*
Filter overwide with a specific window function.
*/
artifact=GetImageArtifact(image,"filter:window");
if (artifact != (const char *) NULL)
{
option=ParseMagickOption(MagickFilterOptions,MagickFalse,
artifact);
if ((UndefinedFilter < option) && (option < SentinelFilter))
{
if (option != LanczosFilter)
window_type=(FilterTypes) option;
else
window_type=cylindrical != MagickFalse ? BesselFilter :
SincFilter;
}
}
}
else
{
/*
Window specified, but no filter function? Assume Sinc/Bessel.
*/
artifact=GetImageArtifact(image,"filter:window");
if (artifact != (const char *) NULL)
{
option=ParseMagickOption(MagickFilterOptions,MagickFalse,
artifact);
if ((UndefinedFilter < option) && (option < SentinelFilter))
{
option=cylindrical != MagickFalse ? BesselFilter : SincFilter;
window_type=(FilterTypes) option;
}
}
}
resize_filter->filter=filters[filter_type].function;
resize_filter->support=filters[filter_type].support;
resize_filter->window=filters[window_type].function;
resize_filter->scale=filters[window_type].scale;
resize_filter->signature=MagickSignature;
/*
Filter support overrides.
*/
artifact=GetImageArtifact(image,"filter:lobes");
if (artifact != (const char *) NULL)
{
ssize_t
lobes;
lobes=StringToLong(artifact);
if (lobes < 1)
lobes=1;
resize_filter->support=(MagickRealType) lobes;
if (filter_type == BesselFilter)
{
if (lobes > 16)
lobes=16;
resize_filter->support=bessel_zeros[lobes-1];
}
}
artifact=GetImageArtifact(image,"filter:support");
if (artifact != (const char *) NULL)
resize_filter->support=fabs(StringToDouble(artifact));
/*
Scale windowing function separatally to the support 'clipping' window
that calling operator is planning to actually use.
*/
resize_filter->window_support=resize_filter->support;
artifact=GetImageArtifact(image,"filter:win-support");
if (artifact != (const char *) NULL)
resize_filter->window_support=fabs(StringToDouble(artifact));
/*
Set Cubic Spline B,C values, calculate Cubic coefficents.
*/
B=0.0;
C=0.0;
if ((filters[filter_type].function == CubicBC) ||
(filters[window_type].function == CubicBC))
{
if (filters[filter_type].function == CubicBC)
{
B=filters[filter_type].B;
C=filters[filter_type].C;
}
else
if (filters[window_type].function == CubicBC)
{
B=filters[window_type].B;
C=filters[window_type].C;
}
artifact=GetImageArtifact(image,"filter:b");
if (artifact != (const char *) NULL)
{
B=StringToDouble(artifact);
C=(1.0-B)/2.0; /* Calculate C as if it is a Keys cubic filter */
artifact=GetImageArtifact(image,"filter:c");
if (artifact != (const char *) NULL)
C=StringToDouble(artifact);
}
else
{
artifact=GetImageArtifact(image,"filter:c");
if (artifact != (const char *) NULL)
{
C=StringToDouble(artifact);
B=1.0-2.0*C; /* Calculate B as if it is a Keys cubic filter */
}
}
/*
Convert B,C values into Cubic Coefficents. See CubicBC()
*/
resize_filter->cubic[0]=(6.0-2.0*B)/6.0;
resize_filter->cubic[1]=0.0;
resize_filter->cubic[2]=(-18.0+12.0*B+6.0*C)/6.0;
resize_filter->cubic[3]=(12.0-9.0*B-6.0*C)/6.0;
resize_filter->cubic[4]=(8.0*B+24.0*C)/6.0;
resize_filter->cubic[5]=(-12.0*B-48.0*C)/6.0;
resize_filter->cubic[6]=(6.0*B+30.0*C)/6.0;
resize_filter->cubic[7]=(- 1.0*B-6.0*C)/6.0;
}
artifact=GetImageArtifact(image,"filter:verbose");
if (artifact != (const char *) NULL)
{
double
support,
x;
/*
Output filter graph -- for graphing filter result.
*/
support=GetResizeFilterSupport(resize_filter);
(void) printf("# support = %g\n",support);
for (x=0.0; x <= support; x+=0.01f)
(void) printf("%5.2lf\t%lf\n",x,(double) GetResizeFilterWeight(
resize_filter,x));
(void) printf("%5.2lf\t%lf\n",support,0.0);
}
return(resize_filter);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% A d a p t i v e R e s i z e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% AdaptiveResizeImage() adaptively resize image with pixel resampling.
%
% The format of the AdaptiveResizeImage method is:
%
% Image *AdaptiveResizeImage(const Image *image,
% const size_t columns,const size_t rows,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o columns: the number of columns in the resized image.
%
% o rows: the number of rows in the resized image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *AdaptiveResizeImage(const Image *image,
const size_t columns,const size_t rows,ExceptionInfo *exception)
{
#define AdaptiveResizeImageTag "Resize/Image"
CacheView
*resize_view;
Image
*resize_image;
ssize_t
y;
MagickBooleanType
proceed;
MagickPixelPacket
pixel;
PointInfo
offset;
ResampleFilter
*resample_filter;
/*
Adaptively resize image.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
if ((columns == 0) || (rows == 0))
return((Image *) NULL);
if ((columns == image->columns) && (rows == image->rows))
return(CloneImage(image,0,0,MagickTrue,exception));
resize_image=CloneImage(image,columns,rows,MagickTrue,exception);
if (resize_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(resize_image,DirectClass) == MagickFalse)
{
InheritException(exception,&resize_image->exception);
resize_image=DestroyImage(resize_image);
return((Image *) NULL);
}
GetMagickPixelPacket(image,&pixel);
resample_filter=AcquireResampleFilter(image,exception);
if (image->interpolate == UndefinedInterpolatePixel)
(void) SetResampleFilterInterpolateMethod(resample_filter,
MeshInterpolatePixel);
resize_view=AcquireCacheView(resize_image);
for (y=0; y < (ssize_t) resize_image->rows; y++)
{
register IndexPacket
*restrict resize_indexes;
register ssize_t
x;
register PixelPacket
*restrict q;
q=QueueCacheViewAuthenticPixels(resize_view,0,y,resize_image->columns,1,
exception);
if (q == (PixelPacket *) NULL)
break;
resize_indexes=GetCacheViewAuthenticIndexQueue(resize_view);
offset.y=((MagickRealType) y*image->rows/resize_image->rows);
for (x=0; x < (ssize_t) resize_image->columns; x++)
{
offset.x=((MagickRealType) x*image->columns/resize_image->columns);
(void) ResamplePixelColor(resample_filter,offset.x-0.5,offset.y-0.5,
&pixel);
SetPixelPacket(resize_image,&pixel,q,resize_indexes+x);
q++;
}
if (SyncCacheViewAuthenticPixels(resize_view,exception) == MagickFalse)
break;
proceed=SetImageProgress(image,AdaptiveResizeImageTag,y,image->rows);
if (proceed == MagickFalse)
break;
}
resample_filter=DestroyResampleFilter(resample_filter);
resize_view=DestroyCacheView(resize_view);
return(resize_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ B e s s e l O r d e r O n e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% BesselOrderOne() computes the Bessel function of x of the first kind of
% order 0:
%
% Reduce x to |x| since j1(x)= -j1(-x), and for x in (0,8]
%
% j1(x) = x*j1(x);
%
% For x in (8,inf)
%
% j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
%
% where x1 = x-3*pi/4. Compute sin(x1) and cos(x1) as follow:
%
% cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
% = 1/sqrt(2) * (sin(x) - cos(x))
% sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
% = -1/sqrt(2) * (sin(x) + cos(x))
%
% The format of the BesselOrderOne method is:
%
% MagickRealType BesselOrderOne(MagickRealType x)
%
% A description of each parameter follows:
%
% o x: MagickRealType value.
%
*/
#undef I0
static MagickRealType I0(MagickRealType x)
{
MagickRealType
sum,
t,
y;
register ssize_t
i;
/*
Zeroth order Bessel function of the first kind.
*/
sum=1.0;
y=x*x/4.0;
t=y;
for (i=2; t > MagickEpsilon; i++)
{
sum+=t;
t*=y/((MagickRealType) i*i);
}
return(sum);
}
#undef J1
static MagickRealType J1(MagickRealType x)
{
MagickRealType
p,
q;
register ssize_t
i;
static const double
Pone[] =
{
0.581199354001606143928050809e+21,
-0.6672106568924916298020941484e+20,
0.2316433580634002297931815435e+19,
-0.3588817569910106050743641413e+17,
0.2908795263834775409737601689e+15,
-0.1322983480332126453125473247e+13,
0.3413234182301700539091292655e+10,
-0.4695753530642995859767162166e+7,
0.270112271089232341485679099e+4
},
Qone[] =
{
0.11623987080032122878585294e+22,
0.1185770712190320999837113348e+20,
0.6092061398917521746105196863e+17,
0.2081661221307607351240184229e+15,
0.5243710262167649715406728642e+12,
0.1013863514358673989967045588e+10,
0.1501793594998585505921097578e+7,
0.1606931573481487801970916749e+4,
0.1e+1
};
p=Pone[8];
q=Qone[8];
for (i=7; i >= 0; i--)
{
p=p*x*x+Pone[i];
q=q*x*x+Qone[i];
}
return(p/q);
}
#undef P1
static MagickRealType P1(MagickRealType x)
{
MagickRealType
p,
q;
register ssize_t
i;
static const double
Pone[] =
{
0.352246649133679798341724373e+5,
0.62758845247161281269005675e+5,
0.313539631109159574238669888e+5,
0.49854832060594338434500455e+4,
0.2111529182853962382105718e+3,
0.12571716929145341558495e+1
},
Qone[] =
{
0.352246649133679798068390431e+5,
0.626943469593560511888833731e+5,
0.312404063819041039923015703e+5,
0.4930396490181088979386097e+4,
0.2030775189134759322293574e+3,
0.1e+1
};
p=Pone[5];
q=Qone[5];
for (i=4; i >= 0; i--)
{
p=p*(8.0/x)*(8.0/x)+Pone[i];
q=q*(8.0/x)*(8.0/x)+Qone[i];
}
return(p/q);
}
#undef Q1
static MagickRealType Q1(MagickRealType x)
{
MagickRealType
p,
q;
register ssize_t
i;
static const double
Pone[] =
{
0.3511751914303552822533318e+3,
0.7210391804904475039280863e+3,
0.4259873011654442389886993e+3,
0.831898957673850827325226e+2,
0.45681716295512267064405e+1,
0.3532840052740123642735e-1
},
Qone[] =
{
0.74917374171809127714519505e+4,
0.154141773392650970499848051e+5,
0.91522317015169922705904727e+4,
0.18111867005523513506724158e+4,
0.1038187585462133728776636e+3,
0.1e+1
};
p=Pone[5];
q=Qone[5];
for (i=4; i >= 0; i--)
{
p=p*(8.0/x)*(8.0/x)+Pone[i];
q=q*(8.0/x)*(8.0/x)+Qone[i];
}
return(p/q);
}
static MagickRealType BesselOrderOne(MagickRealType x)
{
MagickRealType
p,
q;
if (x == 0.0)
return(0.0);
p=x;
if (x < 0.0)
x=(-x);
if (x < 8.0)
return(p*J1(x));
q=sqrt((double) (2.0/(MagickPI*x)))*(P1(x)*(1.0/sqrt(2.0)*(sin((double) x)-
cos((double) x)))-8.0/x*Q1(x)*(-1.0/sqrt(2.0)*(sin((double) x)+
cos((double) x))));
if (p < 0.0)
q=(-q);
return(q);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ D e s t r o y R e s i z e F i l t e r %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DestroyResizeFilter() destroy the resize filter.
%
% The format of the DestroyResizeFilter method is:
%
% ResizeFilter *DestroyResizeFilter(ResizeFilter *resize_filter)
%
% A description of each parameter follows:
%
% o resize_filter: the resize filter.
%
*/
MagickExport ResizeFilter *DestroyResizeFilter(ResizeFilter *resize_filter)
{
assert(resize_filter != (ResizeFilter *) NULL);
assert(resize_filter->signature == MagickSignature);
resize_filter->signature=(~MagickSignature);
resize_filter=(ResizeFilter *) RelinquishMagickMemory(resize_filter);
return(resize_filter);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ G e t R e s i z e F i l t e r S u p p o r t %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetResizeFilterSupport() return the current support window size for this
% filter. Note that this may have been enlarged by filter:blur factor.
%
% The format of the GetResizeFilterSupport method is:
%
% MagickRealType GetResizeFilterSupport(const ResizeFilter *resize_filter)
%
% A description of each parameter follows:
%
% o filter: Image filter to use.
%
*/
MagickExport MagickRealType GetResizeFilterSupport(
const ResizeFilter *resize_filter)
{
assert(resize_filter != (ResizeFilter *) NULL);
assert(resize_filter->signature == MagickSignature);
return(resize_filter->support*resize_filter->blur);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ G e t R e s i z e F i l t e r W e i g h t %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetResizeFilterWeight evaluates the specified resize filter at the point x
% which usally lies between zero and the filters current 'support' and
% returns the weight of the filter function at that point.
%
% The format of the GetResizeFilterWeight method is:
%
% MagickRealType GetResizeFilterWeight(const ResizeFilter *resize_filter,
% const MagickRealType x)
%
% A description of each parameter follows:
%
% o filter: the filter type.
%
% o x: the point.
%
*/
MagickExport MagickRealType GetResizeFilterWeight(
const ResizeFilter *resize_filter,const MagickRealType x)
{
MagickRealType
blur,
scale;
/*
Windowing function - scale the weighting filter by this amount.
*/
assert(resize_filter != (ResizeFilter *) NULL);
assert(resize_filter->signature == MagickSignature);
blur=fabs(x)/resize_filter->blur; /* X offset with blur scaling */
if ((resize_filter->window_support < MagickEpsilon) ||
(resize_filter->window == Box))
scale=1.0; /* Point/Box Filter -- avoid division by zero */
else
{
scale=resize_filter->scale/resize_filter->window_support;
scale=resize_filter->window(blur*scale,resize_filter);
}
return(scale*resize_filter->filter(blur,resize_filter));
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% M a g n i f y I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% MagnifyImage() is a convenience method that scales an image proportionally
% to twice its size.
%
% The format of the MagnifyImage method is:
%
% Image *MagnifyImage(const Image *image,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *MagnifyImage(const Image *image,ExceptionInfo *exception)
{
Image
*magnify_image;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
magnify_image=ResizeImage(image,2*image->columns,2*image->rows,CubicFilter,
1.0,exception);
return(magnify_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% M i n i f y I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% MinifyImage() is a convenience method that scales an image proportionally
% to half its size.
%
% The format of the MinifyImage method is:
%
% Image *MinifyImage(const Image *image,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *MinifyImage(const Image *image,ExceptionInfo *exception)
{
Image
*minify_image;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
minify_image=ResizeImage(image,image->columns/2,image->rows/2,CubicFilter,
1.0,exception);
return(minify_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% R e s a m p l e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ResampleImage() resize image in terms of its pixel size, so that when
% displayed at the given resolution it will be the same size in terms of
% real world units as the original image at the original resolution.
%
% The format of the ResampleImage method is:
%
% Image *ResampleImage(Image *image,const double x_resolution,
% const double y_resolution,const FilterTypes filter,const double blur,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image to be resized to fit the given resolution.
%
% o x_resolution: the new image x resolution.
%
% o y_resolution: the new image y resolution.
%
% o filter: Image filter to use.
%
% o blur: the blur factor where > 1 is blurry, < 1 is sharp.
%
*/
MagickExport Image *ResampleImage(const Image *image,const double x_resolution,
const double y_resolution,const FilterTypes filter,const double blur,
ExceptionInfo *exception)
{
#define ResampleImageTag "Resample/Image"
Image
*resample_image;
size_t
height,
width;
/*
Initialize sampled image attributes.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
width=(size_t) (x_resolution*image->columns/
(image->x_resolution == 0.0 ? 72.0 : image->x_resolution)+0.5);
height=(size_t) (y_resolution*image->rows/
(image->y_resolution == 0.0 ? 72.0 : image->y_resolution)+0.5);
resample_image=ResizeImage(image,width,height,filter,blur,exception);
if (resample_image != (Image *) NULL)
{
resample_image->x_resolution=x_resolution;
resample_image->y_resolution=y_resolution;
}
return(resample_image);
}
#if defined(MAGICKCORE_LQR_DELEGATE)
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% L i q u i d R e s c a l e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% LiquidRescaleImage() rescales image with seam carving.
%
% The format of the LiquidRescaleImage method is:
%
% Image *LiquidRescaleImage(const Image *image,
% const size_t columns,const size_t rows,
% const double delta_x,const double rigidity,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o columns: the number of columns in the rescaled image.
%
% o rows: the number of rows in the rescaled image.
%
% o delta_x: maximum seam transversal step (0 means straight seams).
%
% o rigidity: introduce a bias for non-straight seams (typically 0).
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *LiquidRescaleImage(const Image *image,
const size_t columns,const size_t rows,
const double delta_x,const double rigidity,ExceptionInfo *exception)
{
#define LiquidRescaleImageTag "Rescale/Image"
const char
*map;
guchar
*packet;
Image
*rescale_image;
int
x,
y;
LqrCarver
*carver;
LqrRetVal
lqr_status;
MagickBooleanType
status;
MagickPixelPacket
pixel;
unsigned char
*pixels;
/*
Liquid rescale image.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
if ((columns == 0) || (rows == 0))
return((Image *) NULL);
if ((columns == image->columns) && (rows == image->rows))
return(CloneImage(image,0,0,MagickTrue,exception));
if ((columns <= 2) || (rows <= 2))
return(ZoomImage(image,columns,rows,exception));
if ((columns >= (2*image->columns)) || (rows >= (2*image->rows)))
{
Image
*resize_image;
size_t
height,
width;
/*
Honor liquid resize size limitations.
*/
for (width=image->columns; columns >= (2*width-1); width*=2);
for (height=image->rows; rows >= (2*height-1); height*=2);
resize_image=ResizeImage(image,width,height,image->filter,image->blur,
exception);
if (resize_image == (Image *) NULL)
return((Image *) NULL);
rescale_image=LiquidRescaleImage(resize_image,columns,rows,delta_x,
rigidity,exception);
resize_image=DestroyImage(resize_image);
return(rescale_image);
}
map="RGB";
if (image->matte == MagickFalse)
map="RGBA";
if (image->colorspace == CMYKColorspace)
{
map="CMYK";
if (image->matte == MagickFalse)
map="CMYKA";
}
pixels=(unsigned char *) AcquireQuantumMemory(image->columns,image->rows*
strlen(map)*sizeof(*pixels));
if (pixels == (unsigned char *) NULL)
return((Image *) NULL);
status=ExportImagePixels(image,0,0,image->columns,image->rows,map,CharPixel,
pixels,exception);
if (status == MagickFalse)
{
pixels=(unsigned char *) RelinquishMagickMemory(pixels);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
carver=lqr_carver_new(pixels,image->columns,image->rows,strlen(map));
if (carver == (LqrCarver *) NULL)
{
pixels=(unsigned char *) RelinquishMagickMemory(pixels);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
lqr_status=lqr_carver_init(carver,(int) delta_x,rigidity);
lqr_status=lqr_carver_resize(carver,columns,rows);
rescale_image=CloneImage(image,lqr_carver_get_width(carver),
lqr_carver_get_height(carver),MagickTrue,exception);
if (rescale_image == (Image *) NULL)
{
pixels=(unsigned char *) RelinquishMagickMemory(pixels);
return((Image *) NULL);
}
if (SetImageStorageClass(rescale_image,DirectClass) == MagickFalse)
{
InheritException(exception,&rescale_image->exception);
rescale_image=DestroyImage(rescale_image);
return((Image *) NULL);
}
GetMagickPixelPacket(rescale_image,&pixel);
(void) lqr_carver_scan_reset(carver);
while (lqr_carver_scan(carver,&x,&y,&packet) != 0)
{
register IndexPacket
*restrict rescale_indexes;
register PixelPacket
*restrict q;
q=QueueAuthenticPixels(rescale_image,x,y,1,1,exception);
if (q == (PixelPacket *) NULL)
break;
rescale_indexes=GetAuthenticIndexQueue(rescale_image);
pixel.red=QuantumRange*(packet[0]/255.0);
pixel.green=QuantumRange*(packet[1]/255.0);
pixel.blue=QuantumRange*(packet[2]/255.0);
if (image->colorspace != CMYKColorspace)
{
if (image->matte == MagickFalse)
pixel.opacity=QuantumRange*(packet[3]/255.0);
}
else
{
pixel.index=QuantumRange*(packet[3]/255.0);
if (image->matte == MagickFalse)
pixel.opacity=QuantumRange*(packet[4]/255.0);
}
SetPixelPacket(rescale_image,&pixel,q,rescale_indexes);
if (SyncAuthenticPixels(rescale_image,exception) == MagickFalse)
break;
}
/*
Relinquish resources.
*/
lqr_carver_destroy(carver);
return(rescale_image);
}
#else
MagickExport Image *LiquidRescaleImage(const Image *image,
const size_t magick_unused(columns),
const size_t magick_unused(rows),const double magick_unused(delta_x),
const double magick_unused(rigidity),ExceptionInfo *exception)
{
assert(image != (const Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
(void) ThrowMagickException(exception,GetMagickModule(),MissingDelegateError,
"DelegateLibrarySupportNotBuiltIn","`%s' (LQR)",image->filename);
return((Image *) NULL);
}
#endif
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% R e s i z e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ResizeImage() scales an image to the desired dimensions, using the given
% filter (see AcquireFilterInfo() ).
%
% If an undefined filter is given the filter defaults to Mitchell for a
% colormapped image, a image with a matte channel, or if the image is
% enlarged. Otherwise the filter defaults to a Lanczos.
%
% ResizeImage() was inspired by Paul Heckbert's "zoom" program.
%
% The format of the ResizeImage method is:
%
% Image *ResizeImage(Image *image,const size_t columns,
% const size_t rows,const FilterTypes filter,const double blur,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o columns: the number of columns in the scaled image.
%
% o rows: the number of rows in the scaled image.
%
% o filter: Image filter to use.
%
% o blur: the blur factor where > 1 is blurry, < 1 is sharp.
% Typically set this to 1.0.
%
% o exception: return any errors or warnings in this structure.
%
*/
typedef struct _ContributionInfo
{
MagickRealType
weight;
ssize_t
pixel;
} ContributionInfo;
static ContributionInfo **DestroyContributionThreadSet(
ContributionInfo **contribution)
{
register ssize_t
i;
assert(contribution != (ContributionInfo **) NULL);
for (i=0; i < (ssize_t) GetOpenMPMaximumThreads(); i++)
if (contribution[i] != (ContributionInfo *) NULL)
contribution[i]=(ContributionInfo *) RelinquishMagickMemory(
contribution[i]);
contribution=(ContributionInfo **) RelinquishAlignedMemory(contribution);
return(contribution);
}
static ContributionInfo **AcquireContributionThreadSet(const size_t count)
{
register ssize_t
i;
ContributionInfo
**contribution;
size_t
number_threads;
number_threads=GetOpenMPMaximumThreads();
contribution=(ContributionInfo **) AcquireAlignedMemory(number_threads,
sizeof(*contribution));
if (contribution == (ContributionInfo **) NULL)
return((ContributionInfo **) NULL);
(void) ResetMagickMemory(contribution,0,number_threads*sizeof(*contribution));
for (i=0; i < (ssize_t) number_threads; i++)
{
contribution[i]=(ContributionInfo *) AcquireQuantumMemory(count,
sizeof(**contribution));
if (contribution[i] == (ContributionInfo *) NULL)
return(DestroyContributionThreadSet(contribution));
}
return(contribution);
}
static inline double MagickMax(const double x,const double y)
{
if (x > y)
return(x);
return(y);
}
static inline double MagickMin(const double x,const double y)
{
if (x < y)
return(x);
return(y);
}
static MagickBooleanType HorizontalFilter(const ResizeFilter *resize_filter,
const Image *image,Image *resize_image,const MagickRealType x_factor,
const MagickSizeType span,MagickOffsetType *quantum,ExceptionInfo *exception)
{
#define ResizeImageTag "Resize/Image"
CacheView
*image_view,
*resize_view;
ClassType
storage_class;
ContributionInfo
**restrict contributions;
ssize_t
x;
MagickBooleanType
status;
MagickPixelPacket
zero;
MagickRealType
scale,
support;
/*
Apply filter to resize horizontally from image to resize image.
*/
scale=MagickMax(1.0/x_factor,1.0);
support=scale*GetResizeFilterSupport(resize_filter);
storage_class=support > 0.5 ? DirectClass : image->storage_class;
if (SetImageStorageClass(resize_image,storage_class) == MagickFalse)
{
InheritException(exception,&resize_image->exception);
return(MagickFalse);
}
if (support < 0.5)
{
/*
Support too small even for nearest neighbour: reduce to point sampling.
*/
support=(MagickRealType) 0.5;
scale=1.0;
}
contributions=AcquireContributionThreadSet((size_t) (2.0*support+3.0));
if (contributions == (ContributionInfo **) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
return(MagickFalse);
}
status=MagickTrue;
scale=1.0/scale;
(void) ResetMagickMemory(&zero,0,sizeof(zero));
image_view=AcquireCacheView(image);
resize_view=AcquireCacheView(resize_image);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for shared(status)
#endif
for (x=0; x < (ssize_t) resize_image->columns; x++)
{
ssize_t
n,
start,
stop;
MagickRealType
center,
density;
register ContributionInfo
*restrict contribution;
register const IndexPacket
*restrict indexes;
register const PixelPacket
*restrict p;
register IndexPacket
*restrict resize_indexes;
register ssize_t
y;
register PixelPacket
*restrict q;
if (status == MagickFalse)
continue;
center=(MagickRealType) (x+0.5)/x_factor;
start=(ssize_t) MagickMax(center-support+0.5,0.0);
stop=(ssize_t) MagickMin(center+support+0.5,(double) image->columns);
density=0.0;
contribution=contributions[GetOpenMPThreadId()];
for (n=0; n < (stop-start); n++)
{
contribution[n].pixel=start+n;
contribution[n].weight=GetResizeFilterWeight(resize_filter,scale*
((MagickRealType) (start+n)-center+0.5));
density+=contribution[n].weight;
}
if ((density != 0.0) && (density != 1.0))
{
register ssize_t
i;
/*
Normalize.
*/
density=1.0/density;
for (i=0; i < n; i++)
contribution[i].weight*=density;
}
p=GetCacheViewVirtualPixels(image_view,contribution[0].pixel,0,
(size_t) (contribution[n-1].pixel-contribution[0].pixel+1),
image->rows,exception);
q=QueueCacheViewAuthenticPixels(resize_view,x,0,1,resize_image->rows,
exception);
if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewVirtualIndexQueue(image_view);
resize_indexes=GetCacheViewAuthenticIndexQueue(resize_view);
for (y=0; y < (ssize_t) resize_image->rows; y++)
{
ssize_t
j;
MagickPixelPacket
pixel;
MagickRealType
alpha;
register ssize_t
i;
pixel=zero;
if (image->matte == MagickFalse)
{
for (i=0; i < n; i++)
{
j=y*(contribution[n-1].pixel-contribution[0].pixel+1)+
(contribution[i].pixel-contribution[0].pixel);
alpha=contribution[i].weight;
pixel.red+=alpha*(p+j)->red;
pixel.green+=alpha*(p+j)->green;
pixel.blue+=alpha*(p+j)->blue;
pixel.opacity+=alpha*(p+j)->opacity;
}
SetRedPixelComponent(q,ClampRedPixelComponent(&pixel));
SetGreenPixelComponent(q,ClampGreenPixelComponent(&pixel));
SetBluePixelComponent(q,ClampBluePixelComponent(&pixel));
SetOpacityPixelComponent(q,ClampOpacityPixelComponent(&pixel));
if ((image->colorspace == CMYKColorspace) &&
(resize_image->colorspace == CMYKColorspace))
{
for (i=0; i < n; i++)
{
j=y*(contribution[n-1].pixel-contribution[0].pixel+1)+
(contribution[i].pixel-contribution[0].pixel);
alpha=contribution[i].weight;
pixel.index+=alpha*indexes[j];
}
resize_indexes[y]=(IndexPacket) ClampToQuantum(pixel.index);
}
}
else
{
MagickRealType
gamma;
gamma=0.0;
for (i=0; i < n; i++)
{
j=y*(contribution[n-1].pixel-contribution[0].pixel+1)+
(contribution[i].pixel-contribution[0].pixel);
alpha=contribution[i].weight*QuantumScale*
GetAlphaPixelComponent(p+j);
pixel.red+=alpha*(p+j)->red;
pixel.green+=alpha*(p+j)->green;
pixel.blue+=alpha*(p+j)->blue;
pixel.opacity+=contribution[i].weight*(p+j)->opacity;
gamma+=alpha;
}
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
q->red=ClampToQuantum(gamma*GetRedPixelComponent(&pixel));
q->green=ClampToQuantum(gamma*GetGreenPixelComponent(&pixel));
q->blue=ClampToQuantum(gamma*GetBluePixelComponent(&pixel));
SetOpacityPixelComponent(q,ClampOpacityPixelComponent(&pixel));
if ((image->colorspace == CMYKColorspace) &&
(resize_image->colorspace == CMYKColorspace))
{
for (i=0; i < n; i++)
{
j=y*(contribution[n-1].pixel-contribution[0].pixel+1)+
(contribution[i].pixel-contribution[0].pixel);
alpha=contribution[i].weight*QuantumScale*
GetAlphaPixelComponent(p+j);
pixel.index+=alpha*indexes[j];
}
resize_indexes[y]=(IndexPacket) ClampToQuantum(gamma*
GetIndexPixelComponent(&pixel));
}
}
if ((resize_image->storage_class == PseudoClass) &&
(image->storage_class == PseudoClass))
{
i=(ssize_t) (MagickMin(MagickMax(center,(double) start),(double) stop-
1.0)+0.5);
j=y*(contribution[n-1].pixel-contribution[0].pixel+1)+
(contribution[i-start].pixel-contribution[0].pixel);
resize_indexes[y]=indexes[j];
}
q++;
}
if (SyncCacheViewAuthenticPixels(resize_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_HorizontalFilter)
#endif
proceed=SetImageProgress(image,ResizeImageTag,(*quantum)++,span);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
resize_view=DestroyCacheView(resize_view);
image_view=DestroyCacheView(image_view);
contributions=DestroyContributionThreadSet(contributions);
return(status);
}
static MagickBooleanType VerticalFilter(const ResizeFilter *resize_filter,
const Image *image,Image *resize_image,const MagickRealType y_factor,
const MagickSizeType span,MagickOffsetType *quantum,ExceptionInfo *exception)
{
CacheView
*image_view,
*resize_view;
ClassType
storage_class;
ContributionInfo
**restrict contributions;
ssize_t
y;
MagickBooleanType
status;
MagickPixelPacket
zero;
MagickRealType
scale,
support;
/*
Apply filter to resize vertically from image to resize_image.
*/
scale=MagickMax(1.0/y_factor,1.0);
support=scale*GetResizeFilterSupport(resize_filter);
storage_class=support > 0.5 ? DirectClass : image->storage_class;
if (SetImageStorageClass(resize_image,storage_class) == MagickFalse)
{
InheritException(exception,&resize_image->exception);
return(MagickFalse);
}
if (support < 0.5)
{
/*
Support too small even for nearest neighbour: reduce to point sampling.
*/
support=(MagickRealType) 0.5;
scale=1.0;
}
contributions=AcquireContributionThreadSet((size_t) (2.0*support+3.0));
if (contributions == (ContributionInfo **) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
return(MagickFalse);
}
status=MagickTrue;
scale=1.0/scale;
(void) ResetMagickMemory(&zero,0,sizeof(zero));
image_view=AcquireCacheView(image);
resize_view=AcquireCacheView(resize_image);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for shared(status)
#endif
for (y=0; y < (ssize_t) resize_image->rows; y++)
{
ssize_t
n,
start,
stop;
MagickRealType
center,
density;
register ContributionInfo
*restrict contribution;
register const IndexPacket
*restrict indexes;
register const PixelPacket
*restrict p;
register IndexPacket
*restrict resize_indexes;
register ssize_t
x;
register PixelPacket
*restrict q;
if (status == MagickFalse)
continue;
center=(MagickRealType) (y+0.5)/y_factor;
start=(ssize_t) MagickMax(center-support+0.5,0.0);
stop=(ssize_t) MagickMin(center+support+0.5,(double) image->rows);
density=0.0;
contribution=contributions[GetOpenMPThreadId()];
for (n=0; n < (stop-start); n++)
{
contribution[n].pixel=start+n;
contribution[n].weight=GetResizeFilterWeight(resize_filter,scale*
((MagickRealType) (start+n)-center+0.5));
density+=contribution[n].weight;
}
if ((density != 0.0) && (density != 1.0))
{
register ssize_t
i;
/*
Normalize.
*/
density=1.0/density;
for (i=0; i < n; i++)
contribution[i].weight*=density;
}
p=GetCacheViewVirtualPixels(image_view,0,contribution[0].pixel,
image->columns,(size_t) (contribution[n-1].pixel-
contribution[0].pixel+1),exception);
q=QueueCacheViewAuthenticPixels(resize_view,0,y,resize_image->columns,1,
exception);
if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewVirtualIndexQueue(image_view);
resize_indexes=GetCacheViewAuthenticIndexQueue(resize_view);
for (x=0; x < (ssize_t) resize_image->columns; x++)
{
ssize_t
j;
MagickPixelPacket
pixel;
MagickRealType
alpha;
register ssize_t
i;
pixel=zero;
if (image->matte == MagickFalse)
{
for (i=0; i < n; i++)
{
j=(ssize_t) ((contribution[i].pixel-contribution[0].pixel)*
image->columns+x);
alpha=contribution[i].weight;
pixel.red+=alpha*(p+j)->red;
pixel.green+=alpha*(p+j)->green;
pixel.blue+=alpha*(p+j)->blue;
pixel.opacity+=alpha*(p+j)->opacity;
}
SetRedPixelComponent(q,ClampRedPixelComponent(&pixel));
SetGreenPixelComponent(q,ClampGreenPixelComponent(&pixel));
SetBluePixelComponent(q,ClampBluePixelComponent(&pixel));
SetOpacityPixelComponent(q,ClampOpacityPixelComponent(&pixel));
if ((image->colorspace == CMYKColorspace) &&
(resize_image->colorspace == CMYKColorspace))
{
for (i=0; i < n; i++)
{
j=(ssize_t) ((contribution[i].pixel-contribution[0].pixel)*
image->columns+x);
alpha=contribution[i].weight;
pixel.index+=alpha*indexes[j];
}
resize_indexes[x]=(IndexPacket) ClampToQuantum(pixel.index);
}
}
else
{
MagickRealType
gamma;
gamma=0.0;
for (i=0; i < n; i++)
{
j=(ssize_t) ((contribution[i].pixel-contribution[0].pixel)*
image->columns+x);
alpha=contribution[i].weight*QuantumScale*
GetAlphaPixelComponent(p+j);
pixel.red+=alpha*(p+j)->red;
pixel.green+=alpha*(p+j)->green;
pixel.blue+=alpha*(p+j)->blue;
pixel.opacity+=contribution[i].weight*(p+j)->opacity;
gamma+=alpha;
}
gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
q->red=ClampToQuantum(gamma*GetRedPixelComponent(&pixel));
q->green=ClampToQuantum(gamma*GetGreenPixelComponent(&pixel));
q->blue=ClampToQuantum(gamma*GetBluePixelComponent(&pixel));
SetOpacityPixelComponent(q,ClampOpacityPixelComponent(&pixel));
if ((image->colorspace == CMYKColorspace) &&
(resize_image->colorspace == CMYKColorspace))
{
for (i=0; i < n; i++)
{
j=(ssize_t) ((contribution[i].pixel-contribution[0].pixel)*
image->columns+x);
alpha=contribution[i].weight*QuantumScale*
GetAlphaPixelComponent(p+j);
pixel.index+=alpha*indexes[j];
}
resize_indexes[x]=(IndexPacket) ClampToQuantum(gamma*
GetIndexPixelComponent(&pixel));
}
}
if ((resize_image->storage_class == PseudoClass) &&
(image->storage_class == PseudoClass))
{
i=(ssize_t) (MagickMin(MagickMax(center,(double) start),(double) stop-
1.0)+0.5);
j=(ssize_t) ((contribution[i-start].pixel-contribution[0].pixel)*
image->columns+x);
resize_indexes[x]=indexes[j];
}
q++;
}
if (SyncCacheViewAuthenticPixels(resize_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_VerticalFilter)
#endif
proceed=SetImageProgress(image,ResizeImageTag,(*quantum)++,span);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
resize_view=DestroyCacheView(resize_view);
image_view=DestroyCacheView(image_view);
contributions=DestroyContributionThreadSet(contributions);
return(status);
}
MagickExport Image *ResizeImage(const Image *image,const size_t columns,
const size_t rows,const FilterTypes filter,const double blur,
ExceptionInfo *exception)
{
#define WorkLoadFactor 0.265
FilterTypes
filter_type;
Image
*filter_image,
*resize_image;
MagickRealType
x_factor,
y_factor;
MagickSizeType
span;
MagickStatusType
status;
ResizeFilter
*resize_filter;
MagickOffsetType
quantum;
/*
Acquire resize image.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
if ((columns == 0) || (rows == 0))
ThrowImageException(ImageError,"NegativeOrZeroImageSize");
if ((columns == image->columns) && (rows == image->rows) &&
(filter == UndefinedFilter) && (blur == 1.0))
return(CloneImage(image,0,0,MagickTrue,exception));
resize_image=CloneImage(image,columns,rows,MagickTrue,exception);
if (resize_image == (Image *) NULL)
return(resize_image);
/*
Acquire resize filter.
*/
x_factor=(MagickRealType) columns/(MagickRealType) image->columns;
y_factor=(MagickRealType) rows/(MagickRealType) image->rows;
if ((x_factor*y_factor) > WorkLoadFactor)
filter_image=CloneImage(image,columns,image->rows,MagickTrue,exception);
else
filter_image=CloneImage(image,image->columns,rows,MagickTrue,exception);
if (filter_image == (Image *) NULL)
return(DestroyImage(resize_image));
filter_type=LanczosFilter;
if (filter != UndefinedFilter)
filter_type=filter;
else
if ((x_factor == 1.0) && (y_factor == 1.0))
filter_type=PointFilter;
else
if ((image->storage_class == PseudoClass) ||
(image->matte != MagickFalse) || ((x_factor*y_factor) > 1.0))
filter_type=MitchellFilter;
resize_filter=AcquireResizeFilter(image,filter_type,blur,MagickFalse,
exception);
/*
Resize image.
*/
quantum=0;
if ((x_factor*y_factor) > WorkLoadFactor)
{
span=(MagickSizeType) (filter_image->columns+rows);
status=HorizontalFilter(resize_filter,image,filter_image,x_factor,span,
&quantum,exception);
status&=VerticalFilter(resize_filter,filter_image,resize_image,y_factor,
span,&quantum,exception);
}
else
{
span=(MagickSizeType) (filter_image->rows+columns);
status=VerticalFilter(resize_filter,image,filter_image,y_factor,span,
&quantum,exception);
status&=HorizontalFilter(resize_filter,filter_image,resize_image,x_factor,
span,&quantum,exception);
}
/*
Free resources.
*/
filter_image=DestroyImage(filter_image);
resize_filter=DestroyResizeFilter(resize_filter);
if ((status == MagickFalse) || (resize_image == (Image *) NULL))
return((Image *) NULL);
resize_image->type=image->type;
return(resize_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S a m p l e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SampleImage() scales an image to the desired dimensions with pixel
% sampling. Unlike other scaling methods, this method does not introduce
% any additional color into the scaled image.
%
% The format of the SampleImage method is:
%
% Image *SampleImage(const Image *image,const size_t columns,
% const size_t rows,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o columns: the number of columns in the sampled image.
%
% o rows: the number of rows in the sampled image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *SampleImage(const Image *image,const size_t columns,
const size_t rows,ExceptionInfo *exception)
{
#define SampleImageTag "Sample/Image"
CacheView
*image_view,
*sample_view;
Image
*sample_image;
MagickBooleanType
status;
MagickOffsetType
progress;
register ssize_t
x;
ssize_t
*x_offset,
y;
/*
Initialize sampled image attributes.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
if ((columns == 0) || (rows == 0))
ThrowImageException(ImageError,"NegativeOrZeroImageSize");
if ((columns == image->columns) && (rows == image->rows))
return(CloneImage(image,0,0,MagickTrue,exception));
sample_image=CloneImage(image,columns,rows,MagickTrue,exception);
if (sample_image == (Image *) NULL)
return((Image *) NULL);
/*
Allocate scan line buffer and column offset buffers.
*/
x_offset=(ssize_t *) AcquireQuantumMemory((size_t) sample_image->columns,
sizeof(*x_offset));
if (x_offset == (ssize_t *) NULL)
{
sample_image=DestroyImage(sample_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
for (x=0; x < (ssize_t) sample_image->columns; x++)
x_offset[x]=(ssize_t) (((MagickRealType) x+0.5)*image->columns/
sample_image->columns);
/*
Sample each row.
*/
status=MagickTrue;
progress=0;
image_view=AcquireCacheView(image);
sample_view=AcquireCacheView(sample_image);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(dynamic,4) shared(progress,status)
#endif
for (y=0; y < (ssize_t) sample_image->rows; y++)
{
ssize_t
y_offset;
register const IndexPacket
*restrict indexes;
register const PixelPacket
*restrict p;
register IndexPacket
*restrict sample_indexes;
register ssize_t
x;
register PixelPacket
*restrict q;
if (status == MagickFalse)
continue;
y_offset=(ssize_t) (((MagickRealType) y+0.5)*image->rows/sample_image->rows);
p=GetCacheViewVirtualPixels(image_view,0,y_offset,image->columns,1,
exception);
q=QueueCacheViewAuthenticPixels(sample_view,0,y,sample_image->columns,1,
exception);
if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewAuthenticIndexQueue(image_view);
sample_indexes=GetCacheViewAuthenticIndexQueue(sample_view);
/*
Sample each column.
*/
for (x=0; x < (ssize_t) sample_image->columns; x++)
*q++=p[x_offset[x]];
if ((image->storage_class == PseudoClass) ||
(image->colorspace == CMYKColorspace))
for (x=0; x < (ssize_t) sample_image->columns; x++)
sample_indexes[x]=indexes[x_offset[x]];
if (SyncCacheViewAuthenticPixels(sample_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_SampleImage)
#endif
proceed=SetImageProgress(image,SampleImageTag,progress++,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
sample_view=DestroyCacheView(sample_view);
x_offset=(ssize_t *) RelinquishMagickMemory(x_offset);
sample_image->type=image->type;
return(sample_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S c a l e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ScaleImage() changes the size of an image to the given dimensions.
%
% The format of the ScaleImage method is:
%
% Image *ScaleImage(const Image *image,const size_t columns,
% const size_t rows,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o columns: the number of columns in the scaled image.
%
% o rows: the number of rows in the scaled image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *ScaleImage(const Image *image,const size_t columns,
const size_t rows,ExceptionInfo *exception)
{
#define ScaleImageTag "Scale/Image"
CacheView
*image_view,
*scale_view;
Image
*scale_image;
ssize_t
number_rows,
y;
MagickBooleanType
next_column,
next_row,
proceed;
MagickPixelPacket
pixel,
*scale_scanline,
*scanline,
*x_vector,
*y_vector,
zero;
PointInfo
scale,
span;
register ssize_t
i;
/*
Initialize scaled image attributes.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
if ((columns == 0) || (rows == 0))
return((Image *) NULL);
if ((columns == image->columns) && (rows == image->rows))
return(CloneImage(image,0,0,MagickTrue,exception));
scale_image=CloneImage(image,columns,rows,MagickTrue,exception);
if (scale_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(scale_image,DirectClass) == MagickFalse)
{
InheritException(exception,&scale_image->exception);
scale_image=DestroyImage(scale_image);
return((Image *) NULL);
}
/*
Allocate memory.
*/
x_vector=(MagickPixelPacket *) AcquireQuantumMemory((size_t) image->columns,
sizeof(*x_vector));
scanline=x_vector;
if (image->rows != scale_image->rows)
scanline=(MagickPixelPacket *) AcquireQuantumMemory((size_t) image->columns,
sizeof(*scanline));
scale_scanline=(MagickPixelPacket *) AcquireQuantumMemory((size_t)
scale_image->columns,sizeof(*scale_scanline));
y_vector=(MagickPixelPacket *) AcquireQuantumMemory((size_t) image->columns,
sizeof(*y_vector));
if ((scanline == (MagickPixelPacket *) NULL) ||
(scale_scanline == (MagickPixelPacket *) NULL) ||
(x_vector == (MagickPixelPacket *) NULL) ||
(y_vector == (MagickPixelPacket *) NULL))
{
scale_image=DestroyImage(scale_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
/*
Scale image.
*/
number_rows=0;
next_row=MagickTrue;
span.y=1.0;
scale.y=(double) scale_image->rows/(double) image->rows;
(void) ResetMagickMemory(y_vector,0,(size_t) image->columns*
sizeof(*y_vector));
GetMagickPixelPacket(image,&pixel);
(void) ResetMagickMemory(&zero,0,sizeof(zero));
i=0;
image_view=AcquireCacheView(image);
scale_view=AcquireCacheView(scale_image);
for (y=0; y < (ssize_t) scale_image->rows; y++)
{
register const IndexPacket
*restrict indexes;
register const PixelPacket
*restrict p;
register IndexPacket
*restrict scale_indexes;
register ssize_t
x;
register MagickPixelPacket
*restrict s,
*restrict t;
register PixelPacket
*restrict q;
q=QueueCacheViewAuthenticPixels(scale_view,0,y,scale_image->columns,1,
exception);
if (q == (PixelPacket *) NULL)
break;
scale_indexes=GetAuthenticIndexQueue(scale_image);
if (scale_image->rows == image->rows)
{
/*
Read a new scanline.
*/
p=GetCacheViewVirtualPixels(image_view,0,i++,image->columns,1,
exception);
if (p == (const PixelPacket *) NULL)
break;
indexes=GetCacheViewVirtualIndexQueue(image_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
x_vector[x].red=(MagickRealType) GetRedPixelComponent(p);
x_vector[x].green=(MagickRealType) GetGreenPixelComponent(p);
x_vector[x].blue=(MagickRealType) GetBluePixelComponent(p);
if (image->matte != MagickFalse)
x_vector[x].opacity=(MagickRealType) GetOpacityPixelComponent(p);
if (indexes != (IndexPacket *) NULL)
x_vector[x].index=(MagickRealType) indexes[x];
p++;
}
}
else
{
/*
Scale Y direction.
*/
while (scale.y < span.y)
{
if ((next_row != MagickFalse) && (number_rows < (ssize_t) image->rows))
{
/*
Read a new scanline.
*/
p=GetCacheViewVirtualPixels(image_view,0,i++,image->columns,1,
exception);
if (p == (const PixelPacket *) NULL)
break;
indexes=GetCacheViewVirtualIndexQueue(image_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
x_vector[x].red=(MagickRealType) GetRedPixelComponent(p);
x_vector[x].green=(MagickRealType) GetGreenPixelComponent(p);
x_vector[x].blue=(MagickRealType) GetBluePixelComponent(p);
if (image->matte != MagickFalse)
x_vector[x].opacity=(MagickRealType)
GetOpacityPixelComponent(p);
if (indexes != (IndexPacket *) NULL)
x_vector[x].index=(MagickRealType) indexes[x];
p++;
}
number_rows++;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
y_vector[x].red+=scale.y*x_vector[x].red;
y_vector[x].green+=scale.y*x_vector[x].green;
y_vector[x].blue+=scale.y*x_vector[x].blue;
if (scale_image->matte != MagickFalse)
y_vector[x].opacity+=scale.y*x_vector[x].opacity;
if (scale_indexes != (IndexPacket *) NULL)
y_vector[x].index+=scale.y*x_vector[x].index;
}
span.y-=scale.y;
scale.y=(double) scale_image->rows/(double) image->rows;
next_row=MagickTrue;
}
if ((next_row != MagickFalse) && (number_rows < (ssize_t) image->rows))
{
/*
Read a new scanline.
*/
p=GetCacheViewVirtualPixels(image_view,0,i++,image->columns,1,
exception);
if (p == (const PixelPacket *) NULL)
break;
indexes=GetCacheViewVirtualIndexQueue(image_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
x_vector[x].red=(MagickRealType) GetRedPixelComponent(p);
x_vector[x].green=(MagickRealType) GetGreenPixelComponent(p);
x_vector[x].blue=(MagickRealType) GetBluePixelComponent(p);
if (image->matte != MagickFalse)
x_vector[x].opacity=(MagickRealType)
GetOpacityPixelComponent(p);
if (indexes != (IndexPacket *) NULL)
x_vector[x].index=(MagickRealType) indexes[x];
p++;
}
number_rows++;
next_row=MagickFalse;
}
s=scanline;
for (x=0; x < (ssize_t) image->columns; x++)
{
pixel.red=y_vector[x].red+span.y*x_vector[x].red;
pixel.green=y_vector[x].green+span.y*x_vector[x].green;
pixel.blue=y_vector[x].blue+span.y*x_vector[x].blue;
if (image->matte != MagickFalse)
pixel.opacity=y_vector[x].opacity+span.y*x_vector[x].opacity;
if (scale_indexes != (IndexPacket *) NULL)
pixel.index=y_vector[x].index+span.y*x_vector[x].index;
s->red=pixel.red;
s->green=pixel.green;
s->blue=pixel.blue;
if (scale_image->matte != MagickFalse)
s->opacity=pixel.opacity;
if (scale_indexes != (IndexPacket *) NULL)
s->index=pixel.index;
s++;
y_vector[x]=zero;
}
scale.y-=span.y;
if (scale.y <= 0)
{
scale.y=(double) scale_image->rows/(double) image->rows;
next_row=MagickTrue;
}
span.y=1.0;
}
if (scale_image->columns == image->columns)
{
/*
Transfer scanline to scaled image.
*/
s=scanline;
for (x=0; x < (ssize_t) scale_image->columns; x++)
{
q->red=ClampToQuantum(s->red);
q->green=ClampToQuantum(s->green);
q->blue=ClampToQuantum(s->blue);
if (scale_image->matte != MagickFalse)
q->opacity=ClampToQuantum(s->opacity);
if (scale_indexes != (IndexPacket *) NULL)
scale_indexes[x]=(IndexPacket) ClampToQuantum(s->index);
q++;
s++;
}
}
else
{
/*
Scale X direction.
*/
pixel=zero;
next_column=MagickFalse;
span.x=1.0;
s=scanline;
t=scale_scanline;
for (x=0; x < (ssize_t) image->columns; x++)
{
scale.x=(double) scale_image->columns/(double) image->columns;
while (scale.x >= span.x)
{
if (next_column != MagickFalse)
{
pixel=zero;
t++;
}
pixel.red+=span.x*s->red;
pixel.green+=span.x*s->green;
pixel.blue+=span.x*s->blue;
if (image->matte != MagickFalse)
pixel.opacity+=span.x*s->opacity;
if (scale_indexes != (IndexPacket *) NULL)
pixel.index+=span.x*s->index;
t->red=pixel.red;
t->green=pixel.green;
t->blue=pixel.blue;
if (scale_image->matte != MagickFalse)
t->opacity=pixel.opacity;
if (scale_indexes != (IndexPacket *) NULL)
t->index=pixel.index;
scale.x-=span.x;
span.x=1.0;
next_column=MagickTrue;
}
if (scale.x > 0)
{
if (next_column != MagickFalse)
{
pixel=zero;
next_column=MagickFalse;
t++;
}
pixel.red+=scale.x*s->red;
pixel.green+=scale.x*s->green;
pixel.blue+=scale.x*s->blue;
if (scale_image->matte != MagickFalse)
pixel.opacity+=scale.x*s->opacity;
if (scale_indexes != (IndexPacket *) NULL)
pixel.index+=scale.x*s->index;
span.x-=scale.x;
}
s++;
}
if (span.x > 0)
{
s--;
pixel.red+=span.x*s->red;
pixel.green+=span.x*s->green;
pixel.blue+=span.x*s->blue;
if (scale_image->matte != MagickFalse)
pixel.opacity+=span.x*s->opacity;
if (scale_indexes != (IndexPacket *) NULL)
pixel.index+=span.x*s->index;
}
if ((next_column == MagickFalse) &&
((ssize_t) (t-scale_scanline) < (ssize_t) scale_image->columns))
{
t->red=pixel.red;
t->green=pixel.green;
t->blue=pixel.blue;
if (scale_image->matte != MagickFalse)
t->opacity=pixel.opacity;
if (scale_indexes != (IndexPacket *) NULL)
t->index=pixel.index;
}
/*
Transfer scanline to scaled image.
*/
t=scale_scanline;
for (x=0; x < (ssize_t) scale_image->columns; x++)
{
q->red=ClampToQuantum(t->red);
q->green=ClampToQuantum(t->green);
q->blue=ClampToQuantum(t->blue);
if (scale_image->matte != MagickFalse)
q->opacity=ClampToQuantum(t->opacity);
if (scale_indexes != (IndexPacket *) NULL)
scale_indexes[x]=(IndexPacket) ClampToQuantum(t->index);
t++;
q++;
}
}
if (SyncCacheViewAuthenticPixels(scale_view,exception) == MagickFalse)
break;
proceed=SetImageProgress(image,ScaleImageTag,y,image->rows);
if (proceed == MagickFalse)
break;
}
scale_view=DestroyCacheView(scale_view);
image_view=DestroyCacheView(image_view);
/*
Free allocated memory.
*/
y_vector=(MagickPixelPacket *) RelinquishMagickMemory(y_vector);
scale_scanline=(MagickPixelPacket *) RelinquishMagickMemory(scale_scanline);
if (scale_image->rows != image->rows)
scanline=(MagickPixelPacket *) RelinquishMagickMemory(scanline);
x_vector=(MagickPixelPacket *) RelinquishMagickMemory(x_vector);
scale_image->type=image->type;
return(scale_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ S e t R e s i z e F i l t e r S u p p o r t %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SetResizeFilterSupport() specifies which IR filter to use to window
%
% The format of the SetResizeFilterSupport method is:
%
% void SetResizeFilterSupport(ResizeFilter *resize_filter,
% const MagickRealType support)
%
% A description of each parameter follows:
%
% o resize_filter: the resize filter.
%
% o support: the filter spport radius.
%
*/
MagickExport void SetResizeFilterSupport(ResizeFilter *resize_filter,
const MagickRealType support)
{
assert(resize_filter != (ResizeFilter *) NULL);
assert(resize_filter->signature == MagickSignature);
resize_filter->support=support;
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% T h u m b n a i l I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ThumbnailImage() changes the size of an image to the given dimensions and
% removes any associated profiles. The goal is to produce small low cost
% thumbnail images suited for display on the Web.
%
% The format of the ThumbnailImage method is:
%
% Image *ThumbnailImage(const Image *image,const size_t columns,
% const size_t rows,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o columns: the number of columns in the scaled image.
%
% o rows: the number of rows in the scaled image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *ThumbnailImage(const Image *image,
const size_t columns,const size_t rows,ExceptionInfo *exception)
{
#define SampleFactor 5
char
value[MaxTextExtent];
const char
*name;
Image
*thumbnail_image;
MagickRealType
x_factor,
y_factor;
struct stat
attributes;
size_t
version;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
x_factor=(MagickRealType) columns/(MagickRealType) image->columns;
y_factor=(MagickRealType) rows/(MagickRealType) image->rows;
if ((x_factor*y_factor) > 0.1)
thumbnail_image=ZoomImage(image,columns,rows,exception);
else
if (((SampleFactor*columns) < 128) || ((SampleFactor*rows) < 128))
thumbnail_image=ZoomImage(image,columns,rows,exception);
else
{
Image
*sample_image;
sample_image=SampleImage(image,SampleFactor*columns,SampleFactor*rows,
exception);
if (sample_image == (Image *) NULL)
return((Image *) NULL);
thumbnail_image=ZoomImage(sample_image,columns,rows,exception);
sample_image=DestroyImage(sample_image);
}
if (thumbnail_image == (Image *) NULL)
return(thumbnail_image);
(void) ParseAbsoluteGeometry("0x0+0+0",&thumbnail_image->page);
if (thumbnail_image->matte == MagickFalse)
(void) SetImageAlphaChannel(thumbnail_image,OpaqueAlphaChannel);
thumbnail_image->depth=8;
thumbnail_image->interlace=NoInterlace;
/*
Strip all profiles except color profiles.
*/
ResetImageProfileIterator(thumbnail_image);
for (name=GetNextImageProfile(thumbnail_image); name != (const char *) NULL; )
{
if ((LocaleCompare(name,"icc") != 0) && (LocaleCompare(name,"icm") != 0))
{
(void) DeleteImageProfile(thumbnail_image,name);
ResetImageProfileIterator(thumbnail_image);
}
name=GetNextImageProfile(thumbnail_image);
}
(void) DeleteImageProperty(thumbnail_image,"comment");
(void) CopyMagickString(value,image->magick_filename,MaxTextExtent);
if (strstr(image->magick_filename,"//") == (char *) NULL)
(void) FormatMagickString(value,MaxTextExtent,"file://%s",
image->magick_filename);
(void) SetImageProperty(thumbnail_image,"Thumb::URI",value);
(void) CopyMagickString(value,image->magick_filename,MaxTextExtent);
if (GetPathAttributes(image->filename,&attributes) != MagickFalse)
{
(void) FormatMagickString(value,MaxTextExtent,"%.20g",(double)
attributes.st_mtime);
(void) SetImageProperty(thumbnail_image,"Thumb::MTime",value);
}
(void) FormatMagickString(value,MaxTextExtent,"%.20g",(double)
attributes.st_mtime);
(void) FormatMagickSize(GetBlobSize(image),MagickFalse,value);
(void) ConcatenateMagickString(value,"B",MaxTextExtent);
(void) SetImageProperty(thumbnail_image,"Thumb::Size",value);
(void) FormatMagickString(value,MaxTextExtent,"image/%s",image->magick);
LocaleLower(value);
(void) SetImageProperty(thumbnail_image,"Thumb::Mimetype",value);
(void) SetImageProperty(thumbnail_image,"software",
GetMagickVersion(&version));
(void) FormatMagickString(value,MaxTextExtent,"%.20g",(double)
image->magick_columns);
(void) SetImageProperty(thumbnail_image,"Thumb::Image::Width",value);
(void) FormatMagickString(value,MaxTextExtent,"%.20g",(double)
image->magick_rows);
(void) SetImageProperty(thumbnail_image,"Thumb::Image::height",value);
(void) FormatMagickString(value,MaxTextExtent,"%.20g",(double)
GetImageListLength(image));
(void) SetImageProperty(thumbnail_image,"Thumb::Document::Pages",value);
return(thumbnail_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% Z o o m I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ZoomImage() creates a new image that is a scaled size of an existing one.
% It allocates the memory necessary for the new Image structure and returns a
% pointer to the new image. The Point filter gives fast pixel replication,
% Triangle is equivalent to bi-linear interpolation, and Mitchel giver slower,
% very high-quality results. See Graphic Gems III for details on this
% algorithm.
%
% The filter member of the Image structure specifies which image filter to
% use. Blur specifies the blur factor where > 1 is blurry, < 1 is sharp.
%
% The format of the ZoomImage method is:
%
% Image *ZoomImage(const Image *image,const size_t columns,
% const size_t rows,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o columns: An integer that specifies the number of columns in the zoom
% image.
%
% o rows: An integer that specifies the number of rows in the scaled
% image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *ZoomImage(const Image *image,const size_t columns,
const size_t rows,ExceptionInfo *exception)
{
Image
*zoom_image;
assert(image != (const Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
zoom_image=ResizeImage(image,columns,rows,image->filter,image->blur,
exception);
return(zoom_image);
}