blob: 061d38d773868c7081e91ec48a6b206d1db65d5b [file] [log] [blame]
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% DDDD RRRR AAA W W %
% D D R R A A W W %
% D D RRRR AAAAA W W W %
% D D R RN A A WW WW %
% DDDD R R A A W W %
% %
% %
% MagickCore Image Drawing Methods %
% %
% %
% Software Design %
% John Cristy %
% July 1998 %
% %
% %
% Copyright 1999-2010 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% http://www.imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Bill Radcliffe of Corbis (www.corbis.com) contributed the polygon
% rendering code based on Paul Heckbert's "Concave Polygon Scan Conversion",
% Graphics Gems, 1990. Leonard Rosenthal and David Harr of Appligent
% (www.appligent.com) contributed the dash pattern, linecap stroking
% algorithm, and minor rendering improvements.
%
*/
/*
Include declarations.
*/
#include "magick/studio.h"
#include "magick/annotate.h"
#include "magick/artifact.h"
#include "magick/blob.h"
#include "magick/cache.h"
#include "magick/cache-view.h"
#include "magick/color.h"
#include "magick/composite.h"
#include "magick/composite-private.h"
#include "magick/constitute.h"
#include "magick/draw.h"
#include "magick/draw-private.h"
#include "magick/enhance.h"
#include "magick/exception.h"
#include "magick/exception-private.h"
#include "magick/gem.h"
#include "magick/geometry.h"
#include "magick/image-private.h"
#include "magick/list.h"
#include "magick/log.h"
#include "magick/monitor.h"
#include "magick/monitor-private.h"
#include "magick/option.h"
#include "magick/paint.h"
#include "magick/pixel-private.h"
#include "magick/property.h"
#include "magick/resample.h"
#include "magick/resample-private.h"
#include "magick/string_.h"
#include "magick/string-private.h"
#include "magick/thread-private.h"
#include "magick/token.h"
#include "magick/transform.h"
#include "magick/utility.h"
/*
Define declarations.
*/
#define BezierQuantum 200
/*
Typedef declarations.
*/
typedef struct _EdgeInfo
{
SegmentInfo
bounds;
MagickRealType
scanline;
PointInfo
*points;
size_t
number_points;
ssize_t
direction;
MagickBooleanType
ghostline;
size_t
highwater;
} EdgeInfo;
typedef struct _ElementInfo
{
MagickRealType
cx,
cy,
major,
minor,
angle;
} ElementInfo;
typedef struct _PolygonInfo
{
EdgeInfo
*edges;
size_t
number_edges;
} PolygonInfo;
typedef enum
{
MoveToCode,
OpenCode,
GhostlineCode,
LineToCode,
EndCode
} PathInfoCode;
typedef struct _PathInfo
{
PointInfo
point;
PathInfoCode
code;
} PathInfo;
/*
Forward declarations.
*/
static MagickBooleanType
DrawStrokePolygon(Image *,const DrawInfo *,const PrimitiveInfo *);
static PrimitiveInfo
*TraceStrokePolygon(const DrawInfo *,const PrimitiveInfo *);
static size_t
TracePath(PrimitiveInfo *,const char *);
static void
TraceArc(PrimitiveInfo *,const PointInfo,const PointInfo,const PointInfo),
TraceArcPath(PrimitiveInfo *,const PointInfo,const PointInfo,const PointInfo,
const MagickRealType,const MagickBooleanType,const MagickBooleanType),
TraceBezier(PrimitiveInfo *,const size_t),
TraceCircle(PrimitiveInfo *,const PointInfo,const PointInfo),
TraceEllipse(PrimitiveInfo *,const PointInfo,const PointInfo,const PointInfo),
TraceLine(PrimitiveInfo *,const PointInfo,const PointInfo),
TraceRectangle(PrimitiveInfo *,const PointInfo,const PointInfo),
TraceRoundRectangle(PrimitiveInfo *,const PointInfo,const PointInfo,
PointInfo),
TraceSquareLinecap(PrimitiveInfo *,const size_t,const MagickRealType);
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% A c q u i r e D r a w I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% AcquireDrawInfo() returns a DrawInfo structure properly initialized.
%
% The format of the AcquireDrawInfo method is:
%
% DrawInfo *AcquireDrawInfo(void)
%
*/
MagickExport DrawInfo *AcquireDrawInfo(void)
{
DrawInfo
*draw_info;
draw_info=(DrawInfo *) AcquireMagickMemory(sizeof(*draw_info));
if (draw_info == (DrawInfo *) NULL)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
GetDrawInfo((ImageInfo *) NULL,draw_info);
return(draw_info);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% C l o n e D r a w I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% CloneDrawInfo() makes a copy of the given draw info structure. If NULL
% is specified, a new image info structure is created initialized to
% default values.
%
% The format of the CloneDrawInfo method is:
%
% DrawInfo *CloneDrawInfo(const ImageInfo *image_info,
% const DrawInfo *draw_info)
%
% A description of each parameter follows:
%
% o image_info: the image info.
%
% o draw_info: the draw info.
%
*/
MagickExport DrawInfo *CloneDrawInfo(const ImageInfo *image_info,
const DrawInfo *draw_info)
{
DrawInfo
*clone_info;
clone_info=(DrawInfo *) AcquireMagickMemory(sizeof(*clone_info));
if (clone_info == (DrawInfo *) NULL)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
GetDrawInfo(image_info,clone_info);
if (draw_info == (DrawInfo *) NULL)
return(clone_info);
if (clone_info->primitive != (char *) NULL)
(void) CloneString(&clone_info->primitive,draw_info->primitive);
if (draw_info->geometry != (char *) NULL)
(void) CloneString(&clone_info->geometry,draw_info->geometry);
clone_info->viewbox=draw_info->viewbox;
clone_info->affine=draw_info->affine;
clone_info->gravity=draw_info->gravity;
clone_info->fill=draw_info->fill;
clone_info->stroke=draw_info->stroke;
clone_info->stroke_width=draw_info->stroke_width;
if (draw_info->fill_pattern != (Image *) NULL)
clone_info->fill_pattern=CloneImage(draw_info->fill_pattern,0,0,MagickTrue,
&draw_info->fill_pattern->exception);
else
if (draw_info->tile != (Image *) NULL)
clone_info->fill_pattern=CloneImage(draw_info->tile,0,0,MagickTrue,
&draw_info->tile->exception);
clone_info->tile=NewImageList(); /* tile is deprecated */
if (draw_info->stroke_pattern != (Image *) NULL)
clone_info->stroke_pattern=CloneImage(draw_info->stroke_pattern,0,0,
MagickTrue,&draw_info->stroke_pattern->exception);
clone_info->stroke_antialias=draw_info->stroke_antialias;
clone_info->text_antialias=draw_info->text_antialias;
clone_info->fill_rule=draw_info->fill_rule;
clone_info->linecap=draw_info->linecap;
clone_info->linejoin=draw_info->linejoin;
clone_info->miterlimit=draw_info->miterlimit;
clone_info->dash_offset=draw_info->dash_offset;
clone_info->decorate=draw_info->decorate;
clone_info->compose=draw_info->compose;
if (draw_info->text != (char *) NULL)
(void) CloneString(&clone_info->text,draw_info->text);
if (draw_info->font != (char *) NULL)
(void) CloneString(&clone_info->font,draw_info->font);
if (draw_info->metrics != (char *) NULL)
(void) CloneString(&clone_info->metrics,draw_info->metrics);
if (draw_info->family != (char *) NULL)
(void) CloneString(&clone_info->family,draw_info->family);
clone_info->style=draw_info->style;
clone_info->stretch=draw_info->stretch;
clone_info->weight=draw_info->weight;
if (draw_info->encoding != (char *) NULL)
(void) CloneString(&clone_info->encoding,draw_info->encoding);
clone_info->pointsize=draw_info->pointsize;
clone_info->kerning=draw_info->kerning;
clone_info->interline_spacing=draw_info->interline_spacing;
clone_info->interword_spacing=draw_info->interword_spacing;
clone_info->direction=draw_info->direction;
if (draw_info->density != (char *) NULL)
(void) CloneString(&clone_info->density,draw_info->density);
clone_info->align=draw_info->align;
clone_info->undercolor=draw_info->undercolor;
clone_info->border_color=draw_info->border_color;
if (draw_info->server_name != (char *) NULL)
(void) CloneString(&clone_info->server_name,draw_info->server_name);
if (draw_info->dash_pattern != (double *) NULL)
{
register ssize_t
x;
for (x=0; draw_info->dash_pattern[x] != 0.0; x++) ;
clone_info->dash_pattern=(double *) AcquireQuantumMemory((size_t) x+1UL,
sizeof(*clone_info->dash_pattern));
if (clone_info->dash_pattern == (double *) NULL)
ThrowFatalException(ResourceLimitFatalError,
"UnableToAllocateDashPattern");
(void) CopyMagickMemory(clone_info->dash_pattern,draw_info->dash_pattern,
(size_t) (x+1)*sizeof(*clone_info->dash_pattern));
}
clone_info->gradient=draw_info->gradient;
if (draw_info->gradient.stops != (StopInfo *) NULL)
{
size_t
number_stops;
number_stops=clone_info->gradient.number_stops;
clone_info->gradient.stops=(StopInfo *) AcquireQuantumMemory((size_t)
number_stops,sizeof(*clone_info->gradient.stops));
if (clone_info->gradient.stops == (StopInfo *) NULL)
ThrowFatalException(ResourceLimitFatalError,
"UnableToAllocateDashPattern");
(void) CopyMagickMemory(clone_info->gradient.stops,
draw_info->gradient.stops,(size_t) number_stops*
sizeof(*clone_info->gradient.stops));
}
if (draw_info->clip_mask != (char *) NULL)
(void) CloneString(&clone_info->clip_mask,draw_info->clip_mask);
clone_info->bounds=draw_info->bounds;
clone_info->clip_units=draw_info->clip_units;
clone_info->render=draw_info->render;
clone_info->opacity=draw_info->opacity;
clone_info->element_reference=draw_info->element_reference;
clone_info->debug=IsEventLogging();
return(clone_info);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ C o n v e r t P a t h T o P o l y g o n %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ConvertPathToPolygon() converts a path to the more efficient sorted
% rendering form.
%
% The format of the ConvertPathToPolygon method is:
%
% PolygonInfo *ConvertPathToPolygon(const DrawInfo *draw_info,
% const PathInfo *path_info)
%
% A description of each parameter follows:
%
% o Method ConvertPathToPolygon returns the path in a more efficient sorted
% rendering form of type PolygonInfo.
%
% o draw_info: Specifies a pointer to an DrawInfo structure.
%
% o path_info: Specifies a pointer to an PathInfo structure.
%
%
*/
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
static int CompareEdges(const void *x,const void *y)
{
register const EdgeInfo
*p,
*q;
/*
Compare two edges.
*/
p=(const EdgeInfo *) x;
q=(const EdgeInfo *) y;
if ((p->points[0].y-MagickEpsilon) > q->points[0].y)
return(1);
if ((p->points[0].y+MagickEpsilon) < q->points[0].y)
return(-1);
if ((p->points[0].x-MagickEpsilon) > q->points[0].x)
return(1);
if ((p->points[0].x+MagickEpsilon) < q->points[0].x)
return(-1);
if (((p->points[1].x-p->points[0].x)*(q->points[1].y-q->points[0].y)-
(p->points[1].y-p->points[0].y)*(q->points[1].x-q->points[0].x)) > 0.0)
return(1);
return(-1);
}
#if defined(__cplusplus) || defined(c_plusplus)
}
#endif
static void LogPolygonInfo(const PolygonInfo *polygon_info)
{
register EdgeInfo
*p;
register ssize_t
i,
j;
(void) LogMagickEvent(DrawEvent,GetMagickModule()," begin active-edge");
p=polygon_info->edges;
for (i=0; i < (ssize_t) polygon_info->number_edges; i++)
{
(void) LogMagickEvent(DrawEvent,GetMagickModule()," edge %.20g:",
(double) i);
(void) LogMagickEvent(DrawEvent,GetMagickModule()," direction: %s",
p->direction != MagickFalse ? "down" : "up");
(void) LogMagickEvent(DrawEvent,GetMagickModule()," ghostline: %s",
p->ghostline != MagickFalse ? "transparent" : "opaque");
(void) LogMagickEvent(DrawEvent,GetMagickModule(),
" bounds: %g,%g - %g,%g",p->bounds.x1,p->bounds.y1,
p->bounds.x2,p->bounds.y2);
for (j=0; j < (ssize_t) p->number_points; j++)
(void) LogMagickEvent(DrawEvent,GetMagickModule()," %g,%g",
p->points[j].x,p->points[j].y);
p++;
}
(void) LogMagickEvent(DrawEvent,GetMagickModule()," end active-edge");
}
static void ReversePoints(PointInfo *points,const size_t number_points)
{
PointInfo
point;
register ssize_t
i;
for (i=0; i < (ssize_t) (number_points >> 1); i++)
{
point=points[i];
points[i]=points[number_points-(i+1)];
points[number_points-(i+1)]=point;
}
}
static PolygonInfo *ConvertPathToPolygon(
const DrawInfo *magick_unused(draw_info),const PathInfo *path_info)
{
long
direction,
next_direction;
PointInfo
point,
*points;
PolygonInfo
*polygon_info;
SegmentInfo
bounds;
register ssize_t
i,
n;
MagickBooleanType
ghostline;
size_t
edge,
number_edges,
number_points;
/*
Convert a path to the more efficient sorted rendering form.
*/
polygon_info=(PolygonInfo *) AcquireMagickMemory(sizeof(*polygon_info));
if (polygon_info == (PolygonInfo *) NULL)
return((PolygonInfo *) NULL);
number_edges=16;
polygon_info->edges=(EdgeInfo *) AcquireQuantumMemory((size_t) number_edges,
sizeof(*polygon_info->edges));
if (polygon_info->edges == (EdgeInfo *) NULL)
return((PolygonInfo *) NULL);
direction=0;
edge=0;
ghostline=MagickFalse;
n=0;
number_points=0;
points=(PointInfo *) NULL;
(void) ResetMagickMemory(&point,0,sizeof(point));
(void) ResetMagickMemory(&bounds,0,sizeof(bounds));
for (i=0; path_info[i].code != EndCode; i++)
{
if ((path_info[i].code == MoveToCode) || (path_info[i].code == OpenCode) ||
(path_info[i].code == GhostlineCode))
{
/*
Move to.
*/
if ((points != (PointInfo *) NULL) && (n >= 2))
{
if (edge == number_edges)
{
number_edges<<=1;
polygon_info->edges=(EdgeInfo *) ResizeQuantumMemory(
polygon_info->edges,(size_t) number_edges,
sizeof(*polygon_info->edges));
if (polygon_info->edges == (EdgeInfo *) NULL)
return((PolygonInfo *) NULL);
}
polygon_info->edges[edge].number_points=(size_t) n;
polygon_info->edges[edge].scanline=(-1.0);
polygon_info->edges[edge].highwater=0;
polygon_info->edges[edge].ghostline=ghostline;
polygon_info->edges[edge].direction=(ssize_t) (direction > 0);
if (direction < 0)
ReversePoints(points,(size_t) n);
polygon_info->edges[edge].points=points;
polygon_info->edges[edge].bounds=bounds;
polygon_info->edges[edge].bounds.y1=points[0].y;
polygon_info->edges[edge].bounds.y2=points[n-1].y;
points=(PointInfo *) NULL;
ghostline=MagickFalse;
edge++;
}
if (points == (PointInfo *) NULL)
{
number_points=16;
points=(PointInfo *) AcquireQuantumMemory((size_t) number_points,
sizeof(*points));
if (points == (PointInfo *) NULL)
return((PolygonInfo *) NULL);
}
ghostline=path_info[i].code == GhostlineCode ? MagickTrue : MagickFalse;
point=path_info[i].point;
points[0]=point;
bounds.x1=point.x;
bounds.x2=point.x;
direction=0;
n=1;
continue;
}
/*
Line to.
*/
next_direction=((path_info[i].point.y > point.y) ||
((path_info[i].point.y == point.y) &&
(path_info[i].point.x > point.x))) ? 1 : -1;
if ((direction != 0) && (direction != next_direction))
{
/*
New edge.
*/
point=points[n-1];
if (edge == number_edges)
{
number_edges<<=1;
polygon_info->edges=(EdgeInfo *) ResizeQuantumMemory(
polygon_info->edges,(size_t) number_edges,
sizeof(*polygon_info->edges));
if (polygon_info->edges == (EdgeInfo *) NULL)
return((PolygonInfo *) NULL);
}
polygon_info->edges[edge].number_points=(size_t) n;
polygon_info->edges[edge].scanline=(-1.0);
polygon_info->edges[edge].highwater=0;
polygon_info->edges[edge].ghostline=ghostline;
polygon_info->edges[edge].direction=(ssize_t) (direction > 0);
if (direction < 0)
ReversePoints(points,(size_t) n);
polygon_info->edges[edge].points=points;
polygon_info->edges[edge].bounds=bounds;
polygon_info->edges[edge].bounds.y1=points[0].y;
polygon_info->edges[edge].bounds.y2=points[n-1].y;
number_points=16;
points=(PointInfo *) AcquireQuantumMemory((size_t) number_points,
sizeof(*points));
if (points == (PointInfo *) NULL)
return((PolygonInfo *) NULL);
n=1;
ghostline=MagickFalse;
points[0]=point;
bounds.x1=point.x;
bounds.x2=point.x;
edge++;
}
direction=next_direction;
if (points == (PointInfo *) NULL)
continue;
if (n == (ssize_t) number_points)
{
number_points<<=1;
points=(PointInfo *) ResizeQuantumMemory(points,(size_t) number_points,
sizeof(*points));
if (points == (PointInfo *) NULL)
return((PolygonInfo *) NULL);
}
point=path_info[i].point;
points[n]=point;
if (point.x < bounds.x1)
bounds.x1=point.x;
if (point.x > bounds.x2)
bounds.x2=point.x;
n++;
}
if (points != (PointInfo *) NULL)
{
if (n < 2)
points=(PointInfo *) RelinquishMagickMemory(points);
else
{
if (edge == number_edges)
{
number_edges<<=1;
polygon_info->edges=(EdgeInfo *) ResizeQuantumMemory(
polygon_info->edges,(size_t) number_edges,
sizeof(*polygon_info->edges));
if (polygon_info->edges == (EdgeInfo *) NULL)
return((PolygonInfo *) NULL);
}
polygon_info->edges[edge].number_points=(size_t) n;
polygon_info->edges[edge].scanline=(-1.0);
polygon_info->edges[edge].highwater=0;
polygon_info->edges[edge].ghostline=ghostline;
polygon_info->edges[edge].direction=(ssize_t) (direction > 0);
if (direction < 0)
ReversePoints(points,(size_t) n);
polygon_info->edges[edge].points=points;
polygon_info->edges[edge].bounds=bounds;
polygon_info->edges[edge].bounds.y1=points[0].y;
polygon_info->edges[edge].bounds.y2=points[n-1].y;
ghostline=MagickFalse;
edge++;
}
}
polygon_info->number_edges=edge;
qsort(polygon_info->edges,(size_t) polygon_info->number_edges,
sizeof(*polygon_info->edges),CompareEdges);
if (IsEventLogging() != MagickFalse)
LogPolygonInfo(polygon_info);
return(polygon_info);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ C o n v e r t P r i m i t i v e T o P a t h %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ConvertPrimitiveToPath() converts a PrimitiveInfo structure into a vector
% path structure.
%
% The format of the ConvertPrimitiveToPath method is:
%
% PathInfo *ConvertPrimitiveToPath(const DrawInfo *draw_info,
% const PrimitiveInfo *primitive_info)
%
% A description of each parameter follows:
%
% o Method ConvertPrimitiveToPath returns a vector path structure of type
% PathInfo.
%
% o draw_info: a structure of type DrawInfo.
%
% o primitive_info: Specifies a pointer to an PrimitiveInfo structure.
%
%
*/
static void LogPathInfo(const PathInfo *path_info)
{
register const PathInfo
*p;
(void) LogMagickEvent(DrawEvent,GetMagickModule()," begin vector-path");
for (p=path_info; p->code != EndCode; p++)
(void) LogMagickEvent(DrawEvent,GetMagickModule(),
" %g,%g %s",p->point.x,p->point.y,p->code == GhostlineCode ?
"moveto ghostline" : p->code == OpenCode ? "moveto open" :
p->code == MoveToCode ? "moveto" : p->code == LineToCode ? "lineto" :
"?");
(void) LogMagickEvent(DrawEvent,GetMagickModule()," end vector-path");
}
static PathInfo *ConvertPrimitiveToPath(
const DrawInfo *magick_unused(draw_info),const PrimitiveInfo *primitive_info)
{
PathInfo
*path_info;
PathInfoCode
code;
PointInfo
p,
q;
register ssize_t
i,
n;
ssize_t
coordinates,
start;
/*
Converts a PrimitiveInfo structure into a vector path structure.
*/
switch (primitive_info->primitive)
{
case PointPrimitive:
case ColorPrimitive:
case MattePrimitive:
case TextPrimitive:
case ImagePrimitive:
return((PathInfo *) NULL);
default:
break;
}
for (i=0; primitive_info[i].primitive != UndefinedPrimitive; i++) ;
path_info=(PathInfo *) AcquireQuantumMemory((size_t) (2UL*i+3UL),
sizeof(*path_info));
if (path_info == (PathInfo *) NULL)
return((PathInfo *) NULL);
coordinates=0;
n=0;
p.x=(-1.0);
p.y=(-1.0);
q.x=(-1.0);
q.y=(-1.0);
start=0;
for (i=0; primitive_info[i].primitive != UndefinedPrimitive; i++)
{
code=LineToCode;
if (coordinates <= 0)
{
coordinates=(ssize_t) primitive_info[i].coordinates;
p=primitive_info[i].point;
start=n;
code=MoveToCode;
}
coordinates--;
/*
Eliminate duplicate points.
*/
if ((i == 0) || (fabs(q.x-primitive_info[i].point.x) > MagickEpsilon) ||
(fabs(q.y-primitive_info[i].point.y) > MagickEpsilon))
{
path_info[n].code=code;
path_info[n].point=primitive_info[i].point;
q=primitive_info[i].point;
n++;
}
if (coordinates > 0)
continue;
if ((fabs(p.x-primitive_info[i].point.x) <= MagickEpsilon) &&
(fabs(p.y-primitive_info[i].point.y) <= MagickEpsilon))
continue;
/*
Mark the p point as open if it does not match the q.
*/
path_info[start].code=OpenCode;
path_info[n].code=GhostlineCode;
path_info[n].point=primitive_info[i].point;
n++;
path_info[n].code=LineToCode;
path_info[n].point=p;
n++;
}
path_info[n].code=EndCode;
path_info[n].point.x=0.0;
path_info[n].point.y=0.0;
if (IsEventLogging() != MagickFalse)
LogPathInfo(path_info);
return(path_info);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% D e s t r o y D r a w I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DestroyDrawInfo() deallocates memory associated with an DrawInfo
% structure.
%
% The format of the DestroyDrawInfo method is:
%
% DrawInfo *DestroyDrawInfo(DrawInfo *draw_info)
%
% A description of each parameter follows:
%
% o draw_info: the draw info.
%
*/
MagickExport DrawInfo *DestroyDrawInfo(DrawInfo *draw_info)
{
if (draw_info->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
assert(draw_info != (DrawInfo *) NULL);
assert(draw_info->signature == MagickSignature);
if (draw_info->primitive != (char *) NULL)
draw_info->primitive=DestroyString(draw_info->primitive);
if (draw_info->text != (char *) NULL)
draw_info->text=DestroyString(draw_info->text);
if (draw_info->geometry != (char *) NULL)
draw_info->geometry=DestroyString(draw_info->geometry);
if (draw_info->tile != (Image *) NULL)
draw_info->tile=DestroyImage(draw_info->tile);
if (draw_info->fill_pattern != (Image *) NULL)
draw_info->fill_pattern=DestroyImage(draw_info->fill_pattern);
if (draw_info->stroke_pattern != (Image *) NULL)
draw_info->stroke_pattern=DestroyImage(draw_info->stroke_pattern);
if (draw_info->font != (char *) NULL)
draw_info->font=DestroyString(draw_info->font);
if (draw_info->metrics != (char *) NULL)
draw_info->metrics=DestroyString(draw_info->metrics);
if (draw_info->family != (char *) NULL)
draw_info->family=DestroyString(draw_info->family);
if (draw_info->encoding != (char *) NULL)
draw_info->encoding=DestroyString(draw_info->encoding);
if (draw_info->density != (char *) NULL)
draw_info->density=DestroyString(draw_info->density);
if (draw_info->server_name != (char *) NULL)
draw_info->server_name=(char *)
RelinquishMagickMemory(draw_info->server_name);
if (draw_info->dash_pattern != (double *) NULL)
draw_info->dash_pattern=(double *) RelinquishMagickMemory(
draw_info->dash_pattern);
if (draw_info->gradient.stops != (StopInfo *) NULL)
draw_info->gradient.stops=(StopInfo *) RelinquishMagickMemory(
draw_info->gradient.stops);
if (draw_info->clip_mask != (char *) NULL)
draw_info->clip_mask=DestroyString(draw_info->clip_mask);
draw_info->signature=(~MagickSignature);
draw_info=(DrawInfo *) RelinquishMagickMemory(draw_info);
return(draw_info);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ D e s t r o y E d g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DestroyEdge() destroys the specified polygon edge.
%
% The format of the DestroyEdge method is:
%
% ssize_t DestroyEdge(PolygonInfo *polygon_info,const int edge)
%
% A description of each parameter follows:
%
% o polygon_info: Specifies a pointer to an PolygonInfo structure.
%
% o edge: the polygon edge number to destroy.
%
*/
static size_t DestroyEdge(PolygonInfo *polygon_info,
const size_t edge)
{
assert(edge < polygon_info->number_edges);
polygon_info->edges[edge].points=(PointInfo *) RelinquishMagickMemory(
polygon_info->edges[edge].points);
polygon_info->number_edges--;
if (edge < polygon_info->number_edges)
(void) CopyMagickMemory(polygon_info->edges+edge,polygon_info->edges+edge+1,
(size_t) (polygon_info->number_edges-edge)*sizeof(*polygon_info->edges));
return(polygon_info->number_edges);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ D e s t r o y P o l y g o n I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DestroyPolygonInfo() destroys the PolygonInfo data structure.
%
% The format of the DestroyPolygonInfo method is:
%
% PolygonInfo *DestroyPolygonInfo(PolygonInfo *polygon_info)
%
% A description of each parameter follows:
%
% o polygon_info: Specifies a pointer to an PolygonInfo structure.
%
*/
static PolygonInfo *DestroyPolygonInfo(PolygonInfo *polygon_info)
{
register ssize_t
i;
for (i=0; i < (ssize_t) polygon_info->number_edges; i++)
polygon_info->edges[i].points=(PointInfo *)
RelinquishMagickMemory(polygon_info->edges[i].points);
polygon_info->edges=(EdgeInfo *) RelinquishMagickMemory(polygon_info->edges);
return((PolygonInfo *) RelinquishMagickMemory(polygon_info));
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% D r a w A f f i n e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DrawAffineImage() composites the source over the destination image as
% dictated by the affine transform.
%
% The format of the DrawAffineImage method is:
%
% MagickBooleanType DrawAffineImage(Image *image,const Image *source,
% const AffineMatrix *affine)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o source: the source image.
%
% o affine: the affine transform.
%
*/
static SegmentInfo AffineEdge(const Image *image,const AffineMatrix *affine,
const double y,const SegmentInfo *edge)
{
double
intercept,
z;
register double
x;
SegmentInfo
inverse_edge;
/*
Determine left and right edges.
*/
inverse_edge.x1=edge->x1;
inverse_edge.y1=edge->y1;
inverse_edge.x2=edge->x2;
inverse_edge.y2=edge->y2;
z=affine->ry*y+affine->tx;
if (affine->sx > MagickEpsilon)
{
intercept=(-z/affine->sx);
x=intercept+MagickEpsilon;
if (x > inverse_edge.x1)
inverse_edge.x1=x;
intercept=(-z+(double) image->columns)/affine->sx;
x=intercept-MagickEpsilon;
if (x < inverse_edge.x2)
inverse_edge.x2=x;
}
else
if (affine->sx < -MagickEpsilon)
{
intercept=(-z+(double) image->columns)/affine->sx;
x=intercept+MagickEpsilon;
if (x > inverse_edge.x1)
inverse_edge.x1=x;
intercept=(-z/affine->sx);
x=intercept-MagickEpsilon;
if (x < inverse_edge.x2)
inverse_edge.x2=x;
}
else
if ((z < 0.0) || ((size_t) floor(z+0.5) >= image->columns))
{
inverse_edge.x2=edge->x1;
return(inverse_edge);
}
/*
Determine top and bottom edges.
*/
z=affine->sy*y+affine->ty;
if (affine->rx > MagickEpsilon)
{
intercept=(-z/affine->rx);
x=intercept+MagickEpsilon;
if (x > inverse_edge.x1)
inverse_edge.x1=x;
intercept=(-z+(double) image->rows)/affine->rx;
x=intercept-MagickEpsilon;
if (x < inverse_edge.x2)
inverse_edge.x2=x;
}
else
if (affine->rx < -MagickEpsilon)
{
intercept=(-z+(double) image->rows)/affine->rx;
x=intercept+MagickEpsilon;
if (x > inverse_edge.x1)
inverse_edge.x1=x;
intercept=(-z/affine->rx);
x=intercept-MagickEpsilon;
if (x < inverse_edge.x2)
inverse_edge.x2=x;
}
else
if ((z < 0.0) || ((size_t) floor(z+0.5) >= image->rows))
{
inverse_edge.x2=edge->x2;
return(inverse_edge);
}
return(inverse_edge);
}
static AffineMatrix InverseAffineMatrix(const AffineMatrix *affine)
{
AffineMatrix
inverse_affine;
double
determinant;
determinant=1.0/(affine->sx*affine->sy-affine->rx*affine->ry);
inverse_affine.sx=determinant*affine->sy;
inverse_affine.rx=determinant*(-affine->rx);
inverse_affine.ry=determinant*(-affine->ry);
inverse_affine.sy=determinant*affine->sx;
inverse_affine.tx=(-affine->tx)*inverse_affine.sx-affine->ty*
inverse_affine.ry;
inverse_affine.ty=(-affine->tx)*inverse_affine.rx-affine->ty*
inverse_affine.sy;
return(inverse_affine);
}
static inline ssize_t MagickAbsoluteValue(const ssize_t x)
{
if (x < 0)
return(-x);
return(x);
}
static inline double MagickMax(const double x,const double y)
{
if (x > y)
return(x);
return(y);
}
static inline double MagickMin(const double x,const double y)
{
if (x < y)
return(x);
return(y);
}
MagickExport MagickBooleanType DrawAffineImage(Image *image,
const Image *source,const AffineMatrix *affine)
{
AffineMatrix
inverse_affine;
CacheView
*image_view,
*source_view;
ExceptionInfo
*exception;
MagickBooleanType
status;
MagickPixelPacket
zero;
PointInfo
extent[4],
min,
max,
point;
register ssize_t
i;
ResampleFilter
**restrict resample_filter;
SegmentInfo
edge;
ssize_t
y;
/*
Determine bounding box.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(source != (const Image *) NULL);
assert(source->signature == MagickSignature);
assert(affine != (AffineMatrix *) NULL);
extent[0].x=0.0;
extent[0].y=0.0;
extent[1].x=(double) source->columns-1.0;
extent[1].y=0.0;
extent[2].x=(double) source->columns-1.0;
extent[2].y=(double) source->rows-1.0;
extent[3].x=0.0;
extent[3].y=(double) source->rows-1.0;
for (i=0; i < 4; i++)
{
point=extent[i];
extent[i].x=point.x*affine->sx+point.y*affine->ry+affine->tx;
extent[i].y=point.x*affine->rx+point.y*affine->sy+affine->ty;
}
min=extent[0];
max=extent[0];
for (i=1; i < 4; i++)
{
if (min.x > extent[i].x)
min.x=extent[i].x;
if (min.y > extent[i].y)
min.y=extent[i].y;
if (max.x < extent[i].x)
max.x=extent[i].x;
if (max.y < extent[i].y)
max.y=extent[i].y;
}
/*
Affine transform image.
*/
if (SetImageStorageClass(image,DirectClass) == MagickFalse)
return(MagickFalse);
status=MagickTrue;
edge.x1=MagickMax(min.x,0.0);
edge.y1=MagickMax(min.y,0.0);
edge.x2=MagickMin(max.x,(double) image->columns-1.0);
edge.y2=MagickMin(max.y,(double) image->rows-1.0);
inverse_affine=InverseAffineMatrix(affine);
GetMagickPixelPacket(image,&zero);
exception=(&image->exception);
resample_filter=AcquireResampleFilterThreadSet(source,
UndefinedVirtualPixelMethod,MagickTrue,exception);
image_view=AcquireCacheView(image);
source_view=AcquireCacheView(source);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(dynamic,4) shared(status)
#endif
for (y=(ssize_t) ceil(edge.y1-0.5); y <= (ssize_t) floor(edge.y2+0.5); y++)
{
const int
id = GetOpenMPThreadId();
MagickPixelPacket
composite,
pixel;
PointInfo
point;
register IndexPacket
*restrict indexes;
register ssize_t
x;
register PixelPacket
*restrict q;
SegmentInfo
inverse_edge;
ssize_t
x_offset;
inverse_edge=AffineEdge(source,&inverse_affine,(double) y,&edge);
if (inverse_edge.x2 < inverse_edge.x1)
continue;
q=GetCacheViewAuthenticPixels(image_view,(ssize_t) ceil(inverse_edge.x1-
0.5),y,(size_t) ((ssize_t) floor(inverse_edge.x2+0.5)-(ssize_t) floor(
inverse_edge.x1+0.5)+1),1,exception);
if (q == (PixelPacket *) NULL)
continue;
indexes=GetCacheViewAuthenticIndexQueue(image_view);
pixel=zero;
composite=zero;
x_offset=0;
for (x=(ssize_t) ceil(inverse_edge.x1-0.5); x <= (ssize_t) floor(inverse_edge.x2+0.5); x++)
{
point.x=(double) x*inverse_affine.sx+y*inverse_affine.ry+
inverse_affine.tx;
point.y=(double) x*inverse_affine.rx+y*inverse_affine.sy+
inverse_affine.ty;
(void) ResamplePixelColor(resample_filter[id],point.x,point.y,&pixel);
SetMagickPixelPacket(image,q,indexes+x_offset,&composite);
MagickPixelCompositeOver(&pixel,pixel.opacity,&composite,
composite.opacity,&composite);
SetPixelPacket(image,&composite,q,indexes+x_offset);
x_offset++;
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
}
resample_filter=DestroyResampleFilterThreadSet(resample_filter);
source_view=DestroyCacheView(source_view);
image_view=DestroyCacheView(image_view);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ D r a w B o u n d i n g R e c t a n g l e s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DrawBoundingRectangles() draws the bounding rectangles on the image. This
% is only useful for developers debugging the rendering algorithm.
%
% The format of the DrawBoundingRectangles method is:
%
% void DrawBoundingRectangles(Image *image,const DrawInfo *draw_info,
% PolygonInfo *polygon_info)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o draw_info: the draw info.
%
% o polygon_info: Specifies a pointer to a PolygonInfo structure.
%
*/
static void DrawBoundingRectangles(Image *image,const DrawInfo *draw_info,
const PolygonInfo *polygon_info)
{
DrawInfo
*clone_info;
MagickRealType
mid;
PointInfo
end,
resolution,
start;
PrimitiveInfo
primitive_info[6];
register ssize_t
i;
SegmentInfo
bounds;
ssize_t
coordinates;
clone_info=CloneDrawInfo((ImageInfo *) NULL,draw_info);
(void) QueryColorDatabase("#0000",&clone_info->fill,&image->exception);
resolution.x=DefaultResolution;
resolution.y=DefaultResolution;
if (clone_info->density != (char *) NULL)
{
GeometryInfo
geometry_info;
MagickStatusType
flags;
flags=ParseGeometry(clone_info->density,&geometry_info);
resolution.x=geometry_info.rho;
resolution.y=geometry_info.sigma;
if ((flags & SigmaValue) == MagickFalse)
resolution.y=resolution.x;
}
mid=(resolution.x/72.0)*ExpandAffine(&clone_info->affine)*
clone_info->stroke_width/2.0;
bounds.x1=0.0;
bounds.y1=0.0;
bounds.x2=0.0;
bounds.y2=0.0;
if (polygon_info != (PolygonInfo *) NULL)
{
bounds=polygon_info->edges[0].bounds;
for (i=1; i < (ssize_t) polygon_info->number_edges; i++)
{
if (polygon_info->edges[i].bounds.x1 < (double) bounds.x1)
bounds.x1=polygon_info->edges[i].bounds.x1;
if (polygon_info->edges[i].bounds.y1 < (double) bounds.y1)
bounds.y1=polygon_info->edges[i].bounds.y1;
if (polygon_info->edges[i].bounds.x2 > (double) bounds.x2)
bounds.x2=polygon_info->edges[i].bounds.x2;
if (polygon_info->edges[i].bounds.y2 > (double) bounds.y2)
bounds.y2=polygon_info->edges[i].bounds.y2;
}
bounds.x1-=mid;
bounds.x1=bounds.x1 < 0.0 ? 0.0 : bounds.x1 >= (double)
image->columns ? (double) image->columns-1 : bounds.x1;
bounds.y1-=mid;
bounds.y1=bounds.y1 < 0.0 ? 0.0 : bounds.y1 >= (double)
image->rows ? (double) image->rows-1 : bounds.y1;
bounds.x2+=mid;
bounds.x2=bounds.x2 < 0.0 ? 0.0 : bounds.x2 >= (double)
image->columns ? (double) image->columns-1 : bounds.x2;
bounds.y2+=mid;
bounds.y2=bounds.y2 < 0.0 ? 0.0 : bounds.y2 >= (double)
image->rows ? (double) image->rows-1 : bounds.y2;
for (i=0; i < (ssize_t) polygon_info->number_edges; i++)
{
if (polygon_info->edges[i].direction != 0)
(void) QueryColorDatabase("red",&clone_info->stroke,
&image->exception);
else
(void) QueryColorDatabase("green",&clone_info->stroke,
&image->exception);
start.x=(double) (polygon_info->edges[i].bounds.x1-mid);
start.y=(double) (polygon_info->edges[i].bounds.y1-mid);
end.x=(double) (polygon_info->edges[i].bounds.x2+mid);
end.y=(double) (polygon_info->edges[i].bounds.y2+mid);
primitive_info[0].primitive=RectanglePrimitive;
TraceRectangle(primitive_info,start,end);
primitive_info[0].method=ReplaceMethod;
coordinates=(ssize_t) primitive_info[0].coordinates;
primitive_info[coordinates].primitive=UndefinedPrimitive;
(void) DrawPrimitive(image,clone_info,primitive_info);
}
}
(void) QueryColorDatabase("blue",&clone_info->stroke,&image->exception);
start.x=(double) (bounds.x1-mid);
start.y=(double) (bounds.y1-mid);
end.x=(double) (bounds.x2+mid);
end.y=(double) (bounds.y2+mid);
primitive_info[0].primitive=RectanglePrimitive;
TraceRectangle(primitive_info,start,end);
primitive_info[0].method=ReplaceMethod;
coordinates=(ssize_t) primitive_info[0].coordinates;
primitive_info[coordinates].primitive=UndefinedPrimitive;
(void) DrawPrimitive(image,clone_info,primitive_info);
clone_info=DestroyDrawInfo(clone_info);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% D r a w C l i p P a t h %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DrawClipPath() draws the clip path on the image mask.
%
% The format of the DrawClipPath method is:
%
% MagickBooleanType DrawClipPath(Image *image,const DrawInfo *draw_info,
% const char *name)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o draw_info: the draw info.
%
% o name: the name of the clip path.
%
*/
MagickExport MagickBooleanType DrawClipPath(Image *image,
const DrawInfo *draw_info,const char *name)
{
char
clip_mask[MaxTextExtent];
const char
*value;
DrawInfo
*clone_info;
MagickStatusType
status;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(draw_info != (const DrawInfo *) NULL);
(void) FormatMagickString(clip_mask,MaxTextExtent,"%s",name);
value=GetImageArtifact(image,clip_mask);
if (value == (const char *) NULL)
return(MagickFalse);
if (image->clip_mask == (Image *) NULL)
{
Image
*clip_mask;
clip_mask=CloneImage(image,image->columns,image->rows,MagickTrue,
&image->exception);
if (clip_mask == (Image *) NULL)
return(MagickFalse);
(void) SetImageClipMask(image,clip_mask);
clip_mask=DestroyImage(clip_mask);
}
(void) QueryColorDatabase("#00000000",&image->clip_mask->background_color,
&image->exception);
image->clip_mask->background_color.opacity=(Quantum) TransparentOpacity;
(void) SetImageBackgroundColor(image->clip_mask);
if (image->debug != MagickFalse)
(void) LogMagickEvent(DrawEvent,GetMagickModule(),"\nbegin clip-path %s",
draw_info->clip_mask);
clone_info=CloneDrawInfo((ImageInfo *) NULL,draw_info);
(void) CloneString(&clone_info->primitive,value);
(void) QueryColorDatabase("#ffffff",&clone_info->fill,&image->exception);
clone_info->clip_mask=(char *) NULL;
status=DrawImage(image->clip_mask,clone_info);
status|=NegateImage(image->clip_mask,MagickFalse);
clone_info=DestroyDrawInfo(clone_info);
if (image->debug != MagickFalse)
(void) LogMagickEvent(DrawEvent,GetMagickModule(),"end clip-path");
return(status != 0 ? MagickTrue : MagickFalse);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ D r a w D a s h P o l y g o n %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DrawDashPolygon() draws a dashed polygon (line, rectangle, ellipse) on the
% image while respecting the dash offset and dash pattern attributes.
%
% The format of the DrawDashPolygon method is:
%
% MagickBooleanType DrawDashPolygon(const DrawInfo *draw_info,
% const PrimitiveInfo *primitive_info,Image *image)
%
% A description of each parameter follows:
%
% o draw_info: the draw info.
%
% o primitive_info: Specifies a pointer to a PrimitiveInfo structure.
%
% o image: the image.
%
%
*/
static MagickBooleanType DrawDashPolygon(const DrawInfo *draw_info,
const PrimitiveInfo *primitive_info,Image *image)
{
DrawInfo
*clone_info;
MagickRealType
length,
maximum_length,
offset,
scale,
total_length;
MagickStatusType
status;
PrimitiveInfo
*dash_polygon;
register ssize_t
i;
register MagickRealType
dx,
dy;
size_t
number_vertices;
ssize_t
j,
n;
assert(draw_info != (const DrawInfo *) NULL);
if (image->debug != MagickFalse)
(void) LogMagickEvent(DrawEvent,GetMagickModule()," begin draw-dash");
clone_info=CloneDrawInfo((ImageInfo *) NULL,draw_info);
clone_info->miterlimit=0;
for (i=0; primitive_info[i].primitive != UndefinedPrimitive; i++) ;
number_vertices=(size_t) i;
dash_polygon=(PrimitiveInfo *) AcquireQuantumMemory((size_t)
(2UL*number_vertices+1UL),sizeof(*dash_polygon));
if (dash_polygon == (PrimitiveInfo *) NULL)
return(MagickFalse);
dash_polygon[0]=primitive_info[0];
scale=ExpandAffine(&draw_info->affine);
length=scale*(draw_info->dash_pattern[0]-0.5);
offset=draw_info->dash_offset != 0.0 ? scale*draw_info->dash_offset : 0.0;
j=1;
for (n=0; offset > 0.0; j=0)
{
if (draw_info->dash_pattern[n] <= 0.0)
break;
length=scale*(draw_info->dash_pattern[n]+(n == 0 ? -0.5 : 0.5));
if (offset > length)
{
offset-=length;
n++;
length=scale*(draw_info->dash_pattern[n]+(n == 0 ? -0.5 : 0.5));
continue;
}
if (offset < length)
{
length-=offset;
offset=0.0;
break;
}
offset=0.0;
n++;
}
status=MagickTrue;
maximum_length=0.0;
total_length=0.0;
for (i=1; i < (ssize_t) number_vertices; i++)
{
dx=primitive_info[i].point.x-primitive_info[i-1].point.x;
dy=primitive_info[i].point.y-primitive_info[i-1].point.y;
maximum_length=hypot((double) dx,dy);
if (length == 0.0)
{
n++;
if (draw_info->dash_pattern[n] == 0.0)
n=0;
length=scale*(draw_info->dash_pattern[n]+(n == 0 ? -0.5 : 0.5));
}
for (total_length=0.0; (total_length+length) < maximum_length; )
{
total_length+=length;
if ((n & 0x01) != 0)
{
dash_polygon[0]=primitive_info[0];
dash_polygon[0].point.x=(double) (primitive_info[i-1].point.x+dx*
total_length/maximum_length);
dash_polygon[0].point.y=(double) (primitive_info[i-1].point.y+dy*
total_length/maximum_length);
j=1;
}
else
{
if ((j+1) > (ssize_t) (2*number_vertices))
break;
dash_polygon[j]=primitive_info[i-1];
dash_polygon[j].point.x=(double) (primitive_info[i-1].point.x+dx*
total_length/maximum_length);
dash_polygon[j].point.y=(double) (primitive_info[i-1].point.y+dy*
total_length/maximum_length);
dash_polygon[j].coordinates=1;
j++;
dash_polygon[0].coordinates=(size_t) j;
dash_polygon[j].primitive=UndefinedPrimitive;
status|=DrawStrokePolygon(image,clone_info,dash_polygon);
}
n++;
if (draw_info->dash_pattern[n] == 0.0)
n=0;
length=scale*(draw_info->dash_pattern[n]+(n == 0 ? -0.5 : 0.5));
}
length-=(maximum_length-total_length);
if ((n & 0x01) != 0)
continue;
dash_polygon[j]=primitive_info[i];
dash_polygon[j].coordinates=1;
j++;
}
if ((total_length < maximum_length) && ((n & 0x01) == 0) && (j > 1))
{
dash_polygon[j]=primitive_info[i-1];
dash_polygon[j].point.x+=MagickEpsilon;
dash_polygon[j].point.y+=MagickEpsilon;
dash_polygon[j].coordinates=1;
j++;
dash_polygon[0].coordinates=(size_t) j;
dash_polygon[j].primitive=UndefinedPrimitive;
status|=DrawStrokePolygon(image,clone_info,dash_polygon);
}
dash_polygon=(PrimitiveInfo *) RelinquishMagickMemory(dash_polygon);
clone_info=DestroyDrawInfo(clone_info);
if (image->debug != MagickFalse)
(void) LogMagickEvent(DrawEvent,GetMagickModule()," end draw-dash");
return(status != 0 ? MagickTrue : MagickFalse);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% D r a w I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DrawImage() draws a graphic primitive on your image. The primitive
% may be represented as a string or filename. Precede the filename with an
% "at" sign (@) and the contents of the file are drawn on the image. You
% can affect how text is drawn by setting one or more members of the draw
% info structure.
%
% The format of the DrawImage method is:
%
% MagickBooleanType DrawImage(Image *image,const DrawInfo *draw_info)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o draw_info: the draw info.
%
*/
static inline MagickBooleanType IsPoint(const char *point)
{
char
*p;
double
value;
value=strtod(point,&p);
return((value == 0.0) && (p == point) ? MagickFalse : MagickTrue);
}
static inline void TracePoint(PrimitiveInfo *primitive_info,
const PointInfo point)
{
primitive_info->coordinates=1;
primitive_info->point=point;
}
MagickExport MagickBooleanType DrawImage(Image *image,const DrawInfo *draw_info)
{
#define RenderImageTag "Render/Image"
AffineMatrix
affine,
current;
char
key[2*MaxTextExtent],
keyword[MaxTextExtent],
geometry[MaxTextExtent],
name[MaxTextExtent],
pattern[MaxTextExtent],
*primitive,
*token;
const char
*q;
DrawInfo
**graphic_context;
MagickBooleanType
proceed,
status;
MagickRealType
angle,
factor,
primitive_extent;
PointInfo
point;
PixelPacket
start_color;
PrimitiveInfo
*primitive_info;
PrimitiveType
primitive_type;
register const char
*p;
register ssize_t
i,
x;
SegmentInfo
bounds;
size_t
length,
number_points;
ssize_t
j,
k,
n;
/*
Ensure the annotation info is valid.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(draw_info != (DrawInfo *) NULL);
assert(draw_info->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
if ((draw_info->primitive == (char *) NULL) ||
(*draw_info->primitive == '\0'))
return(MagickFalse);
if (image->debug != MagickFalse)
(void) LogMagickEvent(DrawEvent,GetMagickModule(),"begin draw-image");
if (*draw_info->primitive != '@')
primitive=AcquireString(draw_info->primitive);
else
primitive=FileToString(draw_info->primitive+1,~0,&image->exception);
if (primitive == (char *) NULL)
return(MagickFalse);
primitive_extent=(MagickRealType) strlen(primitive);
(void) SetImageArtifact(image,"MVG",primitive);
n=0;
/*
Allocate primitive info memory.
*/
graphic_context=(DrawInfo **) AcquireMagickMemory(
sizeof(*graphic_context));
if (graphic_context == (DrawInfo **) NULL)
{
primitive=DestroyString(primitive);
ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
image->filename);
}
number_points=2047;
primitive_info=(PrimitiveInfo *) AcquireQuantumMemory((size_t) number_points,
sizeof(*primitive_info));
if (primitive_info == (PrimitiveInfo *) NULL)
{
primitive=DestroyString(primitive);
for ( ; n >= 0; n--)
graphic_context[n]=DestroyDrawInfo(graphic_context[n]);
graphic_context=(DrawInfo **) RelinquishMagickMemory(graphic_context);
ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
image->filename);
}
graphic_context[n]=CloneDrawInfo((ImageInfo *) NULL,draw_info);
graphic_context[n]->viewbox=image->page;
if ((image->page.width == 0) || (image->page.height == 0))
{
graphic_context[n]->viewbox.width=image->columns;
graphic_context[n]->viewbox.height=image->rows;
}
token=AcquireString(primitive);
(void) QueryColorDatabase("#000000",&start_color,&image->exception);
if (SetImageStorageClass(image,DirectClass) == MagickFalse)
return(MagickFalse);
status=MagickTrue;
for (q=primitive; *q != '\0'; )
{
/*
Interpret graphic primitive.
*/
GetMagickToken(q,&q,keyword);
if (*keyword == '\0')
break;
if (*keyword == '#')
{
/*
Comment.
*/
while ((*q != '\n') && (*q != '\0'))
q++;
continue;
}
p=q-strlen(keyword)-1;
primitive_type=UndefinedPrimitive;
current=graphic_context[n]->affine;
GetAffineMatrix(&affine);
switch (*keyword)
{
case ';':
break;
case 'a':
case 'A':
{
if (LocaleCompare("affine",keyword) == 0)
{
GetMagickToken(q,&q,token);
affine.sx=StringToDouble(token);
GetMagickToken(q,&q,token);
if (*token == ',')
GetMagickToken(q,&q,token);
affine.rx=StringToDouble(token);
GetMagickToken(q,&q,token);
if (*token == ',')
GetMagickToken(q,&q,token);
affine.ry=StringToDouble(token);
GetMagickToken(q,&q,token);
if (*token == ',')
GetMagickToken(q,&q,token);
affine.sy=StringToDouble(token);
GetMagickToken(q,&q,token);
if (*token == ',')
GetMagickToken(q,&q,token);
affine.tx=StringToDouble(token);
GetMagickToken(q,&q,token);
if (*token == ',')
GetMagickToken(q,&q,token);
affine.ty=StringToDouble(token);
break;
}
if (LocaleCompare("arc",keyword) == 0)
{
primitive_type=ArcPrimitive;
break;
}
status=MagickFalse;
break;
}
case 'b':
case 'B':
{
if (LocaleCompare("bezier",keyword) == 0)
{
primitive_type=BezierPrimitive;
break;
}
if (LocaleCompare("border-color",keyword) == 0)
{
GetMagickToken(q,&q,token);
(void) QueryColorDatabase(token,&graphic_context[n]->border_color,
&image->exception);
break;
}
status=MagickFalse;
break;
}
case 'c':
case 'C':
{
if (LocaleCompare("clip-path",keyword) == 0)
{
/*
Create clip mask.
*/
GetMagickToken(q,&q,token);
(void) CloneString(&graphic_context[n]->clip_mask,token);
(void) DrawClipPath(image,graphic_context[n],
graphic_context[n]->clip_mask);
break;
}
if (LocaleCompare("clip-rule",keyword) == 0)
{
ssize_t
fill_rule;
GetMagickToken(q,&q,token);
fill_rule=ParseMagickOption(MagickFillRuleOptions,MagickFalse,
token);
if (fill_rule == -1)
{
status=MagickFalse;
break;
}
graphic_context[n]->fill_rule=(FillRule) fill_rule;
break;
}
if (LocaleCompare("clip-units",keyword) == 0)
{
ssize_t
clip_units;
GetMagickToken(q,&q,token);
clip_units=ParseMagickOption(MagickClipPathOptions,MagickFalse,
token);
if (clip_units == -1)
{
status=MagickFalse;
break;
}
graphic_context[n]->clip_units=(ClipPathUnits) clip_units;
if (clip_units == ObjectBoundingBox)
{
GetAffineMatrix(&current);
affine.sx=draw_info->bounds.x2;
affine.sy=draw_info->bounds.y2;
affine.tx=draw_info->bounds.x1;
affine.ty=draw_info->bounds.y1;
break;
}
break;
}
if (LocaleCompare("circle",keyword) == 0)
{
primitive_type=CirclePrimitive;
break;
}
if (LocaleCompare("color",keyword) == 0)
{
primitive_type=ColorPrimitive;
break;
}
status=MagickFalse;
break;
}
case 'd':
case 'D':
{
if (LocaleCompare("decorate",keyword) == 0)
{
ssize_t
decorate;
GetMagickToken(q,&q,token);
decorate=ParseMagickOption(MagickDecorateOptions,MagickFalse,
token);
if (decorate == -1)
{
status=MagickFalse;
break;
}
graphic_context[n]->decorate=(DecorationType) decorate;
break;
}
status=MagickFalse;
break;
}
case 'e':
case 'E':
{
if (LocaleCompare("ellipse",keyword) == 0)
{
primitive_type=EllipsePrimitive;
break;
}
if (LocaleCompare("encoding",keyword) == 0)
{
GetMagickToken(q,&q,token);
(void) CloneString(&graphic_context[n]->encoding,token);
break;
}
status=MagickFalse;
break;
}
case 'f':
case 'F':
{
if (LocaleCompare("fill",keyword) == 0)
{
GetMagickToken(q,&q,token);
(void) FormatMagickString(pattern,MaxTextExtent,"%s",token);
if (GetImageArtifact(image,pattern) != (const char *) NULL)
(void) DrawPatternPath(image,draw_info,token,
&graphic_context[n]->fill_pattern);
else
{
status=QueryColorDatabase(token,&graphic_context[n]->fill,
&image->exception);
if (status == MagickFalse)
{
ImageInfo
*pattern_info;
pattern_info=AcquireImageInfo();
(void) CopyMagickString(pattern_info->filename,token,
MaxTextExtent);
graphic_context[n]->fill_pattern=
ReadImage(pattern_info,&image->exception);
CatchException(&image->exception);
pattern_info=DestroyImageInfo(pattern_info);
}
}
break;
}
if (LocaleCompare("fill-opacity",keyword) == 0)
{
GetMagickToken(q,&q,token);
factor=strchr(token,'%') != (char *) NULL ? 0.01 : 1.0;
graphic_context[n]->fill.opacity=ClampToQuantum((MagickRealType)
QuantumRange*(1.0-factor*StringToDouble(token)));
break;
}
if (LocaleCompare("fill-rule",keyword) == 0)
{
ssize_t
fill_rule;
GetMagickToken(q,&q,token);
fill_rule=ParseMagickOption(MagickFillRuleOptions,MagickFalse,
token);
if (fill_rule == -1)
{
status=MagickFalse;
break;
}
graphic_context[n]->fill_rule=(FillRule) fill_rule;
break;
}
if (LocaleCompare("font",keyword) == 0)
{
GetMagickToken(q,&q,token);
(void) CloneString(&graphic_context[n]->font,token);
if (LocaleCompare("none",token) == 0)
graphic_context[n]->font=(char *)
RelinquishMagickMemory(graphic_context[n]->font);
break;
}
if (LocaleCompare("font-family",keyword) == 0)
{
GetMagickToken(q,&q,token);
(void) CloneString(&graphic_context[n]->family,token);
break;
}
if (LocaleCompare("font-size",keyword) == 0)
{
GetMagickToken(q,&q,token);
graphic_context[n]->pointsize=StringToDouble(token);
break;
}
if (LocaleCompare("font-stretch",keyword) == 0)
{
ssize_t
stretch;
GetMagickToken(q,&q,token);
stretch=ParseMagickOption(MagickStretchOptions,MagickFalse,token);
if (stretch == -1)
{
status=MagickFalse;
break;
}
graphic_context[n]->stretch=(StretchType) stretch;
break;
}
if (LocaleCompare("font-style",keyword) == 0)
{
ssize_t
style;
GetMagickToken(q,&q,token);
style=ParseMagickOption(MagickStyleOptions,MagickFalse,token);
if (style == -1)
{
status=MagickFalse;
break;
}
graphic_context[n]->style=(StyleType) style;
break;
}
if (LocaleCompare("font-weight",keyword) == 0)
{
GetMagickToken(q,&q,token);
graphic_context[n]->weight=StringToUnsignedLong(token);
if (LocaleCompare(token,"all") == 0)
graphic_context[n]->weight=0;
if (LocaleCompare(token,"bold") == 0)
graphic_context[n]->weight=700;
if (LocaleCompare(token,"bolder") == 0)
if (graphic_context[n]->weight <= 800)
graphic_context[n]->weight+=100;
if (LocaleCompare(token,"lighter") == 0)
if (graphic_context[n]->weight >= 100)
graphic_context[n]->weight-=100;
if (LocaleCompare(token,"normal") == 0)
graphic_context[n]->weight=400;
break;
}
status=MagickFalse;
break;
}
case 'g':
case 'G':
{
if (LocaleCompare("gradient-units",keyword) == 0)
{
GetMagickToken(q,&q,token);
break;
}
if (LocaleCompare("gravity",keyword) == 0)
{
ssize_t
gravity;
GetMagickToken(q,&q,token);
gravity=ParseMagickOption(MagickGravityOptions,MagickFalse,token);
if (gravity == -1)
{
status=MagickFalse;
break;
}
graphic_context[n]->gravity=(GravityType) gravity;
break;
}
status=MagickFalse;
break;
}
case 'i':
case 'I':
{
if (LocaleCompare("image",keyword) == 0)
{
ssize_t
compose;
primitive_type=ImagePrimitive;
GetMagickToken(q,&q,token);
compose=ParseMagickOption(MagickComposeOptions,MagickFalse,token);
if (compose == -1)
{
status=MagickFalse;
break;
}
graphic_context[n]->compose=(CompositeOperator) compose;
break;
}
if (LocaleCompare("interline-spacing",keyword) == 0)
{
GetMagickToken(q,&q,token);
graphic_context[n]->interline_spacing=StringToDouble(token);
break;
}
if (LocaleCompare("interword-spacing",keyword) == 0)
{
GetMagickToken(q,&q,token);
graphic_context[n]->interword_spacing=StringToDouble(token);
break;
}
status=MagickFalse;
break;
}
case 'k':
case 'K':
{
if (LocaleCompare("kerning",keyword) == 0)
{
GetMagickToken(q,&q,token);
graphic_context[n]->kerning=StringToDouble(token);
break;
}
status=MagickFalse;
break;
}
case 'l':
case 'L':
{
if (LocaleCompare("line",keyword) == 0)
{
primitive_type=LinePrimitive;
break;
}
status=MagickFalse;
break;
}
case 'm':
case 'M':
{
if (LocaleCompare("matte",keyword) == 0)
{
primitive_type=MattePrimitive;
break;
}
status=MagickFalse;
break;
}
case 'o':
case 'O':
{
if (LocaleCompare("offset",keyword) == 0)
{
GetMagickToken(q,&q,token);
break;
}
if (LocaleCompare("opacity",keyword) == 0)
{
GetMagickToken(q,&q,token);
factor=strchr(token,'%') != (char *) NULL ? 0.01 : 1.0;
graphic_context[n]->opacity=ClampToQuantum((MagickRealType)
QuantumRange*(1.0-((1.0-QuantumScale*graphic_context[n]->opacity)*
factor*StringToDouble(token))));
graphic_context[n]->fill.opacity=graphic_context[n]->opacity;
graphic_context[n]->stroke.opacity=graphic_context[n]->opacity;
break;
}
status=MagickFalse;
break;
}
case 'p':
case 'P':
{
if (LocaleCompare("path",keyword) == 0)
{
primitive_type=PathPrimitive;
break;
}
if (LocaleCompare("point",keyword) == 0)
{
primitive_type=PointPrimitive;
break;
}
if (LocaleCompare("polyline",keyword) == 0)
{
primitive_type=PolylinePrimitive;
break;
}
if (LocaleCompare("polygon",keyword) == 0)
{
primitive_type=PolygonPrimitive;
break;
}
if (LocaleCompare("pop",keyword) == 0)
{
GetMagickToken(q,&q,token);
if (LocaleCompare("clip-path",token) == 0)
break;
if (LocaleCompare("defs",token) == 0)
break;
if (LocaleCompare("gradient",token) == 0)
break;
if (LocaleCompare("graphic-context",token) == 0)
{
if (n <= 0)
{
(void) ThrowMagickException(&image->exception,
GetMagickModule(),DrawError,
"UnbalancedGraphicContextPushPop","`%s'",token);
n=0;
break;
}
if (graphic_context[n]->clip_mask != (char *) NULL)
if (LocaleCompare(graphic_context[n]->clip_mask,
graphic_context[n-1]->clip_mask) != 0)
(void) SetImageClipMask(image,(Image *) NULL);
graphic_context[n]=DestroyDrawInfo(graphic_context[n]);
n--;
break;
}
if (LocaleCompare("pattern",token) == 0)
break;
status=MagickFalse;
break;
}
if (LocaleCompare("push",keyword) == 0)
{
GetMagickToken(q,&q,token);
if (LocaleCompare("clip-path",token) == 0)
{
char
name[MaxTextExtent];
GetMagickToken(q,&q,token);
(void) FormatMagickString(name,MaxTextExtent,"%s",token);
for (p=q; *q != '\0'; )
{
GetMagickToken(q,&q,token);
if (LocaleCompare(token,"pop") != 0)
continue;
GetMagickToken(q,(const char **) NULL,token);
if (LocaleCompare(token,"clip-path") != 0)
continue;
break;
}
(void) CopyMagickString(token,p,(size_t) (q-p-4+1));
(void) SetImageArtifact(image,name,token);
GetMagickToken(q,&q,token);
break;
}
if (LocaleCompare("gradient",token) == 0)
{
char
key[2*MaxTextExtent],
name[MaxTextExtent],
type[MaxTextExtent];
ElementInfo
element;
SegmentInfo
segment;
GetMagickToken(q,&q,token);
(void) CopyMagickString(name,token,MaxTextExtent);
GetMagickToken(q,&q,token);
(void) CopyMagickString(type,token,MaxTextExtent);
GetMagickToken(q,&q,token);
segment.x1=StringToDouble(token);
element.cx=StringToDouble(token);
GetMagickToken(q,&q,token);
if (*token == ',')
GetMagickToken(q,&q,token);
segment.y1=StringToDouble(token);
element.cy=StringToDouble(token);
GetMagickToken(q,&q,token);
if (*token == ',')
GetMagickToken(q,&q,token);
segment.x2=StringToDouble(token);
element.major=StringToDouble(token);
GetMagickToken(q,&q,token);
if (*token == ',')
GetMagickToken(q,&q,token);
segment.y2=StringToDouble(token);
element.minor=StringToDouble(token);
if (LocaleCompare(type,"radial") == 0)
{
GetMagickToken(q,&q,token);
if (*token == ',')
GetMagickToken(q,&q,token);
element.angle=StringToDouble(token);
}
for (p=q; *q != '\0'; )
{
GetMagickToken(q,&q,token);
if (LocaleCompare(token,"pop") != 0)
continue;
GetMagickToken(q,(const char **) NULL,token);
if (LocaleCompare(token,"gradient") != 0)
continue;
break;
}
(void) CopyMagickString(token,p,(size_t) (q-p-4+1));
bounds.x1=graphic_context[n]->affine.sx*segment.x1+
graphic_context[n]->affine.ry*segment.y1+
graphic_context[n]->affine.tx;
bounds.y1=graphic_context[n]->affine.rx*segment.x1+
graphic_context[n]->affine.sy*segment.y1+
graphic_context[n]->affine.ty;
bounds.x2=graphic_context[n]->affine.sx*segment.x2+
graphic_context[n]->affine.ry*segment.y2+
graphic_context[n]->affine.tx;
bounds.y2=graphic_context[n]->affine.rx*segment.x2+
graphic_context[n]->affine.sy*segment.y2+
graphic_context[n]->affine.ty;
(void) FormatMagickString(key,MaxTextExtent,"%s",name);
(void) SetImageArtifact(image,key,token);
(void) FormatMagickString(key,MaxTextExtent,"%s-geometry",name);
(void) FormatMagickString(geometry,MaxTextExtent,
"%gx%g%+.15g%+.15g",
MagickMax(fabs(bounds.x2-bounds.x1+1.0),1.0),
MagickMax(fabs(bounds.y2-bounds.y1+1.0),1.0),
bounds.x1,bounds.y1);
(void) SetImageArtifact(image,key,geometry);
GetMagickToken(q,&q,token);
break;
}
if (LocaleCompare("pattern",token) == 0)
{
RectangleInfo
bounds;
GetMagickToken(q,&q,token);
(void) CopyMagickString(name,token,MaxTextExtent);
GetMagickToken(q,&q,token);
bounds.x=(ssize_t) ceil(StringToDouble(token)-0.5);
GetMagickToken(q,&q,token);
if (*token == ',')
GetMagickToken(q,&q,token);
bounds.y=(ssize_t) ceil(StringToDouble(token)-0.5);
GetMagickToken(q,&q,token);
if (*token == ',')
GetMagickToken(q,&q,token);
bounds.width=(size_t) floor(StringToDouble(token)+0.5);
GetMagickToken(q,&q,token);
if (*token == ',')
GetMagickToken(q,&q,token);
bounds.height=(size_t) floor(StringToDouble(token)+0.5);
for (p=q; *q != '\0'; )
{
GetMagickToken(q,&q,token);
if (LocaleCompare(token,"pop") != 0)
continue;
GetMagickToken(q,(const char **) NULL,token);
if (LocaleCompare(token,"pattern") != 0)
continue;
break;
}
(void) CopyMagickString(token,p,(size_t) (q-p-4+1));
(void) FormatMagickString(key,MaxTextExtent,"%s",name);
(void) SetImageArtifact(image,key,token);
(void) FormatMagickString(key,MaxTextExtent,"%s-geometry",name);
(void) FormatMagickString(geometry,MaxTextExtent,
"%.20gx%.20g%+.20g%+.20g",(double) bounds.width,(double)
bounds.height,(double) bounds.x,(double) bounds.y);
(void) SetImageArtifact(image,key,geometry);
GetMagickToken(q,&q,token);
break;
}
if (LocaleCompare("graphic-context",token) == 0)
{
n++;
graphic_context=(DrawInfo **) ResizeQuantumMemory(
graphic_context,(size_t) (n+1),sizeof(*graphic_context));
if (graphic_context == (DrawInfo **) NULL)
{
(void) ThrowMagickException(&image->exception,
GetMagickModule(),ResourceLimitError,
"MemoryAllocationFailed","`%s'",image->filename);
break;
}
graphic_context[n]=CloneDrawInfo((ImageInfo *) NULL,
graphic_context[n-1]);
break;
}
if (LocaleCompare("defs",token) == 0)
break;
status=MagickFalse;
break;
}
status=MagickFalse;
break;
}
case 'r':
case 'R':
{
if (LocaleCompare("rectangle",keyword) == 0)
{
primitive_type=RectanglePrimitive;
break;
}
if (LocaleCompare("rotate",keyword) == 0)
{
GetMagickToken(q,&q,token);
angle=StringToDouble(token);
affine.sx=cos(DegreesToRadians(fmod((double) angle,360.0)));
affine.rx=sin(DegreesToRadians(fmod((double) angle,360.0)));
affine.ry=(-sin(DegreesToRadians(fmod((double) angle,360.0))));
affine.sy=cos(DegreesToRadians(fmod((double) angle,360.0)));
break;
}
if (LocaleCompare("roundRectangle",keyword) == 0)
{
primitive_type=RoundRectanglePrimitive;
break;
}
status=MagickFalse;
break;
}
case 's':
case 'S':
{
if (LocaleCompare("scale",keyword) == 0)
{
GetMagickToken(q,&q,token);
affine.sx=StringToDouble(token);
GetMagickToken(q,&q,token);
if (*token == ',')
GetMagickToken(q,&q,token);
affine.sy=StringToDouble(token);
break;
}
if (LocaleCompare("skewX",keyword) == 0)
{
GetMagickToken(q,&q,token);
angle=StringToDouble(token);
affine.ry=sin(DegreesToRadians(angle));
break;
}
if (LocaleCompare("skewY",keyword) == 0)
{
GetMagickToken(q,&q,token);
angle=StringToDouble(token);
affine.rx=(-tan(DegreesToRadians(angle)/2.0));
break;
}
if (LocaleCompare("stop-color",keyword) == 0)
{
PixelPacket
stop_color;
GetMagickToken(q,&q,token);
(void) QueryColorDatabase(token,&stop_color,&image->exception);
(void) GradientImage(image,LinearGradient,ReflectSpread,
&start_color,&stop_color);
start_color=stop_color;
GetMagickToken(q,&q,token);
break;
}
if (LocaleCompare("stroke",keyword) == 0)
{
GetMagickToken(q,&q,token);
(void) FormatMagickString(pattern,MaxTextExtent,"%s",token);
if (GetImageArtifact(image,pattern) != (const char *) NULL)
(void) DrawPatternPath(image,draw_info,token,
&graphic_context[n]->stroke_pattern);
else
{
status=QueryColorDatabase(token,&graphic_context[n]->stroke,
&image->exception);
if (status == MagickFalse)
{
ImageInfo
*pattern_info;
pattern_info=AcquireImageInfo();
(void) CopyMagickString(pattern_info->filename,token,
MaxTextExtent);
graphic_context[n]->stroke_pattern=
ReadImage(pattern_info,&image->exception);
CatchException(&image->exception);
pattern_info=DestroyImageInfo(pattern_info);
}
}
break;
}
if (LocaleCompare("stroke-antialias",keyword) == 0)
{
GetMagickToken(q,&q,token);
graphic_context[n]->stroke_antialias=
StringToLong(token) != 0 ? MagickTrue : MagickFalse;
break;
}
if (LocaleCompare("stroke-dasharray",keyword) == 0)
{
if (graphic_context[n]->dash_pattern != (double *) NULL)
graphic_context[n]->dash_pattern=(double *)
RelinquishMagickMemory(graphic_context[n]->dash_pattern);
if (IsPoint(q) != MagickFalse)
{
const char
*p;
p=q;
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
for (x=0; IsPoint(token) != MagickFalse; x++)
{
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
}
graphic_context[n]->dash_pattern=(double *)
AcquireQuantumMemory((size_t) (2UL*x+1UL),
sizeof(*graphic_context[n]->dash_pattern));
if (graphic_context[n]->dash_pattern == (double *) NULL)
{
(void) ThrowMagickException(&image->exception,
GetMagickModule(),ResourceLimitError,
"MemoryAllocationFailed","`%s'",image->filename);
break;
}
for (j=0; j < x; j++)
{
GetMagickToken(q,&q,token);
if (*token == ',')
GetMagickToken(q,&q,token);
graphic_context[n]->dash_pattern[j]=StringToDouble(token);
}
if ((x & 0x01) != 0)
for ( ; j < (2*x); j++)
graphic_context[n]->dash_pattern[j]=
graphic_context[n]->dash_pattern[j-x];
graphic_context[n]->dash_pattern[j]=0.0;
break;
}
GetMagickToken(q,&q,token);
break;
}
if (LocaleCompare("stroke-dashoffset",keyword) == 0)
{
GetMagickToken(q,&q,token);
graphic_context[n]->dash_offset=StringToDouble(token);
break;
}
if (LocaleCompare("stroke-linecap",keyword) == 0)
{
ssize_t
linecap;
GetMagickToken(q,&q,token);
linecap=ParseMagickOption(MagickLineCapOptions,MagickFalse,token);
if (linecap == -1)
{
status=MagickFalse;
break;
}
graphic_context[n]->linecap=(LineCap) linecap;
break;
}
if (LocaleCompare("stroke-linejoin",keyword) == 0)
{
ssize_t
linejoin;
GetMagickToken(q,&q,token);
linejoin=ParseMagickOption(MagickLineJoinOptions,MagickFalse,token);
if (linejoin == -1)
{
status=MagickFalse;
break;
}
graphic_context[n]->linejoin=(LineJoin) linejoin;
break;
}
if (LocaleCompare("stroke-miterlimit",keyword) == 0)
{
GetMagickToken(q,&q,token);
graphic_context[n]->miterlimit=StringToUnsignedLong(token);
break;
}
if (LocaleCompare("stroke-opacity",keyword) == 0)
{
GetMagickToken(q,&q,token);
factor=strchr(token,'%') != (char *) NULL ? 0.01 : 1.0;
graphic_context[n]->stroke.opacity=ClampToQuantum((MagickRealType)
QuantumRange*(1.0-factor*StringToDouble(token)));
break;
}
if (LocaleCompare("stroke-width",keyword) == 0)
{
GetMagickToken(q,&q,token);
graphic_context[n]->stroke_width=StringToDouble(token);
break;
}
status=MagickFalse;
break;
}
case 't':
case 'T':
{
if (LocaleCompare("text",keyword) == 0)
{
primitive_type=TextPrimitive;
break;
}
if (LocaleCompare("text-align",keyword) == 0)
{
ssize_t
align;
GetMagickToken(q,&q,token);
align=ParseMagickOption(MagickAlignOptions,MagickFalse,token);
if (align == -1)
{
status=MagickFalse;
break;
}
graphic_context[n]->align=(AlignType) align;
break;
}
if (LocaleCompare("text-anchor",keyword) == 0)
{
ssize_t
align;
GetMagickToken(q,&q,token);
align=ParseMagickOption(MagickAlignOptions,MagickFalse,token);
if (align == -1)
{
status=MagickFalse;
break;
}
graphic_context[n]->align=(AlignType) align;
break;
}
if (LocaleCompare("text-antialias",keyword) == 0)
{
GetMagickToken(q,&q,token);
graphic_context[n]->text_antialias=
StringToLong(token) != 0 ? MagickTrue : MagickFalse;
break;
}
if (LocaleCompare("text-undercolor",keyword) == 0)
{
GetMagickToken(q,&q,token);
(void) QueryColorDatabase(token,&graphic_context[n]->undercolor,
&image->exception);
break;
}
if (LocaleCompare("translate",keyword) == 0)
{
GetMagickToken(q,&q,token);
affine.tx=StringToDouble(token);
GetMagickToken(q,&q,token);
if (*token == ',')
GetMagickToken(q,&q,token);
affine.ty=StringToDouble(token);
break;
}
status=MagickFalse;
break;
}
case 'v':
case 'V':
{
if (LocaleCompare("viewbox",keyword) == 0)
{
GetMagickToken(q,&q,token);
graphic_context[n]->viewbox.x=(ssize_t) ceil(StringToDouble(token)-
0.5);
GetMagickToken(q,&q,token);
if (*token == ',')
GetMagickToken(q,&q,token);
graphic_context[n]->viewbox.y=(ssize_t) ceil(StringToDouble(token)-
0.5);
GetMagickToken(q,&q,token);
if (*token == ',')
GetMagickToken(q,&q,token);
graphic_context[n]->viewbox.width=(size_t) floor(
StringToDouble(token)+0.5);
GetMagickToken(q,&q,token);
if (*token == ',')
GetMagickToken(q,&q,token);
graphic_context[n]->viewbox.height=(size_t) floor(
StringToDouble(token)+0.5);
break;
}
status=MagickFalse;
break;
}
default:
{
status=MagickFalse;
break;
}
}
if (status == MagickFalse)
break;
if ((affine.sx != 1.0) || (affine.rx != 0.0) || (affine.ry != 0.0) ||
(affine.sy != 1.0) || (affine.tx != 0.0) || (affine.ty != 0.0))
{
graphic_context[n]->affine.sx=affine.sx*current.sx+affine.ry*current.rx;
graphic_context[n]->affine.rx=affine.rx*current.sx+affine.sy*current.rx;
graphic_context[n]->affine.ry=affine.sx*current.ry+affine.ry*current.sy;
graphic_context[n]->affine.sy=affine.rx*current.ry+affine.sy*current.sy;
graphic_context[n]->affine.tx=affine.sx*current.tx+affine.ry*current.ty+
affine.tx;
graphic_context[n]->affine.ty=affine.rx*current.tx+affine.sy*current.ty+
affine.ty;
}
if (primitive_type == UndefinedPrimitive)
{
if (image->debug != MagickFalse)
(void) LogMagickEvent(DrawEvent,GetMagickModule()," %.*s",
(int) (q-p),p);
continue;
}
/*
Parse the primitive attributes.
*/
i=0;
j=0;
primitive_info[0].point.x=0.0;
primitive_info[0].point.y=0.0;
for (x=0; *q != '\0'; x++)
{
/*
Define points.
*/
if (IsPoint(q) == MagickFalse)
break;
GetMagickToken(q,&q,token);
point.x=StringToDouble(token);
GetMagickToken(q,&q,token);
if (*token == ',')
GetMagickToken(q,&q,token);
point.y=StringToDouble(token);
GetMagickToken(q,(const char **) NULL,token);
if (*token == ',')
GetMagickToken(q,&q,token);
primitive_info[i].primitive=primitive_type;
primitive_info[i].point=point;
primitive_info[i].coordinates=0;
primitive_info[i].method=FloodfillMethod;
i++;
if (i < (ssize_t) number_points)
continue;
number_points<<=1;
primitive_info=(PrimitiveInfo *) ResizeQuantumMemory(primitive_info,
(size_t) number_points,sizeof(*primitive_info));
if (primitive_info == (PrimitiveInfo *) NULL)
{
(void) ThrowMagickException(&image->exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
break;
}
}
primitive_info[j].primitive=primitive_type;
primitive_info[j].coordinates=(size_t) x;
primitive_info[j].method=FloodfillMethod;
primitive_info[j].text=(char *) NULL;
/*
Circumscribe primitive within a circle.
*/
bounds.x1=primitive_info[j].point.x;
bounds.y1=primitive_info[j].point.y;
bounds.x2=primitive_info[j].point.x;
bounds.y2=primitive_info[j].point.y;
for (k=1; k < (ssize_t) primitive_info[j].coordinates; k++)
{
point=primitive_info[j+k].point;
if (point.x < bounds.x1)
bounds.x1=point.x;
if (point.y < bounds.y1)
bounds.y1=point.y;
if (point.x > bounds.x2)
bounds.x2=point.x;
if (point.y > bounds.y2)
bounds.y2=point.y;
}
/*
Speculate how many points our primitive might consume.
*/
length=primitive_info[j].coordinates;
switch (primitive_type)
{
case RectanglePrimitive:
{
length*=5;
break;
}
case RoundRectanglePrimitive:
{
length*=5+8*BezierQuantum;
break;
}
case BezierPrimitive:
{
if (primitive_info[j].coordinates > 107)
(void) ThrowMagickException(&image->exception,GetMagickModule(),
DrawError,"TooManyBezierCoordinates","`%s'",token);
length=BezierQuantum*primitive_info[j].coordinates;
break;
}
case PathPrimitive:
{
char
*s,
*t;
GetMagickToken(q,&q,token);
length=1;
t=token;
for (s=token; *s != '\0'; s=t)
{
double
value;
value=strtod(s,&t);
if (s == t)
{
t++;
continue;
}
length+=BezierQuantum;
}
break;
}
case CirclePrimitive:
case ArcPrimitive:
case EllipsePrimitive:
{
MagickRealType
alpha,
beta,
radius;
alpha=bounds.x2-bounds.x1;
beta=bounds.y2-bounds.y1;
radius=hypot((double) alpha,(double) beta);
length=2*((size_t) (MagickPI*radius))+6*BezierQuantum+360+1;
break;
}
default:
break;
}
if ((size_t) (i+length) >= number_points)
{
/*
Resize based on speculative points required by primitive.
*/
number_points+=length+1;
primitive_info=(PrimitiveInfo *) ResizeQuantumMemory(primitive_info,
(size_t) number_points,sizeof(*primitive_info));
if (primitive_info == (PrimitiveInfo *) NULL)
{
(void) ThrowMagickException(&image->exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",
image->filename);
break;
}
}
switch (primitive_type)
{
case PointPrimitive:
default:
{
if (primitive_info[j].coordinates != 1)
{
status=MagickFalse;
break;
}
TracePoint(primitive_info+j,primitive_info[j].point);
i=(ssize_t) (j+primitive_info[j].coordinates);
break;
}
case LinePrimitive:
{
if (primitive_info[j].coordinates != 2)
{
status=MagickFalse;
break;
}
TraceLine(primitive_info+j,primitive_info[j].point,
primitive_info[j+1].point);
i=(ssize_t) (j+primitive_info[j].coordinates);
break;
}
case RectanglePrimitive:
{
if (primitive_info[j].coordinates != 2)
{
status=MagickFalse;
break;
}
TraceRectangle(primitive_info+j,primitive_info[j].point,
primitive_info[j+1].point);
i=(ssize_t) (j+primitive_info[j].coordinates);
break;
}
case RoundRectanglePrimitive:
{
if (primitive_info[j].coordinates != 3)
{
status=MagickFalse;
break;
}
TraceRoundRectangle(primitive_info+j,primitive_info[j].point,
primitive_info[j+1].point,primitive_info[j+2].point);
i=(ssize_t) (j+primitive_info[j].coordinates);
break;
}
case ArcPrimitive:
{
if (primitive_info[j].coordinates != 3)
{
primitive_type=UndefinedPrimitive;
break;
}
TraceArc(primitive_info+j,primitive_info[j].point,
primitive_info[j+1].point,primitive_info[j+2].point);
i=(ssize_t) (j+primitive_info[j].coordinates);
break;
}
case EllipsePrimitive:
{
if (primitive_info[j].coordinates != 3)
{
status=MagickFalse;
break;
}
TraceEllipse(primitive_info+j,primitive_info[j].point,
primitive_info[j+1].point,primitive_info[j+2].point);
i=(ssize_t) (j+primitive_info[j].coordinates);
break;
}
case CirclePrimitive:
{
if (primitive_info[j].coordinates != 2)
{
status=MagickFalse;
break;
}
TraceCircle(primitive_info+j,primitive_info[j].point,
primitive_info[j+1].point);
i=(ssize_t) (j+primitive_info[j].coordinates);
break;
}
case PolylinePrimitive:
break;
case PolygonPrimitive:
{
primitive_info[i]=primitive_info[j];
primitive_info[i].coordinates=0;
primitive_info[j].coordinates++;
i++;
break;
}
case BezierPrimitive:
{
if (primitive_info[j].coordinates < 3)
{
status=MagickFalse;
break;
}
TraceBezier(primitive_info+j,primitive_info[j].coordinates);
i=(ssize_t) (j+primitive_info[j].coordinates);
break;
}
case PathPrimitive:
{
i=(ssize_t) (j+TracePath(primitive_info+j,token));
break;
}
case ColorPrimitive:
case MattePrimitive:
{
ssize_t
method;
if (primitive_info[j].coordinates != 1)
{
status=MagickFalse;
break;
}
GetMagickToken(q,&q,token);
method=ParseMagickOption(MagickMethodOptions,MagickFalse,token);
if (method == -1)
{
status=MagickFalse;
break;
}
primitive_info[j].method=(PaintMethod) method;
break;
}
case TextPrimitive:
{
if (primitive_info[j].coordinates != 1)
{
status=MagickFalse;
break;
}
if (*token != ',')
GetMagickToken(q,&q,token);
primitive_info[j].text=AcquireString(token);
break;
}
case ImagePrimitive:
{
if (primitive_info[j].coordinates != 2)
{
status=MagickFalse;
break;
}
GetMagickToken(q,&q,token);
primitive_info[j].text=AcquireString(token);
break;
}
}
if (primitive_info == (PrimitiveInfo *) NULL)
break;
if (image->debug != MagickFalse)
(void) LogMagickEvent(DrawEvent,GetMagickModule()," %.*s",(int) (q-p),p);
if (status == MagickFalse)
break;
primitive_info[i].primitive=UndefinedPrimitive;
if (i == 0)
continue;
/*
Transform points.
*/
for (i=0; primitive_info[i].primitive != UndefinedPrimitive; i++)
{
point=primitive_info[i].point;
primitive_info[i].point.x=graphic_context[n]->affine.sx*point.x+
graphic_context[n]->affine.ry*point.y+graphic_context[n]->affine.tx;
primitive_info[i].point.y=graphic_context[n]->affine.rx*point.x+
graphic_context[n]->affine.sy*point.y+graphic_context[n]->affine.ty;
point=primitive_info[i].point;
if (point.x < graphic_context[n]->bounds.x1)
graphic_context[n]->bounds.x1=point.x;
if (point.y < graphic_context[n]->bounds.y1)
graphic_context[n]->bounds.y1=point.y;
if (point.x > graphic_context[n]->bounds.x2)
graphic_context[n]->bounds.x2=point.x;
if (point.y > graphic_context[n]->bounds.y2)
graphic_context[n]->bounds.y2=point.y;
if (primitive_info[i].primitive == ImagePrimitive)
break;
if (i >= (ssize_t) number_points)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
}
if (graphic_context[n]->render != MagickFalse)
{
if ((n != 0) && (graphic_context[n]->clip_mask != (char *) NULL) &&
(LocaleCompare(graphic_context[n]->clip_mask,
graphic_context[n-1]->clip_mask) != 0))
(void) DrawClipPath(image,graphic_context[n],
graphic_context[n]->clip_mask);
(void) DrawPrimitive(image,graphic_context[n],primitive_info);
}
if (primitive_info->text != (char *) NULL)
primitive_info->text=(char *) RelinquishMagickMemory(
primitive_info->text);
proceed=SetImageProgress(image,RenderImageTag,q-primitive,(MagickSizeType)
primitive_extent);
if (proceed == MagickFalse)
break;
}
if (image->debug != MagickFalse)
(void) LogMagickEvent(DrawEvent,GetMagickModule(),"end draw-image");
/*
Relinquish resources.
*/
token=DestroyString(token);
if (primitive_info != (PrimitiveInfo *) NULL)
primitive_info=(PrimitiveInfo *) RelinquishMagickMemory(primitive_info);
primitive=DestroyString(primitive);
for ( ; n >= 0; n--)
graphic_context[n]=DestroyDrawInfo(graphic_context[n]);
graphic_context=(DrawInfo **) RelinquishMagickMemory(graphic_context);
if (status == MagickFalse)
ThrowBinaryException(DrawError,"NonconformingDrawingPrimitiveDefinition",
keyword);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% D r a w G r a d i e n t I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DrawGradientImage() draws a linear gradient on the image.
%
% The format of the DrawGradientImage method is:
%
% MagickBooleanType DrawGradientImage(Image *image,
% const DrawInfo *draw_info)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o _info: the draw info.
%
*/
static inline MagickRealType GetStopColorOffset(const GradientInfo *gradient,
const ssize_t x,const ssize_t y)
{
switch (gradient->type)
{
case UndefinedGradient:
case LinearGradient:
{
MagickRealType
gamma,
length,
offset,
scale;
PointInfo
p,
q;
const SegmentInfo
*gradient_vector;
gradient_vector=(&gradient->gradient_vector);
p.x=gradient_vector->x2-gradient_vector->x1;
p.y=gradient_vector->y2-gradient_vector->y1;
q.x=(double) x-gradient_vector->x1;
q.y=(double) y-gradient_vector->y1;
length=sqrt(q.x*q.x+q.y*q.y);
gamma=sqrt(p.x*p.x+p.y*p.y)*length;
gamma=1.0/(gamma <= MagickEpsilon ? 1.0 : gamma);
scale=p.x*q.x+p.y*q.y;
offset=gamma*scale*length;
return(offset);
}
case RadialGradient:
{
MagickRealType
length,
offset;
PointInfo
v;
v.x=(double) x-gradient->center.x;
v.y=(double) y-gradient->center.y;
length=sqrt(v.x*v.x+v.y*v.y);
if (gradient->spread == RepeatSpread)
return(length);
offset=length/gradient->radius;
return(offset);
}
}
return(0.0);
}
MagickExport MagickBooleanType DrawGradientImage(Image *image,
const DrawInfo *draw_info)
{
CacheView
*image_view;
const GradientInfo
*gradient;
const SegmentInfo
*gradient_vector;
ExceptionInfo
*exception;
MagickBooleanType
status;
MagickPixelPacket
zero;
MagickRealType
length;
PointInfo
point;
RectangleInfo
bounding_box;
ssize_t
y;
/*
Draw linear or radial gradient on image.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(draw_info != (const DrawInfo *) NULL);
gradient=(&draw_info->gradient);
gradient_vector=(&gradient->gradient_vector);
point.x=gradient_vector->x2-gradient_vector->x1;
point.y=gradient_vector->y2-gradient_vector->y1;
length=sqrt(point.x*point.x+point.y*point.y);
bounding_box=gradient->bounding_box;
status=MagickTrue;
exception=(&image->exception);
GetMagickPixelPacket(image,&zero);
image_view=AcquireCacheView(image);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(dynamic,4) shared(status)
#endif
for (y=bounding_box.y; y < (ssize_t) bounding_box.height; y++)
{
MagickPixelPacket
composite,
pixel;
MagickRealType
alpha,
offset;
register IndexPacket
*restrict indexes;
register ssize_t
i,
x;
register PixelPacket
*restrict q;
ssize_t
j;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
indexes=GetCacheViewAuthenticIndexQueue(image_view);
pixel=zero;
composite=zero;
offset=GetStopColorOffset(gradient,0,y);
if (gradient->type != RadialGradient)
offset/=length;
for (x=bounding_box.x; x < (ssize_t) bounding_box.width; x++)
{
SetMagickPixelPacket(image,q,indexes+x,&pixel);
switch (gradient->spread)
{
case UndefinedSpread:
case PadSpread:
{
if ((x != (ssize_t) ceil(gradient_vector->x1-0.5)) ||
(y != (ssize_t) ceil(gradient_vector->y1-0.5)))
{
offset=GetStopColorOffset(gradient,x,y);
if (gradient->type != RadialGradient)
offset/=length;
}
for (i=0; i < (ssize_t) gradient->number_stops; i++)
if (offset < gradient->stops[i].offset)
break;
if ((offset < 0.0) || (i == 0))
composite=gradient->stops[0].color;
else
if ((offset > 1.0) || (i == (ssize_t) gradient->number_stops))
composite=gradient->stops[gradient->number_stops-1].color;
else
{
j=i;
i--;
alpha=(offset-gradient->stops[i].offset)/
(gradient->stops[j].offset-gradient->stops[i].offset);
MagickPixelCompositeBlend(&gradient->stops[i].color,1.0-alpha,
&gradient->stops[j].color,alpha,&composite);
}
break;
}
case ReflectSpread:
{
if ((x != (ssize_t) ceil(gradient_vector->x1-0.5)) ||
(y != (ssize_t) ceil(gradient_vector->y1-0.5)))
{
offset=GetStopColorOffset(gradient,x,y);
if (gradient->type != RadialGradient)
offset/=length;
}
if (offset < 0.0)
offset=(-offset);
if ((ssize_t) fmod(offset,2.0) == 0)
offset=fmod(offset,1.0);
else
offset=1.0-fmod(offset,1.0);
for (i=0; i < (ssize_t) gradient->number_stops; i++)
if (offset < gradient->stops[i].offset)
break;
if (i == 0)
composite=gradient->stops[0].color;
else
if (i == (ssize_t) gradient->number_stops)
composite=gradient->stops[gradient->number_stops-1].color;
else
{
j=i;
i--;
alpha=(offset-gradient->stops[i].offset)/
(gradient->stops[j].offset-gradient->stops[i].offset);
MagickPixelCompositeBlend(&gradient->stops[i].color,1.0-alpha,
&gradient->stops[j].color,alpha,&composite);
}
break;
}
case RepeatSpread:
{
MagickBooleanType
antialias;
MagickRealType
repeat;
antialias=MagickFalse;
repeat=0.0;
if ((x != (ssize_t) ceil(gradient_vector->x1-0.5)) ||
(y != (ssize_t) ceil(gradient_vector->y1-0.5)))
{
offset=GetStopColorOffset(gradient,x,y);
if (gradient->type == LinearGradient)
{
repeat=fmod(offset,length);
if (repeat < 0.0)
repeat=length-fmod(-repeat,length);
else
repeat=fmod(offset,length);
antialias=(repeat < length) && ((repeat+1.0) > length) ?
MagickTrue : MagickFalse;
offset=repeat/length;
}
else
{
repeat=fmod(offset,gradient->radius);
if (repeat < 0.0)
repeat=gradient->radius-fmod(-repeat,gradient->radius);
else
repeat=fmod(offset,gradient->radius);
antialias=repeat+1.0 > gradient->radius ?
MagickTrue : MagickFalse;
offset=repeat/gradient->radius;
}
}
for (i=0; i < (ssize_t) gradient->number_stops; i++)
if (offset < gradient->stops[i].offset)
break;
if (i == 0)
composite=gradient->stops[0].color;
else
if (i == (ssize_t) gradient->number_stops)
composite=gradient->stops[gradient->number_stops-1].color;
else
{
j=i;
i--;
alpha=(offset-gradient->stops[i].offset)/
(gradient->stops[j].offset-gradient->stops[i].offset);
if (antialias != MagickFalse)
{
if (gradient->type == LinearGradient)
alpha=length-repeat;
else
alpha=gradient->radius-repeat;
i=0;
j=(ssize_t) gradient->number_stops-1L;
}
MagickPixelCompositeBlend(&gradient->stops[i].color,1.0-alpha,
&gradient->stops[j].color,alpha,&composite);
}
break;
}
}
MagickPixelCompositeOver(&composite,composite.opacity,&pixel,
pixel.opacity,&pixel);
SetPixelPacket(image,&pixel,q,indexes+x);
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
}
image_view=DestroyCacheView(image_view);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% D r a w P a t t e r n P a t h %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DrawPatternPath() draws a pattern.
%
% The format of the DrawPatternPath method is:
%
% MagickBooleanType DrawPatternPath(Image *image,const DrawInfo *draw_info,
% const char *name,Image **pattern)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o draw_info: the draw info.
%
% o name: the pattern name.
%
% o image: the image.
%
*/
MagickExport MagickBooleanType DrawPatternPath(Image *image,
const DrawInfo *draw_info,const char *name,Image **pattern)
{
char
property[MaxTextExtent];
const char
*geometry,
*path;
DrawInfo
*clone_info;
ImageInfo
*image_info;
MagickBooleanType
status;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(draw_info != (const DrawInfo *) NULL);
assert(name != (const char *) NULL);
(void) FormatMagickString(property,MaxTextExtent,"%s",name);
path=GetImageArtifact(image,property);
if (path == (const char *) NULL)
return(MagickFalse);
(void) FormatMagickString(property,MaxTextExtent,"%s-geometry",name);
geometry=GetImageArtifact(image,property);
if (geometry == (const char *) NULL)
return(MagickFalse);
if ((*pattern) != (Image *) NULL)
*pattern=DestroyImage(*pattern);
image_info=AcquireImageInfo();
image_info->size=AcquireString(geometry);
*pattern=AcquireImage(image_info);
image_info=DestroyImageInfo(image_info);
(void) QueryColorDatabase("#00000000",&(*pattern)->background_color,
&image->exception);
(void) SetImageBackgroundColor(*pattern);
if (image->debug != MagickFalse)
(void) LogMagickEvent(DrawEvent,GetMagickModule(),
"begin pattern-path %s %s",name,geometry);
clone_info=CloneDrawInfo((ImageInfo *) NULL,draw_info);
clone_info->fill_pattern=NewImageList();
clone_info->stroke_pattern=NewImageList();
(void) CloneString(&clone_info->primitive,path);
status=DrawImage(*pattern,clone_info);
clone_info=DestroyDrawInfo(clone_info);
if (image->debug != MagickFalse)
(void) LogMagickEvent(DrawEvent,GetMagickModule(),"end pattern-path");
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ D r a w P o l y g o n P r i m i t i v e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DrawPolygonPrimitive() draws a polygon on the image.
%
% The format of the DrawPolygonPrimitive method is:
%
% MagickBooleanType DrawPolygonPrimitive(Image *image,
% const DrawInfo *draw_info,const PrimitiveInfo *primitive_info)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o draw_info: the draw info.
%
% o primitive_info: Specifies a pointer to a PrimitiveInfo structure.
%
*/
static PolygonInfo **DestroyPolygonThreadSet(PolygonInfo **polygon_info)
{
register ssize_t
i;
assert(polygon_info != (PolygonInfo **) NULL);
for (i=0; i < (ssize_t) GetOpenMPMaximumThreads(); i++)
if (polygon_info[i] != (PolygonInfo *) NULL)
polygon_info[i]=DestroyPolygonInfo(polygon_info[i]);
polygon_info=(PolygonInfo **) RelinquishMagickMemory(polygon_info);
return(polygon_info);
}
static PolygonInfo **AcquirePolygonThreadSet(const DrawInfo *draw_info,
const PrimitiveInfo *primitive_info)
{
PathInfo
*restrict path_info;
PolygonInfo
**polygon_info;
register ssize_t
i;
size_t
number_threads;
number_threads=GetOpenMPMaximumThreads();
polygon_info=(PolygonInfo **) AcquireQuantumMemory(number_threads,
sizeof(*polygon_info));
if (polygon_info == (PolygonInfo **) NULL)
return((PolygonInfo **) NULL);
(void) ResetMagickMemory(polygon_info,0,GetOpenMPMaximumThreads()*
sizeof(*polygon_info));
path_info=ConvertPrimitiveToPath(draw_info,primitive_info);
if (path_info == (PathInfo *) NULL)
return(DestroyPolygonThreadSet(polygon_info));
for (i=0; i < (ssize_t) number_threads; i++)
{
polygon_info[i]=ConvertPathToPolygon(draw_info,path_info);
if (polygon_info[i] == (PolygonInfo *) NULL)
return(DestroyPolygonThreadSet(polygon_info));
}
path_info=(PathInfo *) RelinquishMagickMemory(path_info);
return(polygon_info);
}
static MagickRealType GetPixelOpacity(PolygonInfo *polygon_info,
const MagickRealType mid,const MagickBooleanType fill,
const FillRule fill_rule,const double x,const double y,
MagickRealType *stroke_opacity)
{
MagickRealType
alpha,
beta,
distance,
subpath_opacity;
PointInfo
delta;
register EdgeInfo
*p;
register const PointInfo
*q;
register ssize_t
i;
ssize_t
j,
winding_number;
/*
Compute fill & stroke opacity for this (x,y) point.
*/
*stroke_opacity=0.0;
subpath_opacity=0.0;
p=polygon_info->edges;
for (j=0; j < (ssize_t) polygon_info->number_edges; j++, p++)
{
if (y <= (p->bounds.y1-mid-0.5))
break;
if (y > (p->bounds.y2+mid+0.5))
{
(void) DestroyEdge(polygon_info,(size_t) j);
continue;
}
if ((x <= (p->bounds.x1-mid-0.5)) || (x > (p->bounds.x2+mid+0.5)))
continue;
i=(ssize_t) MagickMax((double) p->highwater,1.0);
for ( ; i < (ssize_t) p->number_points; i++)
{
if (y <= (p->points[i-1].y-mid-0.5))
break;
if (y > (p->points[i].y+mid+0.5))
continue;
if (p->scanline != y)
{
p->scanline=y;
p->highwater=(size_t) i;
}
/*
Compute distance between a point and an edge.
*/
q=p->points+i-1;
delta.x=(q+1)->x-q->x;
delta.y=(q+1)->y-q->y;
beta=delta.x*(x-q->x)+delta.y*(y-q->y);
if (beta < 0.0)
{
delta.x=x-q->x;
delta.y=y-q->y;
distance=delta.x*delta.x+delta.y*delta.y;
}
else
{
alpha=delta.x*delta.x+delta.y*delta.y;
if (beta > alpha)
{
delta.x=x-(q+1)->x;
delta.y=y-(q+1)->y;
distance=delta.x*delta.x+delta.y*delta.y;
}
else
{
alpha=1.0/alpha;
beta=delta.x*(y-q->y)-delta.y*(x-q->x);
distance=alpha*beta*beta;
}
}
/*
Compute stroke & subpath opacity.
*/
beta=0.0;
if (p->ghostline == MagickFalse)
{
alpha=mid+0.5;
if ((*stroke_opacity < 1.0) &&
(distance <= ((alpha+0.25)*(alpha+0.25))))
{
alpha=mid-0.5;
if (distance <= ((alpha+0.25)*(alpha+0.25)))
*stroke_opacity=1.0;
else
{
beta=1.0;
if (distance != 1.0)
beta=sqrt((double) distance);
alpha=beta-mid-0.5;
if (*stroke_opacity < ((alpha-0.25)*(alpha-0.25)))
*stroke_opacity=(alpha-0.25)*(alpha-0.25);
}
}
}
if ((fill == MagickFalse) || (distance > 1.0) || (subpath_opacity >= 1.0))
continue;
if (distance <= 0.0)
{
subpath_opacity=1.0;
continue;
}
if (distance > 1.0)
continue;
if (beta == 0.0)
{
beta=1.0;
if (distance != 1.0)
beta=sqrt(distance);
}
alpha=beta-1.0;
if (subpath_opacity < (alpha*alpha))
subpath_opacity=alpha*alpha;
}
}
/*
Compute fill opacity.
*/
if (fill == MagickFalse)
return(0.0);
if (subpath_opacity >= 1.0)
return(1.0);
/*
Determine winding number.
*/
winding_number=0;
p=polygon_info->edges;
for (j=0; j < (ssize_t) polygon_info->number_edges; j++, p++)
{
if (y <= p->bounds.y1)
break;
if ((y > p->bounds.y2) || (x <= p->bounds.x1))
continue;
if (x > p->bounds.x2)
{
winding_number+=p->direction ? 1 : -1;
continue;
}
i=(ssize_t) MagickMax((double) p->highwater,1.0);
for ( ; i < (ssize_t) p->number_points; i++)
if (y <= p->points[i].y)
break;
q=p->points+i-1;
if ((((q+1)->x-q->x)*(y-q->y)) <= (((q+1)->y-q->y)*(x-q->x)))
winding_number+=p->direction ? 1 : -1;
}
if (fill_rule != NonZeroRule)
{
if ((MagickAbsoluteValue(winding_number) & 0x01) != 0)
return(1.0);
}
else
if (MagickAbsoluteValue(winding_number) != 0)
return(1.0);
return(subpath_opacity);
}
static MagickBooleanType DrawPolygonPrimitive(Image *image,
const DrawInfo *draw_info,const PrimitiveInfo *primitive_info)
{
CacheView
*image_view;
ExceptionInfo
*exception;
MagickBooleanType
fill,
status;
MagickRealType
mid;
PolygonInfo
**restrict polygon_info;
register EdgeInfo
*p;
register ssize_t
i;
SegmentInfo
bounds;
ssize_t
start,
stop,
y;
/*
Compute bounding box.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(draw_info != (DrawInfo *) NULL);
assert(draw_info->signature == MagickSignature);
assert(primitive_info != (PrimitiveInfo *) NULL);
if (primitive_info->coordinates == 0)
return(MagickTrue);
polygon_info=AcquirePolygonThreadSet(draw_info,primitive_info);
if (polygon_info == (PolygonInfo **) NULL)
return(MagickFalse);
if (0)
DrawBoundingRectangles(image,draw_info,polygon_info[0]);
if (image->debug != MagickFalse)
(void) LogMagickEvent(DrawEvent,GetMagickModule()," begin draw-polygon");
fill=(primitive_info->method == FillToBorderMethod) ||
(primitive_info->method == FloodfillMethod) ? MagickTrue : MagickFalse;
mid=ExpandAffine(&draw_info->affine)*draw_info->stroke_width/2.0;
bounds=polygon_info[0]->edges[0].bounds;
for (i=1; i < (ssize_t) polygon_info[0]->number_edges; i++)
{
p=polygon_info[0]->edges+i;
if (p->bounds.x1 < bounds.x1)
bounds.x1=p->bounds.x1;
if (p->bounds.y1 < bounds.y1)
bounds.y1=p->bounds.y1;
if (p->bounds.x2 > bounds.x2)
bounds.x2=p->bounds.x2;
if (p->bounds.y2 > bounds.y2)
bounds.y2=p->bounds.y2;
}
bounds.x1-=(mid+1.0);
bounds.x1=bounds.x1 < 0.0 ? 0.0 : (size_t) ceil(bounds.x1-0.5) >=
image->columns ? (double) image->columns-1.0 : bounds.x1;
bounds.y1-=(mid+1.0);
bounds.y1=bounds.y1 < 0.0 ? 0.0 : (size_t) ceil(bounds.y1-0.5) >=
image->rows ? (double) image->rows-1.0 : bounds.y1;
bounds.x2+=(mid+1.0);
bounds.x2=bounds.x2 < 0.0 ? 0.0 : (size_t) floor(bounds.x2+0.5) >=
image->columns ? (double) image->columns-1.0 : bounds.x2;
bounds.y2+=(mid+1.0);
bounds.y2=bounds.y2 < 0.0 ? 0.0 : (size_t) floor(bounds.y2+0.5) >=
image->rows ? (double) image->rows-1.0 : bounds.y2;
status=MagickTrue;
exception=(&image->exception);
start=(ssize_t) ceil(bounds.x1-0.5);
stop=(ssize_t) floor(bounds.x2+0.5);
image_view=AcquireCacheView(image);
if (primitive_info->coordinates == 1)
{
/*
Draw point.
*/
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(dynamic,4) shared(status)
#endif
for (y=(ssize_t) ceil(bounds.y1-0.5); y <= (ssize_t) floor(bounds.y2+0.5); y++)
{
MagickBooleanType
sync;
register ssize_t
x;
register PixelPacket
*restrict q;
if (status == MagickFalse)
continue;
x=start;
q=GetCacheViewAuthenticPixels(image_view,x,y,(size_t) (stop-x+1),
1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
for ( ; x <= stop; x++)
{
if ((x == (ssize_t) ceil(primitive_info->point.x-0.5)) &&
(y == (ssize_t) ceil(primitive_info->point.y-0.5)))
(void) GetStrokeColor(draw_info,x,y,q);
q++;
}
sync=SyncCacheViewAuthenticPixels(image_view,exception);
if (sync == MagickFalse)
status=MagickFalse;
}
image_view=DestroyCacheView(image_view);
polygon_info=DestroyPolygonThreadSet(polygon_info);
if (image->debug != MagickFalse)
(void) LogMagickEvent(DrawEvent,GetMagickModule(),
" end draw-polygon");
return(status);
}
/*
Draw polygon or line.
*/
if (image->matte == MagickFalse)
(void) SetImageAlphaChannel(image,OpaqueAlphaChannel);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(dynamic,4) shared(status)
#endif
for (y=(ssize_t) ceil(bounds.y1-0.5); y <= (ssize_t) floor(bounds.y2+0.5); y++)
{
const int
id = GetOpenMPThreadId();
MagickRealType
fill_opacity,
stroke_opacity;
PixelPacket
fill_color,
stroke_color;
register PixelPacket
*restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,start,y,(size_t) (stop-
start+1),1,exception);
if (q == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
for (x=start; x <= stop; x++)
{
/*
Fill and/or stroke.
*/
fill_opacity=GetPixelOpacity(polygon_info[id],mid,fill,
draw_info->fill_rule,(double) x,(double) y,&stroke_opacity);
if (draw_info->stroke_antialias == MagickFalse)
{
fill_opacity=fill_opacity > 0.25 ? 1.0 : 0.0;
stroke_opacity=stroke_opacity > 0.25 ? 1.0 : 0.0;
}
(void) GetFillColor(draw_info,x,y,&fill_color);
fill_opacity=(MagickRealType) (QuantumRange-fill_opacity*(QuantumRange-
fill_color.opacity));
MagickCompositeOver(&fill_color,fill_opacity,q,(MagickRealType)
q->opacity,q);
(void) GetStrokeColor(draw_info,x,y,&stroke_color);
stroke_opacity=(MagickRealType) (QuantumRange-stroke_opacity*
(QuantumRange-stroke_color.opacity));
MagickCompositeOver(&stroke_color,stroke_opacity,q,(MagickRealType)
q->opacity,q);
q++;
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
}
image_view=DestroyCacheView(image_view);
polygon_info=DestroyPolygonThreadSet(polygon_info);
if (image->debug != MagickFalse)
(void) LogMagickEvent(DrawEvent,GetMagickModule()," end draw-polygon");
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% D r a w P r i m i t i v e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DrawPrimitive() draws a primitive (line, rectangle, ellipse) on the image.
%
% The format of the DrawPrimitive method is:
%
% MagickBooleanType DrawPrimitive(Image *image,const DrawInfo *draw_info,
% PrimitiveInfo *primitive_info)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o draw_info: the draw info.
%
% o primitive_info: Specifies a pointer to a PrimitiveInfo structure.
%
*/
static void LogPrimitiveInfo(const PrimitiveInfo *primitive_info)
{
const char
*methods[] =
{
"point",
"replace",
"floodfill",
"filltoborder",
"reset",
"?"
};
PointInfo
p,
q,
point;
register ssize_t
i,
x;
ssize_t
coordinates,
y;
x=(ssize_t) ceil(primitive_info->point.x-0.5);
y=(ssize_t) ceil(primitive_info->point.y-0.5);
switch (primitive_info->primitive)
{
case PointPrimitive:
{
(void) LogMagickEvent(DrawEvent,GetMagickModule(),
"PointPrimitive %.20g,%.20g %s",(double) x,(double) y,
methods[primitive_info->method]);
return;
}
case ColorPrimitive:
{
(void) LogMagickEvent(DrawEvent,GetMagickModule(),
"ColorPrimitive %.20g,%.20g %s",(double) x,(double) y,
methods[primitive_info->method]);
return;
}
case MattePrimitive:
{
(void) LogMagickEvent(DrawEvent,GetMagickModule(),
"MattePrimitive %.20g,%.20g %s",(double) x,(double) y,
methods[primitive_info->method]);
return;
}
case TextPrimitive:
{
(void) LogMagickEvent(DrawEvent,GetMagickModule(),
"TextPrimitive %.20g,%.20g",(double) x,(double) y);
return;
}
case ImagePrimitive:
{
(void) LogMagickEvent(DrawEvent,GetMagickModule(),
"ImagePrimitive %.20g,%.20g",(double) x,(double) y);
return;
}
default:
break;
}
coordinates=0;
p=primitive_info[0].point;
q.x=(-1.0);
q.y=(-1.0);
for (i=0; primitive_info[i].primitive != UndefinedPrimitive; i++)
{
point=primitive_info[i].point;
if (coordinates <= 0)
{
coordinates=(ssize_t) primitive_info[i].coordinates;
(void) LogMagickEvent(DrawEvent,GetMagickModule(),
" begin open (%.20g)",(double) coordinates);
p=point;
}
point=primitive_info[i].point;
if ((fabs(q.x-point.x) > MagickEpsilon) ||
(fabs(q.y-point.y) > MagickEpsilon))
(void) LogMagickEvent(DrawEvent,GetMagickModule(),
" %.20g: %.18g,%.18g",(double) coordinates,point.x,point.y);
else
(void) LogMagickEvent(DrawEvent,GetMagickModule(),
" %.20g: %g,%g (duplicate)",(double) coordinates,point.x,point.y);
q=point;
coordinates--;
if (coordinates > 0)
continue;
if ((fabs(p.x-point.x) > MagickEpsilon) ||
(fabs(p.y-point.y) > MagickEpsilon))
(void) LogMagickEvent(DrawEvent,GetMagickModule()," end last (%.20g)",
(double) coordinates);
else
(void) LogMagickEvent(DrawEvent,GetMagickModule()," end open (%.20g)",
(double) coordinates);
}
}
MagickExport MagickBooleanType DrawPrimitive(Image *image,
const DrawInfo *draw_info,const PrimitiveInfo *primitive_info)
{
CacheView
*image_view;
ExceptionInfo
*exception;
MagickStatusType
status;
register ssize_t
i,
x;
ssize_t
y;
if (image->debug != MagickFalse)
{
(void) LogMagickEvent(DrawEvent,GetMagickModule(),
" begin draw-primitive");
(void) LogMagickEvent(DrawEvent,GetMagickModule(),
" affine: %g,%g,%g,%g,%g,%g",draw_info->affine.sx,
draw_info->affine.rx,draw_info->affine.ry,draw_info->affine.sy,
draw_info->affine.tx,draw_info->affine.ty);
}
status=MagickTrue;
exception=(&image->exception);
x=(ssize_t) ceil(primitive_info->point.x-0.5);
y=(ssize_t) ceil(primitive_info->point.y-0.5);
image_view=AcquireCacheView(image);
switch (primitive_info->primitive)
{
case PointPrimitive:
{
PixelPacket
fill_color;
PixelPacket
*q;
if ((y < 0) || (y >= (ssize_t) image->rows))
break;
if ((x < 0) || (x >= (ssize_t) image->columns))
break;
q=GetCacheViewAuthenticPixels(image_view,x,y,1,1,exception);
if (q == (PixelPacket *) NULL)
break;
(void) GetFillColor(draw_info,x,y,&fill_color);
MagickCompositeOver(&fill_color,(MagickRealType) fill_color.opacity,q,
(MagickRealType) q->opacity,q);
(void) SyncCacheViewAuthenticPixels(image_view,exception);
break;
}
case ColorPrimitive:
{
switch (primitive_info->method)
{
case PointMethod:
default:
{
PixelPacket
*q;
q=GetCacheViewAuthenticPixels(image_view,x,y,1,1,exception);
if (q == (PixelPacket *) NULL)
break;
(void) GetFillColor(draw_info,x,y,q);
(void) SyncCacheViewAuthenticPixels(image_view,exception);
break;
}
case ReplaceMethod:
{
MagickBooleanType
sync;
PixelPacket
target;
(void) GetOneCacheViewVirtualPixel(image_view,x,y,&target,exception);
for (y=0; y < (ssize_t) image->rows; y++)
{
register PixelPacket
*restrict q;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,
exception);
if (q == (PixelPacket *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
if (IsColorSimilar(image,q,&target) == MagickFalse)
{
q++;
continue;
}
(void) GetFillColor(draw_info,x,y,q);
q++;
}
sync=SyncCacheViewAuthenticPixels(image_view,exception);
if (sync == MagickFalse)
break;
}
break;
}
case FloodfillMethod:
case FillToBorderMethod:
{
MagickPixelPacket
target;
(void) GetOneVirtualMagickPixel(image,x,y,&target,exception);
if (primitive_info->method == FillToBorderMethod)
{
target.red=(MagickRealType) draw_info->border_color.red;
target.green=(MagickRealType) draw_info->border_color.green;
target.blue=(MagickRealType) draw_info->border_color.blue;
}
(void) FloodfillPaintImage(image,DefaultChannels,draw_info,&target,x,
y,primitive_info->method == FloodfillMethod ? MagickFalse :
MagickTrue);
break;
}
case ResetMethod:
{
MagickBooleanType
sync;
for (y=0; y < (ssize_t) image->rows; y++)
{
register PixelPacket
*restrict q;
register ssize_t
x;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,
exception);
if (q == (PixelPacket *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
(void) GetFillColor(draw_info,x,y,q);
q++;
}
sync=SyncCacheViewAuthenticPixels(image_view,exception);
if (sync == MagickFalse)
break;
}
break;
}
}
break;
}
case MattePrimitive:
{
if (image->matte == MagickFalse)
(void) SetImageAlphaChannel(image,OpaqueAlphaChannel);
switch (primitive_info->method)
{
case PointMethod:
default:
{
PixelPacket
pixel;
PixelPacket
*q;
q=GetCacheViewAuthenticPixels(image_view,x,y,1,1,exception);
if (q == (PixelPacket *) NULL)
break;
(void) GetFillColor(draw_info,x,y,&pixel);
q->opacity=pixel.opacity;
(void) SyncCacheViewAuthenticPixels(image_view,exception);
break;
}
case ReplaceMethod:
{
MagickBooleanType
sync;
PixelPacket
pixel,
target;
(void) GetOneCacheViewVirtualPixel(image_view,x,y,&target,exception);
for (y=0; y < (ssize_t) image->rows; y++)
{
register PixelPacket
*restrict q;
register ssize_t
x;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,
exception);
if (q == (PixelPacket *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
if (IsColorSimilar(image,q,&target) == MagickFalse)
{
q++;
continue;
}
(void) GetFillColor(draw_info,x,y,&pixel);
q->opacity=pixel.opacity;
q++;
}
sync=SyncCacheViewAuthenticPixels(image_view,exception);
if (sync == MagickFalse)
break;
}
break;
}
case FloodfillMethod:
case FillToBorderMethod:
{
MagickPixelPacket
target;
(void) GetOneVirtualMagickPixel(image,x,y,&target,exception);
if (primitive_info->method == FillToBorderMethod)
{
target.red=(MagickRealType) draw_info->border_color.red;
target.green=(MagickRealType) draw_info->border_color.green;
target.blue=(MagickRealType) draw_info->border_color.blue;
}
(void) FloodfillPaintImage(image,OpacityChannel,draw_info,&target,x,y,
primitive_info->method == FloodfillMethod ? MagickFalse :
MagickTrue);
break;
}
case ResetMethod:
{
MagickBooleanType
sync;
PixelPacket
pixel;
for (y=0; y < (ssize_t) image->rows; y++)
{
register PixelPacket
*restrict q;
register ssize_t
x;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,
exception);
if (q == (PixelPacket *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
(void) GetFillColor(draw_info,x,y,&pixel);
q->opacity=pixel.opacity;
q++;
}
sync=SyncCacheViewAuthenticPixels(image_view,exception);
if (sync == MagickFalse)
break;
}
break;
}
}
break;
}
case TextPrimitive:
{
char
geometry[MaxTextExtent];
DrawInfo
*clone_info;
if (primitive_info->text == (char *) NULL)
break;
clone_info=CloneDrawInfo((ImageInfo *) NULL,draw_info);
(void) CloneString(&clone_info->text,primitive_info->text);
(void) FormatMagickString(geometry,MaxTextExtent,"%+f%+f",
primitive_info->point.x,primitive_info->point.y);
(void) CloneString(&clone_info->geometry,geometry);
status=AnnotateImage(image,clone_info);
clone_info=DestroyDrawInfo(clone_info);
break;
}
case ImagePrimitive:
{
AffineMatrix
affine;
char
composite_geometry[MaxTextExtent];
Image
*composite_image;
ImageInfo
*clone_info;
RectangleInfo
geometry;
ssize_t
x1,
y1;
if (primitive_info->text == (char *) NULL)
break;
clone_info=AcquireImageInfo();
if (LocaleNCompare(primitive_info->text,"data:",5) == 0)
composite_image=ReadInlineImage(clone_info,primitive_info->text,
&image->exception);
else
{
(void) CopyMagickString(clone_info->filename,primitive_info->text,
MaxTextExtent);
composite_image=ReadImage(clone_info,&image->exception);
}
clone_info=DestroyImageInfo(clone_info);
if (composite_image == (Image *) NULL)
break;
(void) SetImageProgressMonitor(composite_image,(MagickProgressMonitor)
NULL,(void *) NULL);
x1=(ssize_t) ceil(primitive_info[1].point.x-0.5);
y1=(ssize_t) ceil(primitive_info[1].point.y-0.5);
if (((x1 != 0L) && (x1 != (ssize_t) composite_image->columns)) ||
((y1 != 0L) && (y1 != (ssize_t) composite_image->rows)))
{
char
geometry[MaxTextExtent];
/*
Resize image.
*/
(void) FormatMagickString(geometry,MaxTextExtent,"%gx%g!",
primitive_info[1].point.x,primitive_info[1].point.y);
composite_image->filter=image->filter;
(void) TransformImage(&composite_image,(char *) NULL,geometry);
}
if (composite_image->matte == MagickFalse)
(void) SetImageAlphaChannel(composite_image,OpaqueAlphaChannel);
if (draw_info->opacity != OpaqueOpacity)
(void) SetImageOpacity(composite_image,draw_info->opacity);
SetGeometry(image,&geometry);
image->gravity=draw_info->gravity;
geometry.x=x;
geometry.y=y;
(void) FormatMagickString(composite_geometry,MaxTextExtent,
"%.20gx%.20g%+.20g%+.20g",(double) composite_image->columns,(double)
composite_image->rows,(double) geometry.x,(double) geometry.y);
(void) ParseGravityGeometry(image,composite_geometry,&geometry,
&image->exception);
affine=draw_info->affine;
affine.tx=(double) geometry.x;
affine.ty=(double) geometry.y;
composite_image->interpolate=image->interpolate;
if (draw_info->compose == OverCompositeOp)
(void) DrawAffineImage(image,composite_image,&affine);
else
(void) CompositeImage(image,draw_info->compose,composite_image,
geometry.x,geometry.y);
composite_image=DestroyImage(composite_image);
break;
}
default:
{
MagickRealType
mid,
scale;
DrawInfo
*clone_info;
if (IsEventLogging() != MagickFalse)
LogPrimitiveInfo(primitive_info);
scale=ExpandAffine(&draw_info->affine);
if ((draw_info->dash_pattern != (double *) NULL) &&
(draw_info->dash_pattern[0] != 0.0) &&
((scale*draw_info->stroke_width) > MagickEpsilon) &&
(draw_info->stroke.opacity != (Quantum) TransparentOpacity))
{
/*
Draw dash polygon.
*/
clone_info=CloneDrawInfo((ImageInfo *) NULL,draw_info);
clone_info->stroke_width=0.0;
clone_info->stroke.opacity=(Quantum) TransparentOpacity;
status=DrawPolygonPrimitive(image,clone_info,primitive_info);
clone_info=DestroyDrawInfo(clone_info);
(void) DrawDashPolygon(draw_info,primitive_info,image);
break;
}
mid=ExpandAffine(&draw_info->affine)*draw_info->stroke_width/2.0;
if ((mid > 1.0) &&
(draw_info->stroke.opacity != (Quantum) TransparentOpacity))
{
MagickBooleanType
closed_path;
/*
Draw strokes while respecting line cap/join attributes.
*/
for (i=0; primitive_info[i].primitive != UndefinedPrimitive; i++) ;
closed_path=
(primitive_info[i-1].point.x == primitive_info[0].point.x) &&
(primitive_info[i-1].point.y == primitive_info[0].point.y) ?
MagickTrue : MagickFalse;
i=(ssize_t) primitive_info[0].coordinates;
if ((((draw_info->linecap == RoundCap) ||
(closed_path != MagickFalse)) &&
(draw_info->linejoin == RoundJoin)) ||
(primitive_info[i].primitive != UndefinedPrimitive))
{
(void) DrawPolygonPrimitive(image,draw_info,primitive_info);
break;
}
clone_info=CloneDrawInfo((ImageInfo *) NULL,draw_info);
clone_info->stroke_width=0.0;
clone_info->stroke.opacity=(Quantum) TransparentOpacity;
status=DrawPolygonPrimitive(image,clone_info,primitive_info);
clone_info=DestroyDrawInfo(clone_info);
status|=DrawStrokePolygon(image,draw_info,primitive_info);
break;
}
status=DrawPolygonPrimitive(image,draw_info,primitive_info);
break;
}
}
image_view=DestroyCacheView(image_view);
if (image->debug != MagickFalse)
(void) LogMagickEvent(DrawEvent,GetMagickModule()," end draw-primitive");
return(status != 0 ? MagickTrue : MagickFalse);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ D r a w S t r o k e P o l y g o n %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DrawStrokePolygon() draws a stroked polygon (line, rectangle, ellipse) on
% the image while respecting the line cap and join attributes.
%
% The format of the DrawStrokePolygon method is:
%
% MagickBooleanType DrawStrokePolygon(Image *image,
% const DrawInfo *draw_info,const PrimitiveInfo *primitive_info)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o draw_info: the draw info.
%
% o primitive_info: Specifies a pointer to a PrimitiveInfo structure.
%
%
*/
static void DrawRoundLinecap(Image *image,const DrawInfo *draw_info,
const PrimitiveInfo *primitive_info)
{
PrimitiveInfo
linecap[5];
register ssize_t
i;
for (i=0; i < 4; i++)
linecap[i]=(*primitive_info);
linecap[0].coordinates=4;
linecap[1].point.x+=(double) (10.0*MagickEpsilon);
linecap[2].point.x+=(double) (10.0*MagickEpsilon);
linecap[2].point.y+=(double) (10.0*MagickEpsilon);
linecap[3].point.y+=(double) (10.0*MagickEpsilon);
linecap[4].primitive=UndefinedPrimitive;
(void) DrawPolygonPrimitive(image,draw_info,linecap);
}
static MagickBooleanType DrawStrokePolygon(Image *image,
const DrawInfo *draw_info,const PrimitiveInfo *primitive_info)
{
DrawInfo
*clone_info;
MagickBooleanType
closed_path,
status;
PrimitiveInfo
*stroke_polygon;
register const PrimitiveInfo
*p,
*q;
/*
Draw stroked polygon.
*/
if (image->debug != MagickFalse)
(void) LogMagickEvent(DrawEvent,GetMagickModule(),
" begin draw-stroke-polygon");
clone_info=CloneDrawInfo((ImageInfo *) NULL,draw_info);
clone_info->fill=draw_info->stroke;
clone_info->stroke.opacity=(Quantum) TransparentOpacity;
clone_info->stroke_width=0.0;
clone_info->fill_rule=NonZeroRule;
status=MagickTrue;
for (p=primitive_info; p->primitive != UndefinedPrimitive; p+=p->coordinates)
{
stroke_polygon=TraceStrokePolygon(draw_info,p);
status=DrawPolygonPrimitive(image,clone_info,stroke_polygon);
stroke_polygon=(PrimitiveInfo *) RelinquishMagickMemory(stroke_polygon);
q=p+p->coordinates-1;
closed_path=(q->point.x == p->point.x) && (q->point.y == p->point.y) ?
MagickTrue : MagickFalse;
if ((draw_info->linecap == RoundCap) && (closed_path == MagickFalse))
{
DrawRoundLinecap(image,draw_info,p);
DrawRoundLinecap(image,draw_info,q);
}
}
clone_info=DestroyDrawInfo(clone_info);
if (image->debug != MagickFalse)
(void) LogMagickEvent(DrawEvent,GetMagickModule(),
" end draw-stroke-polygon");
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G e t A f f i n e M a t r i x %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetAffineMatrix() returns an AffineMatrix initialized to the identity
% matrix.
%
% The format of the GetAffineMatrix method is:
%
% void GetAffineMatrix(AffineMatrix *affine_matrix)
%
% A description of each parameter follows:
%
% o affine_matrix: the affine matrix.
%
*/
MagickExport void GetAffineMatrix(AffineMatrix *affine_matrix)
{
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
assert(affine_matrix != (AffineMatrix *) NULL);
(void) ResetMagickMemory(affine_matrix,0,sizeof(*affine_matrix));
affine_matrix->sx=1.0;
affine_matrix->sy=1.0;
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ G e t D r a w I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GetDrawInfo() initializes draw_info to default values.
%
% The format of the GetDrawInfo method is:
%
% void GetDrawInfo(const ImageInfo *image_info,DrawInfo *draw_info)
%
% A description of each parameter follows:
%
% o image_info: the image info..
%
% o draw_info: the draw info.
%
*/
MagickExport void GetDrawInfo(const ImageInfo *image_info,DrawInfo *draw_info)
{
const char
*option;
ExceptionInfo
*exception;
ImageInfo
*clone_info;
/*
Initialize draw attributes.
*/
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
assert(draw_info != (DrawInfo *) NULL);
(void) ResetMagickMemory(draw_info,0,sizeof(*draw_info));
clone_info=CloneImageInfo(image_info);
GetAffineMatrix(&draw_info->affine);
exception=AcquireExceptionInfo();
(void) QueryColorDatabase("#000F",&draw_info->fill,exception);
(void) QueryColorDatabase("#FFF0",&draw_info->stroke,exception);
draw_info->stroke_antialias=clone_info->antialias;
draw_info->stroke_width=1.0;
draw_info->opacity=OpaqueOpacity;
draw_info->fill_rule=EvenOddRule;
draw_info->linecap=ButtCap;
draw_info->linejoin=MiterJoin;
draw_info->miterlimit=10;
draw_info->decorate=NoDecoration;
if (clone_info->font != (char *) NULL)
draw_info->font=AcquireString(clone_info->font);
if (clone_info->density != (char *) NULL)
draw_info->density=AcquireString(clone_info->density);
draw_info->text_antialias=clone_info->antialias;
draw_info->pointsize=12.0;
if (clone_info->pointsize != 0.0)
draw_info->pointsize=clone_info->pointsize;
draw_info->undercolor.opacity=(Quantum) TransparentOpacity;
draw_info->border_color=clone_info->border_color;
draw_info->compose=OverCompositeOp;
if (clone_info->server_name != (char *) NULL)
draw_info->server_name=AcquireString(clone_info->server_name);
draw_info->render=MagickTrue;
draw_info->debug=IsEventLogging();
option=GetImageOption(clone_info,"encoding");
if (option != (const char *) NULL)
(void) CloneString(&draw_info->encoding,option);
option=GetImageOption(clone_info,"kerning");
if (option != (const char *) NULL)
draw_info->kerning=StringToDouble(option);
option=GetImageOption(clone_info,"interline-spacing");
if (option != (const char *) NULL)
draw_info->interline_spacing=StringToDouble(option);
draw_info->direction=UndefinedDirection;
option=GetImageOption(clone_info,"interword-spacing");
if (option != (const char *) NULL)
draw_info->interword_spacing=StringToDouble(option);
option=GetImageOption(clone_info,"direction");
if (option != (const char *) NULL)
draw_info->direction=(DirectionType) ParseMagickOption(
MagickDirectionOptions,MagickFalse,option);
option=GetImageOption(clone_info,"fill");
if (option != (const char *) NULL)
(void) QueryColorDatabase(option,&draw_info->fill,exception);
option=GetImageOption(clone_info,"stroke");
if (option != (const char *) NULL)
(void) QueryColorDatabase(option,&draw_info->stroke,exception);
option=GetImageOption(clone_info,"strokewidth");
if (option != (const char *) NULL)
draw_info->stroke_width=StringToDouble(option);
option=GetImageOption(clone_info,"undercolor");
if (option != (const char *) NULL)
(void) QueryColorDatabase(option,&draw_info->undercolor,exception);
option=GetImageOption(clone_info,"gravity");
if (option != (const char *) NULL)
draw_info->gravity=(GravityType) ParseMagickOption(MagickGravityOptions,
MagickFalse,option);
exception=DestroyExceptionInfo(exception);
draw_info->signature=MagickSignature;
clone_info=DestroyImageInfo(clone_info);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ P e r m u t a t e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Permutate() returns the permuation of the (n,k).
%
% The format of the Permutate method is:
%
% void Permutate(ssize_t n,ssize_t k)
%
% A description of each parameter follows:
%
% o n:
%
% o k:
%
%
*/
static inline MagickRealType Permutate(const ssize_t n,const ssize_t k)
{
MagickRealType
r;
register ssize_t
i;
r=1.0;
for (i=k+1; i <= n; i++)
r*=i;
for (i=1; i <= (n-k); i++)
r/=i;
return(r);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ T r a c e P r i m i t i v e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% TracePrimitive is a collection of methods for generating graphic
% primitives such as arcs, ellipses, paths, etc.
%
*/
static void TraceArc(PrimitiveInfo *primitive_info,const PointInfo start,
const PointInfo end,const PointInfo degrees)
{
PointInfo
center,
radii;
center.x=0.5*(end.x+start.x);
center.y=0.5*(end.y+start.y);
radii.x=fabs(center.x-start.x);
radii.y=fabs(center.y-start.y);
TraceEllipse(primitive_info,center,radii,degrees);
}
static void TraceArcPath(PrimitiveInfo *primitive_info,const PointInfo start,
const PointInfo end,const PointInfo arc,const MagickRealType angle,
const MagickBooleanType large_arc,const MagickBooleanType sweep)
{
MagickRealType
alpha,
beta,
delta,
factor,
gamma,
theta;
PointInfo
center,
points[3],
radii;
register MagickRealType
cosine,
sine;
register PrimitiveInfo
*p;
register ssize_t
i;
size_t
arc_segments;
if ((start.x == end.x) && (start.y == end.y))
{
TracePoint(primitive_info,end);
return;
}
radii.x=fabs(arc.x);
radii.y=fabs(arc.y);
if ((radii.x == 0.0) || (radii.y == 0.0))
{
TraceLine(primitive_info,start,end);
return;
}
cosine=cos(DegreesToRadians(fmod((double) angle,360.0)));
sine=sin(DegreesToRadians(fmod((double) angle,360.0)));
center.x=(double) (cosine*(end.x-start.x)/2+sine*(end.y-start.y)/2);
center.y=(double) (cosine*(end.y-start.y)/2-sine*(end.x-start.x)/2);
delta=(center.x*center.x)/(radii.x*radii.x)+(center.y*center.y)/
(radii.y*radii.y);
if (delta < MagickEpsilon)
{
TraceLine(primitive_info,start,end);
return;
}
if (delta > 1.0)
{
radii.x*=sqrt((double) delta);
radii.y*=sqrt((double) delta);
}
points[0].x=(double) (cosine*start.x/radii.x+sine*start.y/radii.x);
points[0].y=(double) (cosine*start.y/radii.y-sine*start.x/radii.y);
points[1].x=(double) (cosine*end.x/radii.x+sine*end.y/radii.x);
points[1].y=(double) (cosine*end.y/radii.y-sine*end.x/radii.y);
alpha=points[1].x-points[0].x;
beta=points[1].y-points[0].y;
factor=1.0/(alpha*alpha+beta*beta)-0.25;
if (factor <= 0.0)
factor=0.0;
else
{
factor=sqrt((double) factor);
if (sweep == large_arc)
factor=(-factor);
}
center.x=(double) ((points[0].x+points[1].x)/2-factor*beta);
center.y=(double) ((points[0].y+points[1].y)/2+factor*alpha);
alpha=atan2(points[0].y-center.y,points[0].x-center.x);
theta=atan2(points[1].y-center.y,points[1].x-center.x)-alpha;
if ((theta < 0.0) && (sweep != MagickFalse))
theta+=(MagickRealType) (2.0*MagickPI);
else
if ((theta > 0.0) && (sweep == MagickFalse))
theta-=(MagickRealType) (2.0*MagickPI);
arc_segments=(size_t) ceil(fabs((double) (theta/(0.5*MagickPI+
MagickEpsilon))));
p=primitive_info;
for (i=0; i < (ssize_t) arc_segments; i++)
{
beta=0.5*((alpha+(i+1)*theta/arc_segments)-(alpha+i*theta/arc_segments));
gamma=(8.0/3.0)*sin(fmod((double) (0.5*beta),DegreesToRadians(360.0)))*
sin(fmod((double) (0.5*beta),DegreesToRadians(360.0)))/
sin(fmod((double) beta,DegreesToRadians(360.0)));
points[0].x=(double) (center.x+cos(fmod((double) (alpha+(double) i*theta/
arc_segments),DegreesToRadians(360.0)))-gamma*sin(fmod((double) (alpha+
(double) i*theta/arc_segments),DegreesToRadians(360.0))));
points[0].y=(double) (center.y+sin(fmod((double) (alpha+(double) i*theta/
arc_segments),DegreesToRadians(360.0)))+gamma*cos(fmod((double) (alpha+
(double) i*theta/arc_segments),DegreesToRadians(360.0))));
points[2].x=(double) (center.x+cos(fmod((double) (alpha+(double) (i+1)*
theta/arc_segments),DegreesToRadians(360.0))));
points[2].y=(double) (center.y+sin(fmod((double) (alpha+(double) (i+1)*
theta/arc_segments),DegreesToRadians(360.0))));
points[1].x=(double) (points[2].x+gamma*sin(fmod((double) (alpha+(double)
(i+1)*theta/arc_segments),DegreesToRadians(360.0))));
points[1].y=(double) (points[2].y-gamma*cos(fmod((double) (alpha+(double)
(i+1)*theta/arc_segments),DegreesToRadians(360.0))));
p->point.x=(p == primitive_info) ? start.x : (p-1)->point.x;
p->point.y=(p == primitive_info) ? start.y : (p-1)->point.y;
(p+1)->point.x=(double) (cosine*radii.x*points[0].x-sine*radii.y*
points[0].y);
(p+1)->point.y=(double) (sine*radii.x*points[0].x+cosine*radii.y*
points[0].y);
(p+2)->point.x=(double) (cosine*radii.x*points[1].x-sine*radii.y*
points[1].y);
(p+2)->point.y=(double) (sine*radii.x*points[1].x+cosine*radii.y*
points[1].y);
(p+3)->point.x=(double) (cosine*radii.x*points[2].x-sine*radii.y*
points[2].y);
(p+3)->point.y=(double) (sine*radii.x*points[2].x+cosine*radii.y*
points[2].y);
if (i == (ssize_t) (arc_segments-1))
(p+3)->point=end;
TraceBezier(p,4);
p+=p->coordinates;
}
primitive_info->coordinates=(size_t) (p-primitive_info);
for (i=0; i < (ssize_t) primitive_info->coordinates; i++)
{
p->primitive=primitive_info->primitive;
p--;
}
}
static void TraceBezier(PrimitiveInfo *primitive_info,
const size_t number_coordinates)
{
MagickRealType
alpha,
*coefficients,
weight;
PointInfo
end,
point,
*points;
register PrimitiveInfo
*p;
register ssize_t
i,
j;
size_t
control_points,
quantum;
/*
Allocate coeficients.
*/
quantum=number_coordinates;
for (i=0; i < (ssize_t) number_coordinates; i++)
{
for (j=i+1; j < (ssize_t) number_coordinates; j++)
{
alpha=fabs(primitive_info[j].point.x-primitive_info[i].point.x);
if (alpha > (MagickRealType) quantum)
quantum=(size_t) alpha;
alpha=fabs(primitive_info[j].point.y-primitive_info[i].point.y);
if (alpha > (MagickRealType) quantum)
quantum=(size_t) alpha;
}
}
quantum=(size_t) MagickMin((double) quantum/number_coordinates,
(double) BezierQuantum);
control_points=quantum*number_coordinates;
coefficients=(MagickRealType *) AcquireQuantumMemory((size_t)
number_coordinates,sizeof(*coefficients));
points=(PointInfo *) AcquireQuantumMemory((size_t) control_points,
sizeof(*points));
if ((coefficients == (MagickRealType *) NULL) ||
(points == (PointInfo *) NULL))
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
/*
Compute bezier points.
*/
end=primitive_info[number_coordinates-1].point;
for (i=0; i < (ssize_t) number_coordinates; i++)
coefficients[i]=Permutate((ssize_t) number_coordinates-1,i);
weight=0.0;
for (i=0; i < (ssize_t) control_points; i++)
{
p=primitive_info;
point.x=0.0;
point.y=0.0;
alpha=pow((double) (1.0-weight),(double) number_coordinates-1.0);
for (j=0; j < (ssize_t) number_coordinates; j++)
{
point.x+=alpha*coefficients[j]*p->point.x;
point.y+=alpha*coefficients[j]*p->point.y;
alpha*=weight/(1.0-weight);
p++;
}
points[i]=point;
weight+=1.0/control_points;
}
/*
Bezier curves are just short segmented polys.
*/
p=primitive_info;
for (i=0; i < (ssize_t) control_points; i++)
{
TracePoint(p,points[i]);
p+=p->coordinates;
}
TracePoint(p,end);
p+=p->coordinates;
primitive_info->coordinates=(size_t) (p-primitive_info);
for (i=0; i < (ssize_t) primitive_info->coordinates; i++)
{
p->primitive=primitive_info->primitive;
p--;
}
points=(PointInfo *) RelinquishMagickMemory(points);
coefficients=(MagickRealType *) RelinquishMagickMemory(coefficients);
}
static void TraceCircle(PrimitiveInfo *primitive_info,const PointInfo start,
const PointInfo end)
{
MagickRealType
alpha,
beta,
radius;
PointInfo
offset,
degrees;
alpha=end.x-start.x;
beta=end.y-start.y;
radius=hypot((double) alpha,(double) beta);
offset.x=(double) radius;
offset.y=(double) radius;
degrees.x=0.0;
degrees.y=360.0;
TraceEllipse(primitive_info,start,offset,degrees);
}
static void TraceEllipse(PrimitiveInfo *primitive_info,const PointInfo start,
const PointInfo stop,const PointInfo degrees)
{
MagickRealType
delta,
step,
y;
PointInfo
angle,
point;
register PrimitiveInfo
*p;
register ssize_t
i;
/*
Ellipses are just short segmented polys.
*/
if ((stop.x == 0.0) && (stop.y == 0.0))
{
TracePoint(primitive_info,start);
return;
}
delta=2.0/MagickMax(stop.x,stop.y);
step=(MagickRealType) (MagickPI/8.0);
if ((delta >= 0.0) && (delta < (MagickPI/8.0)))
step=MagickPI/(4*(MagickPI/delta/2+0.5));
angle.x=DegreesToRadians(degrees.x);
y=degrees.y;
while (y < degrees.x)
y+=360.0;
angle.y=(double) (DegreesToRadians(y)-MagickEpsilon);
for (p=primitive_info; angle.x < angle.y; angle.x+=step)
{
point.x=cos(fmod(angle.x,DegreesToRadians(360.0)))*stop.x+start.x;
point.y=sin(fmod(angle.x,DegreesToRadians(360.0)))*stop.y+start.y;
TracePoint(p,point);
p+=p->coordinates;
}
point.x=cos(fmod(angle.y,DegreesToRadians(360.0)))*stop.x+start.x;
point.y=sin(fmod(angle.y,DegreesToRadians(360.0)))*stop.y+start.y;
TracePoint(p,point);
p+=p->coordinates;
primitive_info->coordinates=(size_t) (p-primitive_info);
for (i=0; i < (ssize_t) primitive_info->coordinates; i++)
{
p->primitive=primitive_info->primitive;
p--;
}
}
static void TraceLine(PrimitiveInfo *primitive_info,const PointInfo start,
const PointInfo end)
{
TracePoint(primitive_info,start);
if ((fabs(start.x-end.x) <= MagickEpsilon) &&
(fabs(start.y-end.y) <= MagickEpsilon))
{
primitive_info->primitive=PointPrimitive;
primitive_info->coordinates=1;
return;
}
TracePoint(primitive_info+1,end);
(primitive_info+1)->primitive=primitive_info->primitive;
primitive_info->coordinates=2;
}
static size_t TracePath(PrimitiveInfo *primitive_info,const char *path)
{
char
token[MaxTextExtent];
const char
*p;
int
attribute,
last_attribute;
MagickRealType
x,
y;
PointInfo
end,
points[4],
point,
start;
PrimitiveType
primitive_type;
register PrimitiveInfo
*q;
register ssize_t
i;
size_t
number_coordinates,
z_count;
attribute=0;
point.x=0.0;
point.y=0.0;
start.x=0.0;
start.y=0.0;
number_coordinates=0;
z_count=0;
primitive_type=primitive_info->primitive;
q=primitive_info;
for (p=path; *p != '\0'; )
{
while (isspace((int) ((unsigned char) *p)) != 0)
p++;
if (*p == '\0')
break;
last_attribute=attribute;
attribute=(int) (*p++);
switch (attribute)
{
case 'a':
case 'A':
{
MagickBooleanType
large_arc,
sweep;
MagickRealType
angle;
PointInfo
arc;
/*
Compute arc points.
*/
do
{
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
arc.x=StringToDouble(token);
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
arc.y=StringToDouble(token);
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
angle=StringToDouble(token);
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
large_arc=StringToLong(token) != 0 ? MagickTrue : MagickFalse;
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
sweep=StringToLong(token) != 0 ? MagickTrue : MagickFalse;
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
x=StringToDouble(token);
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
y=StringToDouble(token);
end.x=(double) (attribute == (int) 'A' ? x : point.x+x);
end.y=(double) (attribute == (int) 'A' ? y : point.y+y);
TraceArcPath(q,point,end,arc,angle,large_arc,sweep);
q+=q->coordinates;
point=end;
} while (IsPoint(p) != MagickFalse);
break;
}
case 'c':
case 'C':
{
/*
Compute bezier points.
*/
do
{
points[0]=point;
for (i=1; i < 4; i++)
{
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
x=StringToDouble(token);
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
y=StringToDouble(token);
end.x=(double) (attribute == (int) 'C' ? x : point.x+x);
end.y=(double) (attribute == (int) 'C' ? y : point.y+y);
points[i]=end;
}
for (i=0; i < 4; i++)
(q+i)->point=points[i];
TraceBezier(q,4);
q+=q->coordinates;
point=end;
} while (IsPoint(p) != MagickFalse);
break;
}
case 'H':
case 'h':
{
do
{
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
x=StringToDouble(token);
point.x=(double) (attribute == (int) 'H' ? x: point.x+x);
TracePoint(q,point);
q+=q->coordinates;
} while (IsPoint(p) != MagickFalse);
break;
}
case 'l':
case 'L':
{
do
{
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
x=StringToDouble(token);
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
y=StringToDouble(token);
point.x=(double) (attribute == (int) 'L' ? x : point.x+x);
point.y=(double) (attribute == (int) 'L' ? y : point.y+y);
TracePoint(q,point);
q+=q->coordinates;
} while (IsPoint(p) != MagickFalse);
break;
}
case 'M':
case 'm':
{
if (q != primitive_info)
{
primitive_info->coordinates=(size_t) (q-primitive_info);
number_coordinates+=primitive_info->coordinates;
primitive_info=q;
}
i=0;
do
{
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
x=StringToDouble(token);
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
y=StringToDouble(token);
point.x=(double) (attribute == (int) 'M' ? x : point.x+x);
point.y=(double) (attribute == (int) 'M' ? y : point.y+y);
if (i == 0)
start=point;
i++;
TracePoint(q,point);
q+=q->coordinates;
if ((i != 0) && (attribute == (int) 'M'))
{
TracePoint(q,point);
q+=q->coordinates;
}
} while (IsPoint(p) != MagickFalse);
break;
}
case 'q':
case 'Q':
{
/*
Compute bezier points.
*/
do
{
points[0]=point;
for (i=1; i < 3; i++)
{
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
x=StringToDouble(token);
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
y=StringToDouble(token);
if (*p == ',')
p++;
end.x=(double) (attribute == (int) 'Q' ? x : point.x+x);
end.y=(double) (attribute == (int) 'Q' ? y : point.y+y);
points[i]=end;
}
for (i=0; i < 3; i++)
(q+i)->point=points[i];
TraceBezier(q,3);
q+=q->coordinates;
point=end;
} while (IsPoint(p) != MagickFalse);
break;
}
case 's':
case 'S':
{
/*
Compute bezier points.
*/
do
{
points[0]=points[3];
points[1].x=2.0*points[3].x-points[2].x;
points[1].y=2.0*points[3].y-points[2].y;
for (i=2; i < 4; i++)
{
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
x=StringToDouble(token);
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
y=StringToDouble(token);
if (*p == ',')
p++;
end.x=(double) (attribute == (int) 'S' ? x : point.x+x);
end.y=(double) (attribute == (int) 'S' ? y : point.y+y);
points[i]=end;
}
if (strchr("CcSs",last_attribute) == (char *) NULL)
{
points[0]=points[2];
points[1]=points[3];
}
for (i=0; i < 4; i++)
(q+i)->point=points[i];
TraceBezier(q,4);
q+=q->coordinates;
point=end;
} while (IsPoint(p) != MagickFalse);
break;
}
case 't':
case 'T':
{
/*
Compute bezier points.
*/
do
{
points[0]=points[2];
points[1].x=2.0*points[2].x-points[1].x;
points[1].y=2.0*points[2].y-points[1].y;
for (i=2; i < 3; i++)
{
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
x=StringToDouble(token);
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
y=StringToDouble(token);
end.x=(double) (attribute == (int) 'T' ? x : point.x+x);
end.y=(double) (attribute == (int) 'T' ? y : point.y+y);
points[i]=end;
}
if (strchr("QqTt",last_attribute) == (char *) NULL)
{
points[0]=points[2];
points[1]=points[3];
}
for (i=0; i < 3; i++)
(q+i)->point=points[i];
TraceBezier(q,3);
q+=q->coordinates;
point=end;
} while (IsPoint(p) != MagickFalse);
break;
}
case 'v':
case 'V':
{
do
{
GetMagickToken(p,&p,token);
if (*token == ',')
GetMagickToken(p,&p,token);
y=StringToDouble(token);
point.y=(double) (attribute == (int) 'V' ? y : point.y+y);
TracePoint(q,point);
q+=q->coordinates;
} while (IsPoint(p) != MagickFalse);
break;
}
case 'z':
case 'Z':
{
point=start;
TracePoint(q,point);
q+=q->coordinates;
primitive_info->coordinates=(size_t) (q-primitive_info);
number_coordinates+=primitive_info->coordinates;
primitive_info=q;
z_count++;
break;
}
default:
{
if (isalpha((int) ((unsigned char) attribute)) != 0)
(void) fprintf(stderr,"attribute not recognized: %c\n",attribute);
break;
}
}
}
primitive_info->coordinates=(size_t) (q-primitive_info);
number_coordinates+=primitive_info->coordinates;
for (i=0; i < (ssize_t) number_coordinates; i++)
{
q--;
q->primitive=primitive_type;
if (z_count > 1)
q->method=FillToBorderMethod;
}
q=primitive_info;
return(number_coordinates);
}
static void TraceRectangle(PrimitiveInfo *primitive_info,const PointInfo start,
const PointInfo end)
{
PointInfo
point;
register PrimitiveInfo
*p;
register ssize_t
i;
p=primitive_info;
TracePoint(p,start);
p+=p->coordinates;
point.x=start.x;
point.y=end.y;
TracePoint(p,point);
p+=p->coordinates;
TracePoint(p,end);
p+=p->coordinates;
point.x=end.x;
point.y=start.y;
TracePoint(p,point);
p+=p->coordinates;
TracePoint(p,start);
p+=p->coordinates;
primitive_info->coordinates=(size_t) (p-primitive_info);
for (i=0; i < (ssize_t) primitive_info->coordinates; i++)
{
p->primitive=primitive_info->primitive;
p--;
}
}
static void TraceRoundRectangle(PrimitiveInfo *primitive_info,
const PointInfo start,const PointInfo end,PointInfo arc)
{
PointInfo
degrees,
offset,
point;
register PrimitiveInfo
*p;
register ssize_t
i;
p=primitive_info;
offset.x=fabs(end.x-start.x);
offset.y=fabs(end.y-start.y);
if (arc.x > (0.5*offset.x))
arc.x=0.5*offset.x;
if (arc.y > (0.5*offset.y))
arc.y=0.5*offset.y;
point.x=start.x+offset.x-arc.x;
point.y=start.y+arc.y;
degrees.x=270.0;
degrees.y=360.0;
TraceEllipse(p,point,arc,degrees);
p+=p->coordinates;
point.x=start.x+offset.x-arc.x;
point.y=start.y+offset.y-arc.y;
degrees.x=0.0;
degrees.y=90.0;
TraceEllipse(p,point,arc,degrees);
p+=p->coordinates;
point.x=start.x+arc.x;
point.y=start.y+offset.y-arc.y;
degrees.x=90.0;
degrees.y=180.0;
TraceEllipse(p,point,arc,degrees);
p+=p->coordinates;
point.x=start.x+arc.x;
point.y=start.y+arc.y;
degrees.x=180.0;
degrees.y=270.0;
TraceEllipse(p,point,arc,degrees);
p+=p->coordinates;
TracePoint(p,primitive_info->point);
p+=p->coordinates;
primitive_info->coordinates=(size_t) (p-primitive_info);
for (i=0; i < (ssize_t) primitive_info->coordinates; i++)
{
p->primitive=primitive_info->primitive;
p--;
}
}
static void TraceSquareLinecap(PrimitiveInfo *primitive_info,
const size_t number_vertices,const MagickRealType offset)
{
MagickRealType
distance;
register MagickRealType
dx,
dy;
register ssize_t
i;
ssize_t
j;
dx=0.0;
dy=0.0;
for (i=1; i < (ssize_t) number_vertices; i++)
{
dx=primitive_info[0].point.x-primitive_info[i].point.x;
dy=primitive_info[0].point.y-primitive_info[i].point.y;
if ((fabs((double) dx) >= MagickEpsilon) ||
(fabs((double) dy) >= MagickEpsilon))
break;
}
if (i == (ssize_t) number_vertices)
i=(ssize_t) number_vertices-1L;
distance=hypot((double) dx,(double) dy);
primitive_info[0].point.x=(double) (primitive_info[i].point.x+
dx*(distance+offset)/distance);
primitive_info[0].point.y=(double) (primitive_info[i].point.y+
dy*(distance+offset)/distance);
for (j=(ssize_t) number_vertices-2; j >= 0; j--)
{
dx=primitive_info[number_vertices-1].point.x-primitive_info[j].point.x;
dy=primitive_info[number_vertices-1].point.y-primitive_info[j].point.y;
if ((fabs((double) dx) >= MagickEpsilon) ||
(fabs((double) dy) >= MagickEpsilon))
break;
}
distance=hypot((double) dx,(double) dy);
primitive_info[number_vertices-1].point.x=(double) (primitive_info[j].point.x+
dx*(distance+offset)/distance);
primitive_info[number_vertices-1].point.y=(double) (primitive_info[j].point.y+
dy*(distance+offset)/distance);
}
static PrimitiveInfo *TraceStrokePolygon(const DrawInfo *draw_info,
const PrimitiveInfo *primitive_info)
{
typedef struct _LineSegment
{
double
p,
q;
} LineSegment;
LineSegment
dx,
dy,
inverse_slope,
slope,
theta;
MagickBooleanType
closed_path;
MagickRealType
delta_theta,
dot_product,
mid,
miterlimit;
PointInfo
box_p[5],
box_q[5],
center,
offset,
*path_p,
*path_q;
PrimitiveInfo
*polygon_primitive,
*stroke_polygon;
register ssize_t
i;
size_t
arc_segments,
max_strokes,
number_vertices;
ssize_t
j,
n,
p,
q;
/*
Allocate paths.
*/
number_vertices=primitive_info->coordinates;
max_strokes=2*number_vertices+6*BezierQuantum+360;
path_p=(PointInfo *) AcquireQuantumMemory((size_t) max_strokes,
sizeof(*path_p));
path_q=(PointInfo *) AcquireQuantumMemory((size_t) max_strokes,
sizeof(*path_q));
polygon_primitive=(PrimitiveInfo *) AcquireQuantumMemory((size_t)
number_vertices+2UL,sizeof(*polygon_primitive));
if ((path_p == (PointInfo *) NULL) || (path_q == (PointInfo *) NULL) ||
(polygon_primitive == (PrimitiveInfo *) NULL))
return((PrimitiveInfo *) NULL);
(void) CopyMagickMemory(polygon_primitive,primitive_info,(size_t)
number_vertices*sizeof(*polygon_primitive));
closed_path=
(primitive_info[number_vertices-1].point.x == primitive_info[0].point.x) &&
(primitive_info[number_vertices-1].point.y == primitive_info[0].point.y) ?
MagickTrue : MagickFalse;
if ((draw_info->linejoin == RoundJoin) ||
((draw_info->linejoin == MiterJoin) && (closed_path != MagickFalse)))
{
polygon_primitive[number_vertices]=primitive_info[1];
number_vertices++;
}
polygon_primitive[number_vertices].primitive=UndefinedPrimitive;
/*
Compute the slope for the first line segment, p.
*/
dx.p=0.0;
dy.p=0.0;
for (n=1; n < (ssize_t) number_vertices; n++)
{
dx.p=polygon_primitive[n].point.x-polygon_primitive[0].point.x;
dy.p=polygon_primitive[n].point.y-polygon_primitive[0].point.y;
if ((fabs(dx.p) >= MagickEpsilon) || (fabs(dy.p) >= MagickEpsilon))
break;
}
if (n == (ssize_t) number_vertices)
n=(ssize_t) number_vertices-1L;
slope.p=0.0;
inverse_slope.p=0.0;
if (fabs(dx.p) <= MagickEpsilon)
{
if (dx.p >= 0.0)
slope.p=dy.p < 0.0 ? -1.0/MagickEpsilon : 1.0/MagickEpsilon;
else
slope.p=dy.p < 0.0 ? 1.0/MagickEpsilon : -1.0/MagickEpsilon;
}
else
if (fabs(dy.p) <= MagickEpsilon)
{
if (dy.p >= 0.0)
inverse_slope.p=dx.p < 0.0 ? -1.0/MagickEpsilon : 1.0/MagickEpsilon;
else
inverse_slope.p=dx.p < 0.0 ? 1.0/MagickEpsilon : -1.0/MagickEpsilon;
}
else
{
slope.p=dy.p/dx.p;
inverse_slope.p=(-1.0/slope.p);
}
mid=ExpandAffine(&draw_info->affine)*draw_info->stroke_width/2.0;
miterlimit=(MagickRealType) (draw_info->miterlimit*draw_info->miterlimit*
mid*mid);
if ((draw_info->linecap == SquareCap) && (closed_path == MagickFalse))
TraceSquareLinecap(polygon_primitive,number_vertices,mid);
offset.x=sqrt((double) (mid*mid/(inverse_slope.p*inverse_slope.p+1.0)));
offset.y=(double) (offset.x*inverse_slope.p);
if ((dy.p*offset.x-dx.p*offset.y) > 0.0)
{
box_p[0].x=polygon_primitive[0].point.x-offset.x;
box_p[0].y=polygon_primitive[0].point.y-offset.x*inverse_slope.p;
box_p[1].x=polygon_primitive[n].point.x-offset.x;
box_p[1].y=polygon_primitive[n].point.y-offset.x*inverse_slope.p;
box_q[0].x=polygon_primitive[0].point.x+offset.x;
box_q[0].y=polygon_primitive[0].point.y+offset.x*inverse_slope.p;
box_q[1].x=polygon_primitive[n].point.x+offset.x;
box_q[1].y=polygon_primitive[n].point.y+offset.x*inverse_slope.p;
}
else
{
box_p[0].x=polygon_primitive[0].point.x+offset.x;
box_p[0].y=polygon_primitive[0].point.y+offset.y;
box_p[1].x=polygon_primitive[n].point.x+offset.x;
box_p[1].y=polygon_primitive[n].point.y+offset.y;
box_q[0].x=polygon_primitive[0].point.x-offset.x;
box_q[0].y=polygon_primitive[0].point.y-offset.y;
box_q[1].x=polygon_primitive[n].point.x-offset.x;
box_q[1].y=polygon_primitive[n].point.y-offset.y;
}
/*
Create strokes for the line join attribute: bevel, miter, round.
*/
p=0;
q=0;
path_q[p++]=box_q[0];
path_p[q++]=box_p[0];
for (i=(ssize_t) n+1; i < (ssize_t) number_vertices; i++)
{
/*
Compute the slope for this line segment, q.
*/
dx.q=polygon_primitive[i].point.x-polygon_primitive[n].point.x;
dy.q=polygon_primitive[i].point.y-polygon_primitive[n].point.y;
dot_product=dx.q*dx.q+dy.q*dy.q;
if (dot_product < 0.25)
continue;
slope.q=0.0;
inverse_slope.q=0.0;
if (fabs(dx.q) < MagickEpsilon)
{
if (dx.q >= 0.0)
slope.q=dy.q < 0.0 ? -1.0/MagickEpsilon : 1.0/MagickEpsilon;
else
slope.q=dy.q < 0.0 ? 1.0/MagickEpsilon : -1.0/MagickEpsilon;
}
else
if (fabs(dy.q) <= MagickEpsilon)
{
if (dy.q >= 0.0)
inverse_slope.q=dx.q < 0.0 ? -1.0/MagickEpsilon : 1.0/MagickEpsilon;
else
inverse_slope.q=dx.q < 0.0 ? 1.0/MagickEpsilon : -1.0/MagickEpsilon;
}
else
{
slope.q=dy.q/dx.q;
inverse_slope.q=(-1.0/slope.q);
}
offset.x=sqrt((double) (mid*mid/(inverse_slope.q*inverse_slope.q+1.0)));
offset.y=(double) (offset.x*inverse_slope.q);
dot_product=dy.q*offset.x-dx.q*offset.y;
if (dot_product > 0.0)
{
box_p[2].x=polygon_primitive[n].point.x-offset.x;
box_p[2].y=polygon_primitive[n].point.y-offset.y;
box_p[3].x=polygon_primitive[i].point.x-offset.x;
box_p[3].y=polygon_primitive[i].point.y-offset.y;
box_q[2].x=polygon_primitive[n].point.x+offset.x;
box_q[2].y=polygon_primitive[n].point.y+offset.y;
box_q[3].x=polygon_primitive[i].point.x+offset.x;
box_q[3].y=polygon_primitive[i].point.y+offset.y;
}
else
{
box_p[2].x=polygon_primitive[n].point.x+offset.x;
box_p[2].y=polygon_primitive[n].point.y+offset.y;
box_p[3].x=polygon_primitive[i].point.x+offset.x;
box_p[3].y=polygon_primitive[i].point.y+offset.y;
box_q[2].x=polygon_primitive[n].point.x-offset.x;
box_q[2].y=polygon_primitive[n].point.y-offset.y;
box_q[3].x=polygon_primitive[i].point.x-offset.x;
box_q[3].y=polygon_primitive[i].point.y-offset.y;
}
if (fabs((double) (slope.p-slope.q)) <= MagickEpsilon)
{
box_p[4]=box_p[1];
box_q[4]=box_q[1];
}
else
{
box_p[4].x=(double) ((slope.p*box_p[0].x-box_p[0].y-slope.q*box_p[3].x+
box_p[3].y)/(slope.p-slope.q));
box_p[4].y=(double) (slope.p*(box_p[4].x-box_p[0].x)+box_p[0].y);
box_q[4].x=(double) ((slope.p*box_q[0].x-box_q[0].y-slope.q*box_q[3].x+
box_q[3].y)/(slope.p-slope.q));
box_q[4].y=(double) (slope.p*(box_q[4].x-box_q[0].x)+box_q[0].y);
}
if (q >= (ssize_t) (max_strokes-6*BezierQuantum-360))
{
max_strokes+=6*BezierQuantum+360;
path_p=(PointInfo *) ResizeQuantumMemory(path_p,(size_t) max_strokes,
sizeof(*path_p));
path_q=(PointInfo *) ResizeQuantumMemory(path_q,(size_t) max_strokes,
sizeof(*path_q));
if ((path_p == (PointInfo *) NULL) || (path_q == (PointInfo *) NULL))
{
polygon_primitive=(PrimitiveInfo *)
RelinquishMagickMemory(polygon_primitive);
return((PrimitiveInfo *) NULL);
}
}
dot_product=dx.q*dy.p-dx.p*dy.q;
if (dot_product <= 0.0)
switch (draw_info->linejoin)
{
case BevelJoin:
{
path_q[q++]=box_q[1];
path_q[q++]=box_q[2];
dot_product=(box_q[4].x-box_p[4].x)*(box_q[4].x-box_p[4].x)+
(box_q[4].y-box_p[4].y)*(box_q[4].y-box_p[4].y);
if (dot_product <= miterlimit)
path_p[p++]=box_p[4];
else
{
path_p[p++]=box_p[1];
path_p[p++]=box_p[2];
}
break;
}
case MiterJoin:
{
dot_product=(box_q[4].x-box_p[4].x)*(box_q[4].x-box_p[4].x)+
(box_q[4].y-box_p[4].y)*(box_q[4].y-box_p[4].y);
if (dot_product <= miterlimit)
{
path_q[q++]=box_q[4];
path_p[p++]=box_p[4];
}
else
{
path_q[q++]=box_q[1];
path_q[q++]=box_q[2];
path_p[p++]=box_p[1];
path_p[p++]=box_p[2];
}
break;
}
case RoundJoin:
{
dot_product=(box_q[4].x-box_p[4].x)*(box_q[4].x-box_p[4].x)+
(box_q[4].y-box_p[4].y)*(box_q[4].y-box_p[4].y);
if (dot_product <= miterlimit)
path_p[p++]=box_p[4];
else
{
path_p[p++]=box_p[1];
path_p[p++]=box_p[2];
}
center=polygon_primitive[n].point;
theta.p=atan2(box_q[1].y-center.y,box_q[1].x-center.x);
theta.q=atan2(box_q[2].y-center.y,box_q[2].x-center.x);
if (theta.q < theta.p)
theta.q+=(MagickRealType) (2.0*MagickPI);
arc_segments=(size_t) ceil((double) ((theta.q-theta.p)/
(2.0*sqrt((double) (1.0/mid)))));
path_q[q].x=box_q[1].x;
path_q[q].y=box_q[1].y;
q++;
for (j=1; j < (ssize_t) arc_segments; j++)
{
delta_theta=(MagickRealType) (j*(theta.q-theta.p)/arc_segments);
path_q[q].x=(double) (center.x+mid*cos(fmod((double)
(theta.p+delta_theta),DegreesToRadians(360.0))));
path_q[q].y=(double) (center.y+mid*sin(fmod((double)
(theta.p+delta_theta),DegreesToRadians(360.0))));
q++;
}
path_q[q++]=box_q[2];
break;
}
default:
break;
}
else
switch (draw_info->linejoin)
{
case BevelJoin:
{
path_p[p++]=box_p[1];
path_p[p++]=box_p[2];
dot_product=(box_q[4].x-box_p[4].x)*(box_q[4].x-box_p[4].x)+
(box_q[4].y-box_p[4].y)*(box_q[4].y-box_p[4].y);
if (dot_product <= miterlimit)
path_q[q++]=box_q[4];
else
{
path_q[q++]=box_q[1];
path_q[q++]=box_q[2];
}
break;
}
case MiterJoin:
{
dot_product=(box_q[4].x-box_p[4].x)*(box_q[4].x-box_p[4].x)+
(box_q[4].y-box_p[4].y)*(box_q[4].y-box_p[4].y);
if (dot_product <= miterlimit)
{
path_q[q++]=box_q[4];
path_p[p++]=box_p[4];
}
else
{
path_q[q++]=box_q[1];
path_q[q++]=box_q[2];
path_p[p++]=box_p[1];
path_p[p++]=box_p[2];
}
break;
}
case RoundJoin:
{
dot_product=(box_q[4].x-box_p[4].x)*(box_q[4].x-box_p[4].x)+
(box_q[4].y-box_p[4].y)*(box_q[4].y-box_p[4].y);
if (dot_product <= miterlimit)
path_q[q++]=box_q[4];
else
{
path_q[q++]=box_q[1];
path_q[q++]=box_q[2];
}
center=polygon_primitive[n].point;
theta.p=atan2(box_p[1].y-center.y,box_p[1].x-center.x);
theta.q=atan2(box_p[2].y-center.y,box_p[2].x-center.x);
if (theta.p < theta.q)
theta.p+=(MagickRealType) (2.0*MagickPI);
arc_segments=(size_t) ceil((double) ((theta.p-theta.q)/
(2.0*sqrt((double) (1.0/mid)))));
path_p[p++]=box_p[1];
for (j=1; j < (ssize_t) arc_segments; j++)
{
delta_theta=(MagickRealType) (j*(theta.q-theta.p)/arc_segments);
path_p[p].x=(double) (center.x+mid*cos(fmod((double)
(theta.p+delta_theta),DegreesToRadians(360.0))));
path_p[p].y=(double) (center.y+mid*sin(fmod((double)
(theta.p+delta_theta),DegreesToRadians(360.0))));
p++;
}
path_p[p++]=box_p[2];
break;
}
default:
break;
}
slope.p=slope.q;
inverse_slope.p=inverse_slope.q;
box_p[0]=box_p[2];
box_p[1]=box_p[3];
box_q[0]=box_q[2];
box_q[1]=box_q[3];
dx.p=dx.q;
dy.p=dy.q;
n=i;
}
path_p[p++]=box_p[1];
path_q[q++]=box_q[1];
/*
Trace stroked polygon.
*/
stroke_polygon=(PrimitiveInfo *) AcquireQuantumMemory((size_t)
(p+q+2UL*closed_path+2UL),sizeof(*stroke_polygon));
if (stroke_polygon != (PrimitiveInfo *) NULL)
{
for (i=0; i < (ssize_t) p; i++)
{
stroke_polygon[i]=polygon_primitive[0];
stroke_polygon[i].point=path_p[i];
}
if (closed_path != MagickFalse)
{
stroke_polygon[i]=polygon_primitive[0];
stroke_polygon[i].point=stroke_polygon[0].point;
i++;
}
for ( ; i < (ssize_t) (p+q+closed_path); i++)
{
stroke_polygon[i]=polygon_primitive[0];
stroke_polygon[i].point=path_q[p+q+closed_path-(i+1)];
}
if (closed_path != MagickFalse)
{
stroke_polygon[i]=polygon_primitive[0];
stroke_polygon[i].point=stroke_polygon[p+closed_path].point;
i++;
}
stroke_polygon[i]=polygon_primitive[0];
stroke_polygon[i].point=stroke_polygon[0].point;
i++;
stroke_polygon[i].primitive=UndefinedPrimitive;
stroke_polygon[0].coordinates=(size_t) (p+q+2*closed_path+1);
}
path_p=(PointInfo *) RelinquishMagickMemory(path_p);
path_q=(PointInfo *) RelinquishMagickMemory(path_q);
polygon_primitive=(PrimitiveInfo *) RelinquishMagickMemory(polygon_primitive);
return(stroke_polygon);
}