blob: 26763c23d40fa9f265a9871bf9b923064e5bd456 [file] [log] [blame]
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% EEEEE FFFFF FFFFF EEEEE CCCC TTTTT %
% E F F E C T %
% EEE FFF FFF EEE C T %
% E F F E C T %
% EEEEE F F EEEEE CCCC T %
% %
% %
% MagickCore Image Effects Methods %
% %
% Software Design %
% Cristy %
% October 1996 %
% %
% %
% Copyright 1999-2017 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% https://www.imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
*/
/*
Include declarations.
*/
#include "MagickCore/studio.h"
#include "MagickCore/accelerate-private.h"
#include "MagickCore/blob.h"
#include "MagickCore/cache-view.h"
#include "MagickCore/color.h"
#include "MagickCore/color-private.h"
#include "MagickCore/colorspace.h"
#include "MagickCore/constitute.h"
#include "MagickCore/decorate.h"
#include "MagickCore/distort.h"
#include "MagickCore/draw.h"
#include "MagickCore/enhance.h"
#include "MagickCore/exception.h"
#include "MagickCore/exception-private.h"
#include "MagickCore/effect.h"
#include "MagickCore/fx.h"
#include "MagickCore/gem.h"
#include "MagickCore/gem-private.h"
#include "MagickCore/geometry.h"
#include "MagickCore/image-private.h"
#include "MagickCore/list.h"
#include "MagickCore/log.h"
#include "MagickCore/matrix.h"
#include "MagickCore/memory_.h"
#include "MagickCore/memory-private.h"
#include "MagickCore/monitor.h"
#include "MagickCore/monitor-private.h"
#include "MagickCore/montage.h"
#include "MagickCore/morphology.h"
#include "MagickCore/morphology-private.h"
#include "MagickCore/paint.h"
#include "MagickCore/pixel-accessor.h"
#include "MagickCore/pixel-private.h"
#include "MagickCore/property.h"
#include "MagickCore/quantize.h"
#include "MagickCore/quantum.h"
#include "MagickCore/quantum-private.h"
#include "MagickCore/random_.h"
#include "MagickCore/random-private.h"
#include "MagickCore/resample.h"
#include "MagickCore/resample-private.h"
#include "MagickCore/resize.h"
#include "MagickCore/resource_.h"
#include "MagickCore/segment.h"
#include "MagickCore/shear.h"
#include "MagickCore/signature-private.h"
#include "MagickCore/statistic.h"
#include "MagickCore/string_.h"
#include "MagickCore/thread-private.h"
#include "MagickCore/transform.h"
#include "MagickCore/threshold.h"
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% A d a p t i v e B l u r I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% AdaptiveBlurImage() adaptively blurs the image by blurring less
% intensely near image edges and more intensely far from edges. We blur the
% image with a Gaussian operator of the given radius and standard deviation
% (sigma). For reasonable results, radius should be larger than sigma. Use a
% radius of 0 and AdaptiveBlurImage() selects a suitable radius for you.
%
% The format of the AdaptiveBlurImage method is:
%
% Image *AdaptiveBlurImage(const Image *image,const double radius,
% const double sigma,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the Gaussian, in pixels, not counting the center
% pixel.
%
% o sigma: the standard deviation of the Laplacian, in pixels.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *AdaptiveBlurImage(const Image *image,const double radius,
const double sigma,ExceptionInfo *exception)
{
#define AdaptiveBlurImageTag "Convolve/Image"
#define MagickSigma (fabs(sigma) < MagickEpsilon ? MagickEpsilon : sigma)
CacheView
*blur_view,
*edge_view,
*image_view;
double
normalize,
**kernel;
Image
*blur_image,
*edge_image,
*gaussian_image;
MagickBooleanType
status;
MagickOffsetType
progress;
register ssize_t
i;
size_t
width;
ssize_t
j,
k,
u,
v,
y;
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
blur_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception);
if (blur_image == (Image *) NULL)
return((Image *) NULL);
if (fabs(sigma) < MagickEpsilon)
return(blur_image);
if (SetImageStorageClass(blur_image,DirectClass,exception) == MagickFalse)
{
blur_image=DestroyImage(blur_image);
return((Image *) NULL);
}
/*
Edge detect the image brightness channel, level, blur, and level again.
*/
edge_image=EdgeImage(image,radius,exception);
if (edge_image == (Image *) NULL)
{
blur_image=DestroyImage(blur_image);
return((Image *) NULL);
}
(void) AutoLevelImage(edge_image,exception);
gaussian_image=BlurImage(edge_image,radius,sigma,exception);
if (gaussian_image != (Image *) NULL)
{
edge_image=DestroyImage(edge_image);
edge_image=gaussian_image;
}
(void) AutoLevelImage(edge_image,exception);
/*
Create a set of kernels from maximum (radius,sigma) to minimum.
*/
width=GetOptimalKernelWidth2D(radius,sigma);
kernel=(double **) MagickAssumeAligned(AcquireAlignedMemory((size_t) width,
sizeof(*kernel)));
if (kernel == (double **) NULL)
{
edge_image=DestroyImage(edge_image);
blur_image=DestroyImage(blur_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
(void) ResetMagickMemory(kernel,0,(size_t) width*sizeof(*kernel));
for (i=0; i < (ssize_t) width; i+=2)
{
kernel[i]=(double *) MagickAssumeAligned(AcquireAlignedMemory(
(size_t) (width-i),(width-i)*sizeof(**kernel)));
if (kernel[i] == (double *) NULL)
break;
normalize=0.0;
j=(ssize_t) (width-i-1)/2;
k=0;
for (v=(-j); v <= j; v++)
{
for (u=(-j); u <= j; u++)
{
kernel[i][k]=(double) (exp(-((double) u*u+v*v)/(2.0*MagickSigma*
MagickSigma))/(2.0*MagickPI*MagickSigma*MagickSigma));
normalize+=kernel[i][k];
k++;
}
}
kernel[i][(k-1)/2]+=(double) (1.0-normalize);
if (sigma < MagickEpsilon)
kernel[i][(k-1)/2]=1.0;
}
if (i < (ssize_t) width)
{
for (i-=2; i >= 0; i-=2)
kernel[i]=(double *) RelinquishAlignedMemory(kernel[i]);
kernel=(double **) RelinquishAlignedMemory(kernel);
edge_image=DestroyImage(edge_image);
blur_image=DestroyImage(blur_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
/*
Adaptively blur image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(image,exception);
edge_view=AcquireVirtualCacheView(edge_image,exception);
blur_view=AcquireAuthenticCacheView(blur_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status) \
magick_threads(image,blur_image,blur_image->rows,1)
#endif
for (y=0; y < (ssize_t) blur_image->rows; y++)
{
register const Quantum
*magick_restrict r;
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
r=GetCacheViewVirtualPixels(edge_view,0,y,edge_image->columns,1,exception);
q=QueueCacheViewAuthenticPixels(blur_view,0,y,blur_image->columns,1,
exception);
if ((r == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) blur_image->columns; x++)
{
register const Quantum
*magick_restrict p;
register ssize_t
i;
ssize_t
center,
j;
j=(ssize_t) ceil((double) width*(1.0-QuantumScale*
GetPixelIntensity(edge_image,r))-0.5);
if (j < 0)
j=0;
else
if (j > (ssize_t) width)
j=(ssize_t) width;
if ((j & 0x01) != 0)
j--;
p=GetCacheViewVirtualPixels(image_view,x-((ssize_t) (width-j)/2L),y-
(ssize_t) ((width-j)/2L),width-j,width-j,exception);
if (p == (const Quantum *) NULL)
break;
center=(ssize_t) GetPixelChannels(image)*(width-j)*((width-j)/2L)+
GetPixelChannels(image)*((width-j)/2);
for (i=0; i < (ssize_t) GetPixelChannels(blur_image); i++)
{
double
alpha,
gamma,
pixel;
PixelChannel
channel;
PixelTrait
blur_traits,
traits;
register const double
*magick_restrict k;
register const Quantum
*magick_restrict pixels;
register ssize_t
u;
ssize_t
v;
channel=GetPixelChannelChannel(image,i);
traits=GetPixelChannelTraits(image,channel);
blur_traits=GetPixelChannelTraits(blur_image,channel);
if ((traits == UndefinedPixelTrait) ||
(blur_traits == UndefinedPixelTrait))
continue;
if (((blur_traits & CopyPixelTrait) != 0) ||
(GetPixelWriteMask(image,p+center) <= (QuantumRange/2)))
{
SetPixelChannel(blur_image,channel,p[center+i],q);
continue;
}
k=kernel[j];
pixels=p;
pixel=0.0;
gamma=0.0;
if ((blur_traits & BlendPixelTrait) == 0)
{
/*
No alpha blending.
*/
for (v=0; v < (ssize_t) (width-j); v++)
{
for (u=0; u < (ssize_t) (width-j); u++)
{
pixel+=(*k)*pixels[i];
gamma+=(*k);
k++;
pixels+=GetPixelChannels(image);
}
}
gamma=PerceptibleReciprocal(gamma);
SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q);
continue;
}
/*
Alpha blending.
*/
for (v=0; v < (ssize_t) (width-j); v++)
{
for (u=0; u < (ssize_t) (width-j); u++)
{
alpha=(double) (QuantumScale*GetPixelAlpha(image,pixels));
pixel+=(*k)*alpha*pixels[i];
gamma+=(*k)*alpha;
k++;
pixels+=GetPixelChannels(image);
}
}
gamma=PerceptibleReciprocal(gamma);
SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q);
}
q+=GetPixelChannels(blur_image);
r+=GetPixelChannels(edge_image);
}
if (SyncCacheViewAuthenticPixels(blur_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_AdaptiveBlurImage)
#endif
proceed=SetImageProgress(image,AdaptiveBlurImageTag,progress++,
image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
blur_image->type=image->type;
blur_view=DestroyCacheView(blur_view);
edge_view=DestroyCacheView(edge_view);
image_view=DestroyCacheView(image_view);
edge_image=DestroyImage(edge_image);
for (i=0; i < (ssize_t) width; i+=2)
kernel[i]=(double *) RelinquishAlignedMemory(kernel[i]);
kernel=(double **) RelinquishAlignedMemory(kernel);
if (status == MagickFalse)
blur_image=DestroyImage(blur_image);
return(blur_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% A d a p t i v e S h a r p e n I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% AdaptiveSharpenImage() adaptively sharpens the image by sharpening more
% intensely near image edges and less intensely far from edges. We sharpen the
% image with a Gaussian operator of the given radius and standard deviation
% (sigma). For reasonable results, radius should be larger than sigma. Use a
% radius of 0 and AdaptiveSharpenImage() selects a suitable radius for you.
%
% The format of the AdaptiveSharpenImage method is:
%
% Image *AdaptiveSharpenImage(const Image *image,const double radius,
% const double sigma,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the Gaussian, in pixels, not counting the center
% pixel.
%
% o sigma: the standard deviation of the Laplacian, in pixels.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *AdaptiveSharpenImage(const Image *image,const double radius,
const double sigma,ExceptionInfo *exception)
{
#define AdaptiveSharpenImageTag "Convolve/Image"
#define MagickSigma (fabs(sigma) < MagickEpsilon ? MagickEpsilon : sigma)
CacheView
*sharp_view,
*edge_view,
*image_view;
double
normalize,
**kernel;
Image
*sharp_image,
*edge_image,
*gaussian_image;
MagickBooleanType
status;
MagickOffsetType
progress;
register ssize_t
i;
size_t
width;
ssize_t
j,
k,
u,
v,
y;
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
sharp_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception);
if (sharp_image == (Image *) NULL)
return((Image *) NULL);
if (fabs(sigma) < MagickEpsilon)
return(sharp_image);
if (SetImageStorageClass(sharp_image,DirectClass,exception) == MagickFalse)
{
sharp_image=DestroyImage(sharp_image);
return((Image *) NULL);
}
/*
Edge detect the image brightness channel, level, sharp, and level again.
*/
edge_image=EdgeImage(image,radius,exception);
if (edge_image == (Image *) NULL)
{
sharp_image=DestroyImage(sharp_image);
return((Image *) NULL);
}
(void) AutoLevelImage(edge_image,exception);
gaussian_image=BlurImage(edge_image,radius,sigma,exception);
if (gaussian_image != (Image *) NULL)
{
edge_image=DestroyImage(edge_image);
edge_image=gaussian_image;
}
(void) AutoLevelImage(edge_image,exception);
/*
Create a set of kernels from maximum (radius,sigma) to minimum.
*/
width=GetOptimalKernelWidth2D(radius,sigma);
kernel=(double **) MagickAssumeAligned(AcquireAlignedMemory((size_t)
width,sizeof(*kernel)));
if (kernel == (double **) NULL)
{
edge_image=DestroyImage(edge_image);
sharp_image=DestroyImage(sharp_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
(void) ResetMagickMemory(kernel,0,(size_t) width*sizeof(*kernel));
for (i=0; i < (ssize_t) width; i+=2)
{
kernel[i]=(double *) MagickAssumeAligned(AcquireAlignedMemory((size_t)
(width-i),(width-i)*sizeof(**kernel)));
if (kernel[i] == (double *) NULL)
break;
normalize=0.0;
j=(ssize_t) (width-i-1)/2;
k=0;
for (v=(-j); v <= j; v++)
{
for (u=(-j); u <= j; u++)
{
kernel[i][k]=(double) (-exp(-((double) u*u+v*v)/(2.0*MagickSigma*
MagickSigma))/(2.0*MagickPI*MagickSigma*MagickSigma));
normalize+=kernel[i][k];
k++;
}
}
kernel[i][(k-1)/2]=(double) ((-2.0)*normalize);
if (sigma < MagickEpsilon)
kernel[i][(k-1)/2]=1.0;
}
if (i < (ssize_t) width)
{
for (i-=2; i >= 0; i-=2)
kernel[i]=(double *) RelinquishAlignedMemory(kernel[i]);
kernel=(double **) RelinquishAlignedMemory(kernel);
edge_image=DestroyImage(edge_image);
sharp_image=DestroyImage(sharp_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
/*
Adaptively sharpen image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(image,exception);
edge_view=AcquireVirtualCacheView(edge_image,exception);
sharp_view=AcquireAuthenticCacheView(sharp_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status) \
magick_threads(image,sharp_image,sharp_image->rows,1)
#endif
for (y=0; y < (ssize_t) sharp_image->rows; y++)
{
register const Quantum
*magick_restrict r;
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
r=GetCacheViewVirtualPixels(edge_view,0,y,edge_image->columns,1,exception);
q=QueueCacheViewAuthenticPixels(sharp_view,0,y,sharp_image->columns,1,
exception);
if ((r == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) sharp_image->columns; x++)
{
register const Quantum
*magick_restrict p;
register ssize_t
i;
ssize_t
center,
j;
j=(ssize_t) ceil((double) width*(1.0-QuantumScale*
GetPixelIntensity(edge_image,r))-0.5);
if (j < 0)
j=0;
else
if (j > (ssize_t) width)
j=(ssize_t) width;
if ((j & 0x01) != 0)
j--;
p=GetCacheViewVirtualPixels(image_view,x-((ssize_t) (width-j)/2L),y-
(ssize_t) ((width-j)/2L),width-j,width-j,exception);
if (p == (const Quantum *) NULL)
break;
center=(ssize_t) GetPixelChannels(image)*(width-j)*((width-j)/2L)+
GetPixelChannels(image)*((width-j)/2);
for (i=0; i < (ssize_t) GetPixelChannels(sharp_image); i++)
{
double
alpha,
gamma,
pixel;
PixelChannel
channel;
PixelTrait
sharp_traits,
traits;
register const double
*magick_restrict k;
register const Quantum
*magick_restrict pixels;
register ssize_t
u;
ssize_t
v;
channel=GetPixelChannelChannel(image,i);
traits=GetPixelChannelTraits(image,channel);
sharp_traits=GetPixelChannelTraits(sharp_image,channel);
if ((traits == UndefinedPixelTrait) ||
(sharp_traits == UndefinedPixelTrait))
continue;
if (((sharp_traits & CopyPixelTrait) != 0) ||
(GetPixelWriteMask(image,p+center) <= (QuantumRange/2)))
{
SetPixelChannel(sharp_image,channel,p[center+i],q);
continue;
}
k=kernel[j];
pixels=p;
pixel=0.0;
gamma=0.0;
if ((sharp_traits & BlendPixelTrait) == 0)
{
/*
No alpha blending.
*/
for (v=0; v < (ssize_t) (width-j); v++)
{
for (u=0; u < (ssize_t) (width-j); u++)
{
pixel+=(*k)*pixels[i];
gamma+=(*k);
k++;
pixels+=GetPixelChannels(image);
}
}
gamma=PerceptibleReciprocal(gamma);
SetPixelChannel(sharp_image,channel,ClampToQuantum(gamma*pixel),q);
continue;
}
/*
Alpha blending.
*/
for (v=0; v < (ssize_t) (width-j); v++)
{
for (u=0; u < (ssize_t) (width-j); u++)
{
alpha=(double) (QuantumScale*GetPixelAlpha(image,pixels));
pixel+=(*k)*alpha*pixels[i];
gamma+=(*k)*alpha;
k++;
pixels+=GetPixelChannels(image);
}
}
gamma=PerceptibleReciprocal(gamma);
SetPixelChannel(sharp_image,channel,ClampToQuantum(gamma*pixel),q);
}
q+=GetPixelChannels(sharp_image);
r+=GetPixelChannels(edge_image);
}
if (SyncCacheViewAuthenticPixels(sharp_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_AdaptiveSharpenImage)
#endif
proceed=SetImageProgress(image,AdaptiveSharpenImageTag,progress++,
image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
sharp_image->type=image->type;
sharp_view=DestroyCacheView(sharp_view);
edge_view=DestroyCacheView(edge_view);
image_view=DestroyCacheView(image_view);
edge_image=DestroyImage(edge_image);
for (i=0; i < (ssize_t) width; i+=2)
kernel[i]=(double *) RelinquishAlignedMemory(kernel[i]);
kernel=(double **) RelinquishAlignedMemory(kernel);
if (status == MagickFalse)
sharp_image=DestroyImage(sharp_image);
return(sharp_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% B l u r I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% BlurImage() blurs an image. We convolve the image with a Gaussian operator
% of the given radius and standard deviation (sigma). For reasonable results,
% the radius should be larger than sigma. Use a radius of 0 and BlurImage()
% selects a suitable radius for you.
%
% The format of the BlurImage method is:
%
% Image *BlurImage(const Image *image,const double radius,
% const double sigma,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the Gaussian, in pixels, not counting the center
% pixel.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *BlurImage(const Image *image,const double radius,
const double sigma,ExceptionInfo *exception)
{
char
geometry[MagickPathExtent];
KernelInfo
*kernel_info;
Image
*blur_image;
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
#if defined(MAGICKCORE_OPENCL_SUPPORT)
blur_image=AccelerateBlurImage(image,radius,sigma,exception);
if (blur_image != (Image *) NULL)
return(blur_image);
#endif
(void) FormatLocaleString(geometry,MagickPathExtent,
"blur:%.20gx%.20g;blur:%.20gx%.20g+90",radius,sigma,radius,sigma);
kernel_info=AcquireKernelInfo(geometry,exception);
if (kernel_info == (KernelInfo *) NULL)
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
blur_image=ConvolveImage(image,kernel_info,exception);
kernel_info=DestroyKernelInfo(kernel_info);
return(blur_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% C o n v o l v e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ConvolveImage() applies a custom convolution kernel to the image.
%
% The format of the ConvolveImage method is:
%
% Image *ConvolveImage(const Image *image,const KernelInfo *kernel,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o kernel: the filtering kernel.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *ConvolveImage(const Image *image,
const KernelInfo *kernel_info,ExceptionInfo *exception)
{
Image
*convolve_image;
#if defined(MAGICKCORE_OPENCL_SUPPORT)
convolve_image=AccelerateConvolveImage(image,kernel_info,exception);
if (convolve_image != (Image *) NULL)
return(convolve_image);
#endif
convolve_image=MorphologyImage(image,ConvolveMorphology,1,kernel_info,
exception);
return(convolve_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% D e s p e c k l e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DespeckleImage() reduces the speckle noise in an image while perserving the
% edges of the original image. A speckle removing filter uses a complementary
% hulling technique (raising pixels that are darker than their surrounding
% neighbors, then complementarily lowering pixels that are brighter than their
% surrounding neighbors) to reduce the speckle index of that image (reference
% Crimmins speckle removal).
%
% The format of the DespeckleImage method is:
%
% Image *DespeckleImage(const Image *image,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o exception: return any errors or warnings in this structure.
%
*/
static void Hull(const Image *image,const ssize_t x_offset,
const ssize_t y_offset,const size_t columns,const size_t rows,
const int polarity,Quantum *magick_restrict f,Quantum *magick_restrict g)
{
register Quantum
*p,
*q,
*r,
*s;
ssize_t
y;
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(f != (Quantum *) NULL);
assert(g != (Quantum *) NULL);
p=f+(columns+2);
q=g+(columns+2);
r=p+(y_offset*(columns+2)+x_offset);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) \
magick_threads(image,image,1,1)
#endif
for (y=0; y < (ssize_t) rows; y++)
{
MagickRealType
v;
register ssize_t
i,
x;
i=(2*y+1)+y*columns;
if (polarity > 0)
for (x=0; x < (ssize_t) columns; x++)
{
v=(MagickRealType) p[i];
if ((MagickRealType) r[i] >= (v+ScaleCharToQuantum(2)))
v+=ScaleCharToQuantum(1);
q[i]=(Quantum) v;
i++;
}
else
for (x=0; x < (ssize_t) columns; x++)
{
v=(MagickRealType) p[i];
if ((MagickRealType) r[i] <= (v-ScaleCharToQuantum(2)))
v-=ScaleCharToQuantum(1);
q[i]=(Quantum) v;
i++;
}
}
p=f+(columns+2);
q=g+(columns+2);
r=q+(y_offset*(columns+2)+x_offset);
s=q-(y_offset*(columns+2)+x_offset);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) \
magick_threads(image,image,1,1)
#endif
for (y=0; y < (ssize_t) rows; y++)
{
register ssize_t
i,
x;
MagickRealType
v;
i=(2*y+1)+y*columns;
if (polarity > 0)
for (x=0; x < (ssize_t) columns; x++)
{
v=(MagickRealType) q[i];
if (((MagickRealType) s[i] >= (v+ScaleCharToQuantum(2))) &&
((MagickRealType) r[i] > v))
v+=ScaleCharToQuantum(1);
p[i]=(Quantum) v;
i++;
}
else
for (x=0; x < (ssize_t) columns; x++)
{
v=(MagickRealType) q[i];
if (((MagickRealType) s[i] <= (v-ScaleCharToQuantum(2))) &&
((MagickRealType) r[i] < v))
v-=ScaleCharToQuantum(1);
p[i]=(Quantum) v;
i++;
}
}
}
MagickExport Image *DespeckleImage(const Image *image,ExceptionInfo *exception)
{
#define DespeckleImageTag "Despeckle/Image"
CacheView
*despeckle_view,
*image_view;
Image
*despeckle_image;
MagickBooleanType
status;
MemoryInfo
*buffer_info,
*pixel_info;
Quantum
*magick_restrict buffer,
*magick_restrict pixels;
register ssize_t
i;
size_t
length;
static const ssize_t
X[4] = {0, 1, 1,-1},
Y[4] = {1, 0, 1, 1};
/*
Allocate despeckled image.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
#if defined(MAGICKCORE_OPENCL_SUPPORT)
despeckle_image=AccelerateDespeckleImage(image,exception);
if (despeckle_image != (Image *) NULL)
return(despeckle_image);
#endif
despeckle_image=CloneImage(image,0,0,MagickTrue,exception);
if (despeckle_image == (Image *) NULL)
return((Image *) NULL);
status=SetImageStorageClass(despeckle_image,DirectClass,exception);
if (status == MagickFalse)
{
despeckle_image=DestroyImage(despeckle_image);
return((Image *) NULL);
}
/*
Allocate image buffer.
*/
length=(size_t) ((image->columns+2)*(image->rows+2));
pixel_info=AcquireVirtualMemory(length,sizeof(*pixels));
buffer_info=AcquireVirtualMemory(length,sizeof(*buffer));
if ((pixel_info == (MemoryInfo *) NULL) ||
(buffer_info == (MemoryInfo *) NULL))
{
if (buffer_info != (MemoryInfo *) NULL)
buffer_info=RelinquishVirtualMemory(buffer_info);
if (pixel_info != (MemoryInfo *) NULL)
pixel_info=RelinquishVirtualMemory(pixel_info);
despeckle_image=DestroyImage(despeckle_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
pixels=(Quantum *) GetVirtualMemoryBlob(pixel_info);
buffer=(Quantum *) GetVirtualMemoryBlob(buffer_info);
/*
Reduce speckle in the image.
*/
status=MagickTrue;
image_view=AcquireVirtualCacheView(image,exception);
despeckle_view=AcquireAuthenticCacheView(despeckle_image,exception);
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel
channel;
PixelTrait
despeckle_traits,
traits;
register ssize_t
k,
x;
ssize_t
j,
y;
if (status == MagickFalse)
continue;
channel=GetPixelChannelChannel(image,i);
traits=GetPixelChannelTraits(image,channel);
despeckle_traits=GetPixelChannelTraits(despeckle_image,channel);
if ((traits == UndefinedPixelTrait) ||
(despeckle_traits == UndefinedPixelTrait))
continue;
if ((despeckle_traits & CopyPixelTrait) != 0)
continue;
(void) ResetMagickMemory(pixels,0,length*sizeof(*pixels));
j=(ssize_t) image->columns+2;
for (y=0; y < (ssize_t) image->rows; y++)
{
register const Quantum
*magick_restrict p;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
continue;
}
j++;
for (x=0; x < (ssize_t) image->columns; x++)
{
pixels[j++]=p[i];
p+=GetPixelChannels(image);
}
j++;
}
(void) ResetMagickMemory(buffer,0,length*sizeof(*buffer));
for (k=0; k < 4; k++)
{
Hull(image,X[k],Y[k],image->columns,image->rows,1,pixels,buffer);
Hull(image,-X[k],-Y[k],image->columns,image->rows,1,pixels,buffer);
Hull(image,-X[k],-Y[k],image->columns,image->rows,-1,pixels,buffer);
Hull(image,X[k],Y[k],image->columns,image->rows,-1,pixels,buffer);
}
j=(ssize_t) image->columns+2;
for (y=0; y < (ssize_t) image->rows; y++)
{
MagickBooleanType
sync;
register Quantum
*magick_restrict q;
q=GetCacheViewAuthenticPixels(despeckle_view,0,y,despeckle_image->columns,
1,exception);
if (q == (Quantum *) NULL)
{
status=MagickFalse;
continue;
}
j++;
for (x=0; x < (ssize_t) image->columns; x++)
{
SetPixelChannel(despeckle_image,channel,pixels[j++],q);
q+=GetPixelChannels(despeckle_image);
}
sync=SyncCacheViewAuthenticPixels(despeckle_view,exception);
if (sync == MagickFalse)
status=MagickFalse;
j++;
}
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
proceed=SetImageProgress(image,DespeckleImageTag,(MagickOffsetType) i,
GetPixelChannels(image));
if (proceed == MagickFalse)
status=MagickFalse;
}
}
despeckle_view=DestroyCacheView(despeckle_view);
image_view=DestroyCacheView(image_view);
buffer_info=RelinquishVirtualMemory(buffer_info);
pixel_info=RelinquishVirtualMemory(pixel_info);
despeckle_image->type=image->type;
if (status == MagickFalse)
despeckle_image=DestroyImage(despeckle_image);
return(despeckle_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% E d g e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% EdgeImage() finds edges in an image. Radius defines the radius of the
% convolution filter. Use a radius of 0 and EdgeImage() selects a suitable
% radius for you.
%
% The format of the EdgeImage method is:
%
% Image *EdgeImage(const Image *image,const double radius,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the pixel neighborhood.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *EdgeImage(const Image *image,const double radius,
ExceptionInfo *exception)
{
Image
*edge_image;
KernelInfo
*kernel_info;
register ssize_t
i;
size_t
width;
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
width=GetOptimalKernelWidth1D(radius,0.5);
kernel_info=AcquireKernelInfo((const char *) NULL,exception);
if (kernel_info == (KernelInfo *) NULL)
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
(void) ResetMagickMemory(kernel_info,0,sizeof(*kernel_info));
kernel_info->width=width;
kernel_info->height=width;
kernel_info->x=(ssize_t) (kernel_info->width-1)/2;
kernel_info->y=(ssize_t) (kernel_info->height-1)/2;
kernel_info->signature=MagickCoreSignature;
kernel_info->values=(MagickRealType *) MagickAssumeAligned(
AcquireAlignedMemory(kernel_info->width,kernel_info->height*
sizeof(*kernel_info->values)));
if (kernel_info->values == (MagickRealType *) NULL)
{
kernel_info=DestroyKernelInfo(kernel_info);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
for (i=0; i < (ssize_t) (kernel_info->width*kernel_info->height); i++)
kernel_info->values[i]=(-1.0);
kernel_info->values[i/2]=(double) kernel_info->width*kernel_info->height-1.0;
edge_image=ConvolveImage(image,kernel_info,exception);
kernel_info=DestroyKernelInfo(kernel_info);
return(edge_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% E m b o s s I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% EmbossImage() returns a grayscale image with a three-dimensional effect.
% We convolve the image with a Gaussian operator of the given radius and
% standard deviation (sigma). For reasonable results, radius should be
% larger than sigma. Use a radius of 0 and Emboss() selects a suitable
% radius for you.
%
% The format of the EmbossImage method is:
%
% Image *EmbossImage(const Image *image,const double radius,
% const double sigma,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the pixel neighborhood.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *EmbossImage(const Image *image,const double radius,
const double sigma,ExceptionInfo *exception)
{
double
gamma,
normalize;
Image
*emboss_image;
KernelInfo
*kernel_info;
register ssize_t
i;
size_t
width;
ssize_t
j,
k,
u,
v;
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
width=GetOptimalKernelWidth1D(radius,sigma);
kernel_info=AcquireKernelInfo((const char *) NULL,exception);
if (kernel_info == (KernelInfo *) NULL)
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
kernel_info->width=width;
kernel_info->height=width;
kernel_info->x=(ssize_t) (width-1)/2;
kernel_info->y=(ssize_t) (width-1)/2;
kernel_info->values=(MagickRealType *) MagickAssumeAligned(
AcquireAlignedMemory(kernel_info->width,kernel_info->width*
sizeof(*kernel_info->values)));
if (kernel_info->values == (MagickRealType *) NULL)
{
kernel_info=DestroyKernelInfo(kernel_info);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
j=(ssize_t) (kernel_info->width-1)/2;
k=j;
i=0;
for (v=(-j); v <= j; v++)
{
for (u=(-j); u <= j; u++)
{
kernel_info->values[i]=(MagickRealType) (((u < 0) || (v < 0) ? -8.0 :
8.0)*exp(-((double) u*u+v*v)/(2.0*MagickSigma*MagickSigma))/
(2.0*MagickPI*MagickSigma*MagickSigma));
if (u != k)
kernel_info->values[i]=0.0;
i++;
}
k--;
}
normalize=0.0;
for (i=0; i < (ssize_t) (kernel_info->width*kernel_info->height); i++)
normalize+=kernel_info->values[i];
gamma=PerceptibleReciprocal(normalize);
for (i=0; i < (ssize_t) (kernel_info->width*kernel_info->height); i++)
kernel_info->values[i]*=gamma;
emboss_image=ConvolveImage(image,kernel_info,exception);
kernel_info=DestroyKernelInfo(kernel_info);
if (emboss_image != (Image *) NULL)
(void) EqualizeImage(emboss_image,exception);
return(emboss_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% G a u s s i a n B l u r I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% GaussianBlurImage() blurs an image. We convolve the image with a
% Gaussian operator of the given radius and standard deviation (sigma).
% For reasonable results, the radius should be larger than sigma. Use a
% radius of 0 and GaussianBlurImage() selects a suitable radius for you
%
% The format of the GaussianBlurImage method is:
%
% Image *GaussianBlurImage(const Image *image,onst double radius,
% const double sigma,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the Gaussian, in pixels, not counting the center
% pixel.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *GaussianBlurImage(const Image *image,const double radius,
const double sigma,ExceptionInfo *exception)
{
char
geometry[MagickPathExtent];
KernelInfo
*kernel_info;
Image
*blur_image;
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
(void) FormatLocaleString(geometry,MagickPathExtent,"gaussian:%.20gx%.20g",
radius,sigma);
kernel_info=AcquireKernelInfo(geometry,exception);
if (kernel_info == (KernelInfo *) NULL)
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
blur_image=ConvolveImage(image,kernel_info,exception);
kernel_info=DestroyKernelInfo(kernel_info);
return(blur_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% K u w a h a r a I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% KuwaharaImage() is an edge preserving noise reduction filter.
%
% The format of the KuwaharaImage method is:
%
% Image *KuwaharaImage(const Image *image,const double radius,
% const double sigma,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the square window radius.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o exception: return any errors or warnings in this structure.
%
*/
static inline MagickRealType GetMeanLuma(const Image *magick_restrict image,
const double *magick_restrict pixel)
{
return(0.212656f*pixel[image->channel_map[RedPixelChannel].offset]+
0.715158f*pixel[image->channel_map[GreenPixelChannel].offset]+
0.072186f*pixel[image->channel_map[BluePixelChannel].offset]); /* Rec709 */
}
MagickExport Image *KuwaharaImage(const Image *image,const double radius,
const double sigma,ExceptionInfo *exception)
{
#define KuwaharaImageTag "Kuwahara/Image"
CacheView
*image_view,
*kuwahara_view;
Image
*gaussian_image,
*kuwahara_image;
MagickBooleanType
status;
MagickOffsetType
progress;
size_t
width;
ssize_t
y;
/*
Initialize Kuwahara image attributes.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
width=(size_t) radius+1;
gaussian_image=BlurImage(image,radius,sigma,exception);
if (gaussian_image == (Image *) NULL)
return((Image *) NULL);
kuwahara_image=CloneImage(image,image->columns,image->rows,MagickTrue,
exception);
if (kuwahara_image == (Image *) NULL)
{
gaussian_image=DestroyImage(gaussian_image);
return((Image *) NULL);
}
if (SetImageStorageClass(kuwahara_image,DirectClass,exception) == MagickFalse)
{
gaussian_image=DestroyImage(gaussian_image);
kuwahara_image=DestroyImage(kuwahara_image);
return((Image *) NULL);
}
/*
Edge preserving noise reduction filter.
*/
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(gaussian_image,exception);
kuwahara_view=AcquireAuthenticCacheView(kuwahara_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status) \
magick_threads(image,kuwahara_image,image->rows,1)
#endif
for (y=0; y < (ssize_t) gaussian_image->rows; y++)
{
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
q=QueueCacheViewAuthenticPixels(kuwahara_view,0,y,kuwahara_image->columns,1,
exception);
if (q == (Quantum *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) gaussian_image->columns; x++)
{
const Quantum
*magick_restrict p;
double
min_variance;
RectangleInfo
quadrant,
target;
register size_t
i;
min_variance=MagickMaximumValue;
SetGeometry(gaussian_image,&target);
quadrant.width=width;
quadrant.height=width;
for (i=0; i < 4; i++)
{
const Quantum
*magick_restrict k;
double
mean[MaxPixelChannels],
variance;
register ssize_t
n;
ssize_t
j;
quadrant.x=x;
quadrant.y=y;
switch (i)
{
case 0:
{
quadrant.x=x-(ssize_t) (width-1);
quadrant.y=y-(ssize_t) (width-1);
break;
}
case 1:
{
quadrant.y=y-(ssize_t) (width-1);
break;
}
case 2:
{
quadrant.x=x-(ssize_t) (width-1);
break;
}
case 3:
default:
break;
}
p=GetCacheViewVirtualPixels(image_view,quadrant.x,quadrant.y,
quadrant.width,quadrant.height,exception);
if (p == (const Quantum *) NULL)
break;
for (j=0; j < (ssize_t) GetPixelChannels(gaussian_image); j++)
mean[j]=0.0;
k=p;
for (n=0; n < (ssize_t) (width*width); n++)
{
for (j=0; j < (ssize_t) GetPixelChannels(gaussian_image); j++)
mean[j]+=(double) k[j];
k+=GetPixelChannels(gaussian_image);
}
for (j=0; j < (ssize_t) GetPixelChannels(gaussian_image); j++)
mean[j]/=(double) (width*width);
k=p;
variance=0.0;
for (n=0; n < (ssize_t) (width*width); n++)
{
double
luma;
luma=GetPixelLuma(gaussian_image,k);
variance+=(luma-GetMeanLuma(gaussian_image,mean))*
(luma-GetMeanLuma(gaussian_image,mean));
k+=GetPixelChannels(gaussian_image);
}
if (variance < min_variance)
{
min_variance=variance;
target=quadrant;
}
}
if (i < 4)
{
status=MagickFalse;
break;
}
status=InterpolatePixelChannels(gaussian_image,image_view,kuwahara_image,
UndefinedInterpolatePixel,(double) target.x+target.width/2.0,(double)
target.y+target.height/2.0,q,exception);
q+=GetPixelChannels(kuwahara_image);
}
if (SyncCacheViewAuthenticPixels(kuwahara_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_KuwaharaImage)
#endif
proceed=SetImageProgress(image,KuwaharaImageTag,progress++,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
kuwahara_view=DestroyCacheView(kuwahara_view);
image_view=DestroyCacheView(image_view);
gaussian_image=DestroyImage(gaussian_image);
if (status == MagickFalse)
kuwahara_image=DestroyImage(kuwahara_image);
return(kuwahara_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% L o c a l C o n t r a s t I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% LocalContrastImage() attempts to increase the appearance of large-scale
% light-dark transitions. Local contrast enhancement works similarly to
% sharpening with an unsharp mask, however the mask is instead created using
% an image with a greater blur distance.
%
% The format of the LocalContrastImage method is:
%
% Image *LocalContrastImage(const Image *image, const double radius,
% const double strength,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the Gaussian blur, in percentage with 100%
% resulting in a blur radius of 20% of largest dimension.
%
% o strength: the strength of the blur mask in percentage.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *LocalContrastImage(const Image *image,const double radius,
const double strength,ExceptionInfo *exception)
{
#define LocalContrastImageTag "LocalContrast/Image"
CacheView
*image_view,
*contrast_view;
float
*interImage,
*scanLinePixels,
totalWeight;
Image
*contrast_image;
MagickBooleanType
status;
MemoryInfo
*scanLinePixels_info,
*interImage_info;
ssize_t
scanLineSize,
width;
/*
Initialize contrast image attributes.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
#if defined(MAGICKCORE_OPENCL_SUPPORT)
contrast_image=AccelerateLocalContrastImage(image,radius,strength,exception);
if (contrast_image != (Image *) NULL)
return(contrast_image);
#endif
contrast_image=CloneImage(image,0,0,MagickTrue,exception);
if (contrast_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(contrast_image,DirectClass,exception) == MagickFalse)
{
contrast_image=DestroyImage(contrast_image);
return((Image *) NULL);
}
image_view=AcquireVirtualCacheView(image,exception);
contrast_view=AcquireAuthenticCacheView(contrast_image,exception);
scanLineSize=(ssize_t) MagickMax(image->columns,image->rows);
width=(ssize_t) scanLineSize*0.002f*fabs(radius);
scanLineSize+=(2*width);
scanLinePixels_info=AcquireVirtualMemory((size_t) GetOpenMPMaximumThreads()*
scanLineSize,sizeof(*scanLinePixels));
if (scanLinePixels_info == (MemoryInfo *) NULL)
{
contrast_view=DestroyCacheView(contrast_view);
image_view=DestroyCacheView(image_view);
contrast_image=DestroyImage(contrast_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
scanLinePixels=(float *) GetVirtualMemoryBlob(scanLinePixels_info);
/*
Create intermediate buffer.
*/
interImage_info=AcquireVirtualMemory(image->rows*(image->columns+(2*width)),
sizeof(*interImage));
if (interImage_info == (MemoryInfo *) NULL)
{
scanLinePixels_info=RelinquishVirtualMemory(scanLinePixels_info);
contrast_view=DestroyCacheView(contrast_view);
image_view=DestroyCacheView(image_view);
contrast_image=DestroyImage(contrast_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
interImage=(float *) GetVirtualMemoryBlob(interImage_info);
totalWeight=(float) ((width+1)*(width+1));
/*
Vertical pass.
*/
status=MagickTrue;
{
ssize_t
x;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) \
magick_threads(image,image,image->columns,1)
#endif
for (x=0; x < (ssize_t) image->columns; x++)
{
const int
id = GetOpenMPThreadId();
const Quantum
*magick_restrict p;
float
*out,
*pix,
*pixels;
register ssize_t
y;
ssize_t
i;
if (status == MagickFalse)
continue;
pixels=scanLinePixels;
pixels+=id*scanLineSize;
pix=pixels;
p=GetCacheViewVirtualPixels(image_view,x,-width,1,image->rows+(2*width),
exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
continue;
}
for (y=0; y < (ssize_t) image->rows+(2*width); y++)
{
*pix++=(float)GetPixelLuma(image,p);
p+=image->number_channels;
}
out=interImage+x+width;
for (y=0; y < (ssize_t) image->rows; y++)
{
float
sum,
weight;
weight=1.0f;
sum=0;
pix=pixels+y;
for (i=0; i < width; i++)
{
sum+=weight*(*pix++);
weight+=1.0f;
}
for (i=width+1; i < (2*width); i++)
{
sum+=weight*(*pix++);
weight-=1.0f;
}
/* write to output */
*out=sum/totalWeight;
/* mirror into padding */
if (x <= width && x != 0)
*(out-(x*2))=*out;
if ((x > (ssize_t) image->columns-width-2) &&
(x != (ssize_t) image->columns-1))
*(out+((image->columns-x-1)*2))=*out;
out+=image->columns+(width*2);
}
}
}
/*
Horizontal pass.
*/
{
ssize_t
y;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) \
magick_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
const int
id = GetOpenMPThreadId();
const Quantum
*magick_restrict p;
float
*pix,
*pixels;
register Quantum
*magick_restrict q;
register ssize_t
x;
ssize_t
i;
if (status == MagickFalse)
continue;
pixels=scanLinePixels;
pixels+=id*scanLineSize;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
q=GetCacheViewAuthenticPixels(contrast_view,0,y,image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
memcpy(pixels,interImage+(y*(image->columns+(2*width))),(image->columns+
(2*width))*sizeof(float));
for (x=0; x < (ssize_t) image->columns; x++)
{
float
mult,
srcVal,
sum,
weight;
weight=1.0f;
sum=0;
pix=pixels+x;
for (i=0; i < width; i++)
{
sum+=weight*(*pix++);
weight+=1.0f;
}
for (i=width+1; i < (2*width); i++)
{
sum+=weight*(*pix++);
weight-=1.0f;
}
/* Apply and write */
srcVal=(float) GetPixelLuma(image,p);
mult=(srcVal-(sum/totalWeight))*(strength/100.0f);
mult=(srcVal+mult)/srcVal;
SetPixelRed(contrast_image,ClampToQuantum(GetPixelRed(image,p)*mult),
q);
SetPixelGreen(contrast_image,ClampToQuantum(GetPixelGreen(image,p)*
mult),q);
SetPixelBlue(contrast_image,ClampToQuantum(GetPixelBlue(image,p)*mult),
q);
p+=image->number_channels;
q+=contrast_image->number_channels;
}
if (SyncCacheViewAuthenticPixels(contrast_view,exception) == MagickFalse)
status=MagickFalse;
}
}
scanLinePixels_info=RelinquishVirtualMemory(scanLinePixels_info);
interImage_info=RelinquishVirtualMemory(interImage_info);
contrast_view=DestroyCacheView(contrast_view);
image_view=DestroyCacheView(image_view);
if (status == MagickFalse)
contrast_image=DestroyImage(contrast_image);
return(contrast_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% M o t i o n B l u r I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% MotionBlurImage() simulates motion blur. We convolve the image with a
% Gaussian operator of the given radius and standard deviation (sigma).
% For reasonable results, radius should be larger than sigma. Use a
% radius of 0 and MotionBlurImage() selects a suitable radius for you.
% Angle gives the angle of the blurring motion.
%
% Andrew Protano contributed this effect.
%
% The format of the MotionBlurImage method is:
%
% Image *MotionBlurImage(const Image *image,const double radius,
% const double sigma,const double angle,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the Gaussian, in pixels, not counting
% the center pixel.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o angle: Apply the effect along this angle.
%
% o exception: return any errors or warnings in this structure.
%
*/
static MagickRealType *GetMotionBlurKernel(const size_t width,
const double sigma)
{
MagickRealType
*kernel,
normalize;
register ssize_t
i;
/*
Generate a 1-D convolution kernel.
*/
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
kernel=(MagickRealType *) MagickAssumeAligned(AcquireAlignedMemory((size_t)
width,sizeof(*kernel)));
if (kernel == (MagickRealType *) NULL)
return(kernel);
normalize=0.0;
for (i=0; i < (ssize_t) width; i++)
{
kernel[i]=(MagickRealType) (exp((-((double) i*i)/(double) (2.0*MagickSigma*
MagickSigma)))/(MagickSQ2PI*MagickSigma));
normalize+=kernel[i];
}
for (i=0; i < (ssize_t) width; i++)
kernel[i]/=normalize;
return(kernel);
}
MagickExport Image *MotionBlurImage(const Image *image,const double radius,
const double sigma,const double angle,ExceptionInfo *exception)
{
#define BlurImageTag "Blur/Image"
CacheView
*blur_view,
*image_view,
*motion_view;
Image
*blur_image;
MagickBooleanType
status;
MagickOffsetType
progress;
MagickRealType
*kernel;
OffsetInfo
*offset;
PointInfo
point;
register ssize_t
i;
size_t
width;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
width=GetOptimalKernelWidth1D(radius,sigma);
kernel=GetMotionBlurKernel(width,sigma);
if (kernel == (MagickRealType *) NULL)
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
offset=(OffsetInfo *) AcquireQuantumMemory(width,sizeof(*offset));
if (offset == (OffsetInfo *) NULL)
{
kernel=(MagickRealType *) RelinquishAlignedMemory(kernel);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
point.x=(double) width*sin(DegreesToRadians(angle));
point.y=(double) width*cos(DegreesToRadians(angle));
for (i=0; i < (ssize_t) width; i++)
{
offset[i].x=(ssize_t) ceil((double) (i*point.y)/hypot(point.x,point.y)-0.5);
offset[i].y=(ssize_t) ceil((double) (i*point.x)/hypot(point.x,point.y)-0.5);
}
/*
Motion blur image.
*/
#if defined(MAGICKCORE_OPENCL_SUPPORT)
blur_image=AccelerateMotionBlurImage(image,kernel,width,offset,exception);
if (blur_image != (Image *) NULL)
{
kernel=(MagickRealType *) RelinquishAlignedMemory(kernel);
offset=(OffsetInfo *) RelinquishMagickMemory(offset);
return(blur_image);
}
#endif
blur_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception);
if (blur_image == (Image *) NULL)
{
kernel=(MagickRealType *) RelinquishAlignedMemory(kernel);
offset=(OffsetInfo *) RelinquishMagickMemory(offset);
return((Image *) NULL);
}
if (SetImageStorageClass(blur_image,DirectClass,exception) == MagickFalse)
{
kernel=(MagickRealType *) RelinquishAlignedMemory(kernel);
offset=(OffsetInfo *) RelinquishMagickMemory(offset);
blur_image=DestroyImage(blur_image);
return((Image *) NULL);
}
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(image,exception);
motion_view=AcquireVirtualCacheView(image,exception);
blur_view=AcquireAuthenticCacheView(blur_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status) \
magick_threads(image,blur_image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
register const Quantum
*magick_restrict p;
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
q=QueueCacheViewAuthenticPixels(blur_view,0,y,blur_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
double
alpha,
gamma,
pixel;
PixelChannel
channel;
PixelTrait
blur_traits,
traits;
register const Quantum
*magick_restrict r;
register MagickRealType
*magick_restrict k;
register ssize_t
j;
channel=GetPixelChannelChannel(image,i);
traits=GetPixelChannelTraits(image,channel);
blur_traits=GetPixelChannelTraits(blur_image,channel);
if ((traits == UndefinedPixelTrait) ||
(blur_traits == UndefinedPixelTrait))
continue;
if (((blur_traits & CopyPixelTrait) != 0) ||
(GetPixelWriteMask(image,p) <= (QuantumRange/2)))
{
SetPixelChannel(blur_image,channel,p[i],q);
continue;
}
k=kernel;
pixel=0.0;
if ((blur_traits & BlendPixelTrait) == 0)
{
for (j=0; j < (ssize_t) width; j++)
{
r=GetCacheViewVirtualPixels(motion_view,x+offset[j].x,y+
offset[j].y,1,1,exception);
if (r == (const Quantum *) NULL)
{
status=MagickFalse;
continue;
}
pixel+=(*k)*r[i];
k++;
}
SetPixelChannel(blur_image,channel,ClampToQuantum(pixel),q);
continue;
}
alpha=0.0;
gamma=0.0;
for (j=0; j < (ssize_t) width; j++)
{
r=GetCacheViewVirtualPixels(motion_view,x+offset[j].x,y+offset[j].y,1,
1,exception);
if (r == (const Quantum *) NULL)
{
status=MagickFalse;
continue;
}
alpha=(double) (QuantumScale*GetPixelAlpha(image,r));
pixel+=(*k)*alpha*r[i];
gamma+=(*k)*alpha;
k++;
}
gamma=PerceptibleReciprocal(gamma);
SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q);
}
p+=GetPixelChannels(image);
q+=GetPixelChannels(blur_image);
}
if (SyncCacheViewAuthenticPixels(blur_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_MotionBlurImage)
#endif
proceed=SetImageProgress(image,BlurImageTag,progress++,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
blur_view=DestroyCacheView(blur_view);
motion_view=DestroyCacheView(motion_view);
image_view=DestroyCacheView(image_view);
kernel=(MagickRealType *) RelinquishAlignedMemory(kernel);
offset=(OffsetInfo *) RelinquishMagickMemory(offset);
if (status == MagickFalse)
blur_image=DestroyImage(blur_image);
return(blur_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% P r e v i e w I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% PreviewImage() tiles 9 thumbnails of the specified image with an image
% processing operation applied with varying parameters. This may be helpful
% pin-pointing an appropriate parameter for a particular image processing
% operation.
%
% The format of the PreviewImages method is:
%
% Image *PreviewImages(const Image *image,const PreviewType preview,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o preview: the image processing operation.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *PreviewImage(const Image *image,const PreviewType preview,
ExceptionInfo *exception)
{
#define NumberTiles 9
#define PreviewImageTag "Preview/Image"
#define DefaultPreviewGeometry "204x204+10+10"
char
factor[MagickPathExtent],
label[MagickPathExtent];
double
degrees,
gamma,
percentage,
radius,
sigma,
threshold;
extern const char
DefaultTileFrame[];
Image
*images,
*montage_image,
*preview_image,
*thumbnail;
ImageInfo
*preview_info;
MagickBooleanType
proceed;
MontageInfo
*montage_info;
QuantizeInfo
quantize_info;
RectangleInfo
geometry;
register ssize_t
i,
x;
size_t
colors;
ssize_t
y;
/*
Open output image file.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
colors=2;
degrees=0.0;
gamma=(-0.2f);
preview_info=AcquireImageInfo();
SetGeometry(image,&geometry);
(void) ParseMetaGeometry(DefaultPreviewGeometry,&geometry.x,&geometry.y,
&geometry.width,&geometry.height);
images=NewImageList();
percentage=12.5;
GetQuantizeInfo(&quantize_info);
radius=0.0;
sigma=1.0;
threshold=0.0;
x=0;
y=0;
for (i=0; i < NumberTiles; i++)
{
thumbnail=ThumbnailImage(image,geometry.width,geometry.height,exception);
if (thumbnail == (Image *) NULL)
break;
(void) SetImageProgressMonitor(thumbnail,(MagickProgressMonitor) NULL,
(void *) NULL);
(void) SetImageProperty(thumbnail,"label",DefaultTileLabel,exception);
if (i == (NumberTiles/2))
{
(void) QueryColorCompliance("#dfdfdf",AllCompliance,
&thumbnail->matte_color,exception);
AppendImageToList(&images,thumbnail);
continue;
}
switch (preview)
{
case RotatePreview:
{
degrees+=45.0;
preview_image=RotateImage(thumbnail,degrees,exception);
(void) FormatLocaleString(label,MagickPathExtent,"rotate %g",degrees);
break;
}
case ShearPreview:
{
degrees+=5.0;
preview_image=ShearImage(thumbnail,degrees,degrees,exception);
(void) FormatLocaleString(label,MagickPathExtent,"shear %gx%g",degrees,
2.0*degrees);
break;
}
case RollPreview:
{
x=(ssize_t) ((i+1)*thumbnail->columns)/NumberTiles;
y=(ssize_t) ((i+1)*thumbnail->rows)/NumberTiles;
preview_image=RollImage(thumbnail,x,y,exception);
(void) FormatLocaleString(label,MagickPathExtent,"roll %+.20gx%+.20g",
(double) x,(double) y);
break;
}
case HuePreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
(void) FormatLocaleString(factor,MagickPathExtent,"100,100,%g",2.0*
percentage);
(void) ModulateImage(preview_image,factor,exception);
(void) FormatLocaleString(label,MagickPathExtent,"modulate %s",factor);
break;
}
case SaturationPreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
(void) FormatLocaleString(factor,MagickPathExtent,"100,%g",2.0*
percentage);
(void) ModulateImage(preview_image,factor,exception);
(void) FormatLocaleString(label,MagickPathExtent,"modulate %s",factor);
break;
}
case BrightnessPreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
(void) FormatLocaleString(factor,MagickPathExtent,"%g",2.0*percentage);
(void) ModulateImage(preview_image,factor,exception);
(void) FormatLocaleString(label,MagickPathExtent,"modulate %s",factor);
break;
}
case GammaPreview:
default:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
gamma+=0.4f;
(void) GammaImage(preview_image,gamma,exception);
(void) FormatLocaleString(label,MagickPathExtent,"gamma %g",gamma);
break;
}
case SpiffPreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image != (Image *) NULL)
for (x=0; x < i; x++)
(void) ContrastImage(preview_image,MagickTrue,exception);
(void) FormatLocaleString(label,MagickPathExtent,"contrast (%.20g)",
(double) i+1);
break;
}
case DullPreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
for (x=0; x < i; x++)
(void) ContrastImage(preview_image,MagickFalse,exception);
(void) FormatLocaleString(label,MagickPathExtent,"+contrast (%.20g)",
(double) i+1);
break;
}
case GrayscalePreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
colors<<=1;
quantize_info.number_colors=colors;
quantize_info.colorspace=GRAYColorspace;
(void) QuantizeImage(&quantize_info,preview_image,exception);
(void) FormatLocaleString(label,MagickPathExtent,
"-colorspace gray -colors %.20g",(double) colors);
break;
}
case QuantizePreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
colors<<=1;
quantize_info.number_colors=colors;
(void) QuantizeImage(&quantize_info,preview_image,exception);
(void) FormatLocaleString(label,MagickPathExtent,"colors %.20g",
(double) colors);
break;
}
case DespecklePreview:
{
for (x=0; x < (i-1); x++)
{
preview_image=DespeckleImage(thumbnail,exception);
if (preview_image == (Image *) NULL)
break;
thumbnail=DestroyImage(thumbnail);
thumbnail=preview_image;
}
preview_image=DespeckleImage(thumbnail,exception);
if (preview_image == (Image *) NULL)
break;
(void) FormatLocaleString(label,MagickPathExtent,"despeckle (%.20g)",
(double) i+1);
break;
}
case ReduceNoisePreview:
{
preview_image=StatisticImage(thumbnail,NonpeakStatistic,(size_t)
radius,(size_t) radius,exception);
(void) FormatLocaleString(label,MagickPathExtent,"noise %g",radius);
break;
}
case AddNoisePreview:
{
switch ((int) i)
{
case 0:
{
(void) CopyMagickString(factor,"uniform",MagickPathExtent);
break;
}
case 1:
{
(void) CopyMagickString(factor,"gaussian",MagickPathExtent);
break;
}
case 2:
{
(void) CopyMagickString(factor,"multiplicative",MagickPathExtent);
break;
}
case 3:
{
(void) CopyMagickString(factor,"impulse",MagickPathExtent);
break;
}
case 5:
{
(void) CopyMagickString(factor,"laplacian",MagickPathExtent);
break;
}
case 6:
{
(void) CopyMagickString(factor,"Poisson",MagickPathExtent);
break;
}
default:
{
(void) CopyMagickString(thumbnail->magick,"NULL",MagickPathExtent);
break;
}
}
preview_image=StatisticImage(thumbnail,NonpeakStatistic,(size_t) i,
(size_t) i,exception);
(void) FormatLocaleString(label,MagickPathExtent,"+noise %s",factor);
break;
}
case SharpenPreview:
{
preview_image=SharpenImage(thumbnail,radius,sigma,exception);
(void) FormatLocaleString(label,MagickPathExtent,"sharpen %gx%g",
radius,sigma);
break;
}
case BlurPreview:
{
preview_image=BlurImage(thumbnail,radius,sigma,exception);
(void) FormatLocaleString(label,MagickPathExtent,"blur %gx%g",radius,
sigma);
break;
}
case ThresholdPreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
(void) BilevelImage(thumbnail,(double) (percentage*((double)
QuantumRange+1.0))/100.0,exception);
(void) FormatLocaleString(label,MagickPathExtent,"threshold %g",
(double) (percentage*((double) QuantumRange+1.0))/100.0);
break;
}
case EdgeDetectPreview:
{
preview_image=EdgeImage(thumbnail,radius,exception);
(void) FormatLocaleString(label,MagickPathExtent,"edge %g",radius);
break;
}
case SpreadPreview:
{
preview_image=SpreadImage(thumbnail,image->interpolate,radius,
exception);
(void) FormatLocaleString(label,MagickPathExtent,"spread %g",
radius+0.5);
break;
}
case SolarizePreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
(void) SolarizeImage(preview_image,(double) QuantumRange*percentage/
100.0,exception);
(void) FormatLocaleString(label,MagickPathExtent,"solarize %g",
(QuantumRange*percentage)/100.0);
break;
}
case ShadePreview:
{
degrees+=10.0;
preview_image=ShadeImage(thumbnail,MagickTrue,degrees,degrees,
exception);
(void) FormatLocaleString(label,MagickPathExtent,"shade %gx%g",degrees,
degrees);
break;
}
case RaisePreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
geometry.width=(size_t) (2*i+2);
geometry.height=(size_t) (2*i+2);
geometry.x=(i-1)/2;
geometry.y=(i-1)/2;
(void) RaiseImage(preview_image,&geometry,MagickTrue,exception);
(void) FormatLocaleString(label,MagickPathExtent,
"raise %.20gx%.20g%+.20g%+.20g",(double) geometry.width,(double)
geometry.height,(double) geometry.x,(double) geometry.y);
break;
}
case SegmentPreview:
{
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
threshold+=0.4f;
(void) SegmentImage(preview_image,sRGBColorspace,MagickFalse,threshold,
threshold,exception);
(void) FormatLocaleString(label,MagickPathExtent,"segment %gx%g",
threshold,threshold);
break;
}
case SwirlPreview:
{
preview_image=SwirlImage(thumbnail,degrees,image->interpolate,
exception);
(void) FormatLocaleString(label,MagickPathExtent,"swirl %g",degrees);
degrees+=45.0;
break;
}
case ImplodePreview:
{
degrees+=0.1f;
preview_image=ImplodeImage(thumbnail,degrees,image->interpolate,
exception);
(void) FormatLocaleString(label,MagickPathExtent,"implode %g",degrees);
break;
}
case WavePreview:
{
degrees+=5.0f;
preview_image=WaveImage(thumbnail,0.5*degrees,2.0*degrees,
image->interpolate,exception);
(void) FormatLocaleString(label,MagickPathExtent,"wave %gx%g",0.5*
degrees,2.0*degrees);
break;
}
case OilPaintPreview:
{
preview_image=OilPaintImage(thumbnail,(double) radius,(double) sigma,
exception);
(void) FormatLocaleString(label,MagickPathExtent,"charcoal %gx%g",
radius,sigma);
break;
}
case CharcoalDrawingPreview:
{
preview_image=CharcoalImage(thumbnail,(double) radius,(double) sigma,
exception);
(void) FormatLocaleString(label,MagickPathExtent,"charcoal %gx%g",
radius,sigma);
break;
}
case JPEGPreview:
{
char
filename[MagickPathExtent];
int
file;
MagickBooleanType
status;
preview_image=CloneImage(thumbnail,0,0,MagickTrue,exception);
if (preview_image == (Image *) NULL)
break;
preview_info->quality=(size_t) percentage;
(void) FormatLocaleString(factor,MagickPathExtent,"%.20g",(double)
preview_info->quality);
file=AcquireUniqueFileResource(filename);
if (file != -1)
file=close(file)-1;
(void) FormatLocaleString(preview_image->filename,MagickPathExtent,
"jpeg:%s",filename);
status=WriteImage(preview_info,preview_image,exception);
if (status != MagickFalse)
{
Image
*quality_image;
(void) CopyMagickString(preview_info->filename,
preview_image->filename,MagickPathExtent);
quality_image=ReadImage(preview_info,exception);
if (quality_image != (Image *) NULL)
{
preview_image=DestroyImage(preview_image);
preview_image=quality_image;
}
}
(void) RelinquishUniqueFileResource(preview_image->filename);
if ((GetBlobSize(preview_image)/1024) >= 1024)
(void) FormatLocaleString(label,MagickPathExtent,"quality %s\n%gmb ",
factor,(double) ((MagickOffsetType) GetBlobSize(preview_image))/
1024.0/1024.0);
else
if (GetBlobSize(preview_image) >= 1024)
(void) FormatLocaleString(label,MagickPathExtent,
"quality %s\n%gkb ",factor,(double) ((MagickOffsetType)
GetBlobSize(preview_image))/1024.0);
else
(void) FormatLocaleString(label,MagickPathExtent,
"quality %s\n%.20gb ",factor,(double) ((MagickOffsetType)
GetBlobSize(thumbnail)));
break;
}
}
thumbnail=DestroyImage(thumbnail);
percentage+=12.5;
radius+=0.5;
sigma+=0.25;
if (preview_image == (Image *) NULL)
break;
(void) DeleteImageProperty(preview_image,"label");
(void) SetImageProperty(preview_image,"label",label,exception);
AppendImageToList(&images,preview_image);
proceed=SetImageProgress(image,PreviewImageTag,(MagickOffsetType) i,
NumberTiles);
if (proceed == MagickFalse)
break;
}
if (images == (Image *) NULL)
{
preview_info=DestroyImageInfo(preview_info);
return((Image *) NULL);
}
/*
Create the montage.
*/
montage_info=CloneMontageInfo(preview_info,(MontageInfo *) NULL);
(void) CopyMagickString(montage_info->filename,image->filename,
MagickPathExtent);
montage_info->shadow=MagickTrue;
(void) CloneString(&montage_info->tile,"3x3");
(void) CloneString(&montage_info->geometry,DefaultPreviewGeometry);
(void) CloneString(&montage_info->frame,DefaultTileFrame);
montage_image=MontageImages(images,montage_info,exception);
montage_info=DestroyMontageInfo(montage_info);
images=DestroyImageList(images);
if (montage_image == (Image *) NULL)
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
if (montage_image->montage != (char *) NULL)
{
/*
Free image directory.
*/
montage_image->montage=(char *) RelinquishMagickMemory(
montage_image->montage);
if (image->directory != (char *) NULL)
montage_image->directory=(char *) RelinquishMagickMemory(
montage_image->directory);
}
preview_info=DestroyImageInfo(preview_info);
return(montage_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% R o t a t i o n a l B l u r I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% RotationalBlurImage() applies a radial blur to the image.
%
% Andrew Protano contributed this effect.
%
% The format of the RotationalBlurImage method is:
%
% Image *RotationalBlurImage(const Image *image,const double angle,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o angle: the angle of the radial blur.
%
% o blur: the blur.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *RotationalBlurImage(const Image *image,const double angle,
ExceptionInfo *exception)
{
CacheView
*blur_view,
*image_view,
*radial_view;
double
blur_radius,
*cos_theta,
offset,
*sin_theta,
theta;
Image
*blur_image;
MagickBooleanType
status;
MagickOffsetType
progress;
PointInfo
blur_center;
register ssize_t
i;
size_t
n;
ssize_t
y;
/*
Allocate blur image.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
#if defined(MAGICKCORE_OPENCL_SUPPORT)
blur_image=AccelerateRotationalBlurImage(image,angle,exception);
if (blur_image != (Image *) NULL)
return(blur_image);
#endif
blur_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception);
if (blur_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(blur_image,DirectClass,exception) == MagickFalse)
{
blur_image=DestroyImage(blur_image);
return((Image *) NULL);
}
blur_center.x=(double) (image->columns-1)/2.0;
blur_center.y=(double) (image->rows-1)/2.0;
blur_radius=hypot(blur_center.x,blur_center.y);
n=(size_t) fabs(4.0*DegreesToRadians(angle)*sqrt((double) blur_radius)+2UL);
theta=DegreesToRadians(angle)/(double) (n-1);
cos_theta=(double *) AcquireQuantumMemory((size_t) n,
sizeof(*cos_theta));
sin_theta=(double *) AcquireQuantumMemory((size_t) n,
sizeof(*sin_theta));
if ((cos_theta == (double *) NULL) ||
(sin_theta == (double *) NULL))
{
blur_image=DestroyImage(blur_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
offset=theta*(double) (n-1)/2.0;
for (i=0; i < (ssize_t) n; i++)
{
cos_theta[i]=cos((double) (theta*i-offset));
sin_theta[i]=sin((double) (theta*i-offset));
}
/*
Radial blur image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(image,exception);
radial_view=AcquireVirtualCacheView(image,exception);
blur_view=AcquireAuthenticCacheView(blur_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status) \
magick_threads(image,blur_image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
register const Quantum
*magick_restrict p;
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
q=QueueCacheViewAuthenticPixels(blur_view,0,y,blur_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
double
radius;
PointInfo
center;
register ssize_t
i;
size_t
step;
center.x=(double) x-blur_center.x;
center.y=(double) y-blur_center.y;
radius=hypot((double) center.x,center.y);
if (radius == 0)
step=1;
else
{
step=(size_t) (blur_radius/radius);
if (step == 0)
step=1;
else
if (step >= n)
step=n-1;
}
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
double
gamma,
pixel;
PixelChannel
channel;
PixelTrait
blur_traits,
traits;
register const Quantum
*magick_restrict r;
register ssize_t
j;
channel=GetPixelChannelChannel(image,i);
traits=GetPixelChannelTraits(image,channel);
blur_traits=GetPixelChannelTraits(blur_image,channel);
if ((traits == UndefinedPixelTrait) ||
(blur_traits == UndefinedPixelTrait))
continue;
if (((blur_traits & CopyPixelTrait) != 0) ||
(GetPixelWriteMask(image,p) <= (QuantumRange/2)))
{
SetPixelChannel(blur_image,channel,p[i],q);
continue;
}
gamma=0.0;
pixel=0.0;
if ((GetPixelChannelTraits(image,AlphaPixelChannel) == UndefinedPixelTrait) ||
(channel == AlphaPixelChannel))
{
for (j=0; j < (ssize_t) n; j+=(ssize_t) step)
{
r=GetCacheViewVirtualPixels(radial_view, (ssize_t) (blur_center.x+
center.x*cos_theta[j]-center.y*sin_theta[j]+0.5),(ssize_t)
(blur_center.y+center.x*sin_theta[j]+center.y*cos_theta[j]+0.5),
1,1,exception);
if (r == (const Quantum *) NULL)
{
status=MagickFalse;
continue;
}
pixel+=r[i];
gamma++;
}
gamma=PerceptibleReciprocal(gamma);
SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q);
continue;
}
for (j=0; j < (ssize_t) n; j+=(ssize_t) step)
{
double
alpha;
r=GetCacheViewVirtualPixels(radial_view, (ssize_t) (blur_center.x+
center.x*cos_theta[j]-center.y*sin_theta[j]+0.5),(ssize_t)
(blur_center.y+center.x*sin_theta[j]+center.y*cos_theta[j]+0.5),
1,1,exception);
if (r == (const Quantum *) NULL)
{
status=MagickFalse;
continue;
}
alpha=(double) QuantumScale*GetPixelAlpha(image,r);
pixel+=alpha*r[i];
gamma+=alpha;
}
gamma=PerceptibleReciprocal(gamma);
SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q);
}
p+=GetPixelChannels(image);
q+=GetPixelChannels(blur_image);
}
if (SyncCacheViewAuthenticPixels(blur_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_RotationalBlurImage)
#endif
proceed=SetImageProgress(image,BlurImageTag,progress++,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
blur_view=DestroyCacheView(blur_view);
radial_view=DestroyCacheView(radial_view);
image_view=DestroyCacheView(image_view);
cos_theta=(double *) RelinquishMagickMemory(cos_theta);
sin_theta=(double *) RelinquishMagickMemory(sin_theta);
if (status == MagickFalse)
blur_image=DestroyImage(blur_image);
return(blur_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S e l e c t i v e B l u r I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SelectiveBlurImage() selectively blur pixels within a contrast threshold.
% It is similar to the unsharpen mask that sharpens everything with contrast
% above a certain threshold.
%
% The format of the SelectiveBlurImage method is:
%
% Image *SelectiveBlurImage(const Image *image,const double radius,
% const double sigma,const double threshold,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the Gaussian, in pixels, not counting the center
% pixel.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o threshold: only pixels within this contrast threshold are included
% in the blur operation.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *SelectiveBlurImage(const Image *image,const double radius,
const double sigma,const double threshold,ExceptionInfo *exception)
{
#define SelectiveBlurImageTag "SelectiveBlur/Image"
CacheView
*blur_view,
*image_view,
*luminance_view;
Image
*blur_image,
*luminance_image;
MagickBooleanType
status;
MagickOffsetType
progress;
MagickRealType
*kernel;
register ssize_t
i;
size_t
width;
ssize_t
center,
j,
u,
v,
y;
/*
Initialize blur image attributes.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
width=GetOptimalKernelWidth1D(radius,sigma);
kernel=(MagickRealType *) MagickAssumeAligned(AcquireAlignedMemory((size_t)
width,width*sizeof(*kernel)));
if (kernel == (MagickRealType *) NULL)
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
j=(ssize_t) (width-1)/2;
i=0;
for (v=(-j); v <= j; v++)
{
for (u=(-j); u <= j; u++)
kernel[i++]=(MagickRealType) (exp(-((double) u*u+v*v)/(2.0*MagickSigma*
MagickSigma))/(2.0*MagickPI*MagickSigma*MagickSigma));
}
if (image->debug != MagickFalse)
{
char
format[MagickPathExtent],
*message;
register const MagickRealType
*k;
ssize_t
u,
v;
(void) LogMagickEvent(TransformEvent,GetMagickModule(),
" SelectiveBlurImage with %.20gx%.20g kernel:",(double) width,(double)
width);
message=AcquireString("");
k=kernel;
for (v=0; v < (ssize_t) width; v++)
{
*message='\0';
(void) FormatLocaleString(format,MagickPathExtent,"%.20g: ",(double) v);
(void) ConcatenateString(&message,format);
for (u=0; u < (ssize_t) width; u++)
{
(void) FormatLocaleString(format,MagickPathExtent,"%+f ",(double) *k++);
(void) ConcatenateString(&message,format);
}
(void) LogMagickEvent(TransformEvent,GetMagickModule(),"%s",message);
}
message=DestroyString(message);
}
blur_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception);
if (blur_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(blur_image,DirectClass,exception) == MagickFalse)
{
blur_image=DestroyImage(blur_image);
kernel=(MagickRealType *) RelinquishAlignedMemory(kernel);
return((Image *) NULL);
}
luminance_image=CloneImage(image,0,0,MagickTrue,exception);
if (luminance_image == (Image *) NULL)
{
blur_image=DestroyImage(blur_image);
kernel=(MagickRealType *) RelinquishAlignedMemory(kernel);
return((Image *) NULL);
}
status=TransformImageColorspace(luminance_image,GRAYColorspace,exception);
if (status == MagickFalse)
{
luminance_image=DestroyImage(luminance_image);
blur_image=DestroyImage(blur_image);
kernel=(MagickRealType *) RelinquishAlignedMemory(kernel);
return((Image *) NULL);
}
/*
Threshold blur image.
*/
status=MagickTrue;
progress=0;
center=(ssize_t) (GetPixelChannels(image)*(image->columns+width)*
((width-1)/2L)+GetPixelChannels(image)*((width-1)/2L));
image_view=AcquireVirtualCacheView(image,exception);
luminance_view=AcquireVirtualCacheView(luminance_image,exception);
blur_view=AcquireAuthenticCacheView(blur_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status) \
magick_threads(image,blur_image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
double
contrast;
MagickBooleanType
sync;
register const Quantum
*magick_restrict l,
*magick_restrict p;
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,-((ssize_t) (width-1)/2L),y-(ssize_t)
((width-1)/2L),image->columns+width,width,exception);
l=GetCacheViewVirtualPixels(luminance_view,-((ssize_t) (width-1)/2L),y-
(ssize_t) ((width-1)/2L),luminance_image->columns+width,width,exception);
q=QueueCacheViewAuthenticPixels(blur_view,0,y,blur_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (l == (const Quantum *) NULL) ||
(q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
double
intensity;
register ssize_t
i;
intensity=GetPixelIntensity(image,p+center);
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
double
alpha,
gamma,
pixel;
PixelChannel
channel;
PixelTrait
blur_traits,
traits;
register const MagickRealType
*magick_restrict k;
register const Quantum
*magick_restrict luminance_pixels,
*magick_restrict pixels;
register ssize_t
u;
ssize_t
v;
channel=GetPixelChannelChannel(image,i);
traits=GetPixelChannelTraits(image,channel);
blur_traits=GetPixelChannelTraits(blur_image,channel);
if ((traits == UndefinedPixelTrait) ||
(blur_traits == UndefinedPixelTrait))
continue;
if (((blur_traits & CopyPixelTrait) != 0) ||
(GetPixelWriteMask(image,p+center) <= (QuantumRange/2)))
{
SetPixelChannel(blur_image,channel,p[center+i],q);
continue;
}
k=kernel;
pixel=0.0;
pixels=p;
luminance_pixels=l;
gamma=0.0;
if ((blur_traits & BlendPixelTrait) == 0)
{
for (v=0; v < (ssize_t) width; v++)
{
for (u=0; u < (ssize_t) width; u++)
{
contrast=GetPixelIntensity(luminance_image,luminance_pixels)-
intensity;
if (fabs(contrast) < threshold)
{
pixel+=(*k)*pixels[i];
gamma+=(*k);
}
k++;
pixels+=GetPixelChannels(image);
luminance_pixels+=GetPixelChannels(luminance_image);
}
pixels+=GetPixelChannels(image)*image->columns;
luminance_pixels+=GetPixelChannels(luminance_image)*
luminance_image->columns;
}
if (fabs((double) gamma) < MagickEpsilon)
{
SetPixelChannel(blur_image,channel,p[center+i],q);
continue;
}
gamma=PerceptibleReciprocal(gamma);
SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q);
continue;
}
for (v=0; v < (ssize_t) width; v++)
{
for (u=0; u < (ssize_t) width; u++)
{
contrast=GetPixelIntensity(image,pixels)-intensity;
if (fabs(contrast) < threshold)
{
alpha=(double) (QuantumScale*GetPixelAlpha(image,pixels));
pixel+=(*k)*alpha*pixels[i];
gamma+=(*k)*alpha;
}
k++;
pixels+=GetPixelChannels(image);
luminance_pixels+=GetPixelChannels(luminance_image);
}
pixels+=GetPixelChannels(image)*image->columns;
luminance_pixels+=GetPixelChannels(luminance_image)*
luminance_image->columns;
}
if (fabs((double) gamma) < MagickEpsilon)
{
SetPixelChannel(blur_image,channel,p[center+i],q);
continue;
}
gamma=PerceptibleReciprocal(gamma);
SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q);
}
p+=GetPixelChannels(image);
l+=GetPixelChannels(luminance_image);
q+=GetPixelChannels(blur_image);
}
sync=SyncCacheViewAuthenticPixels(blur_view,exception);
if (sync == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_SelectiveBlurImage)
#endif
proceed=SetImageProgress(image,SelectiveBlurImageTag,progress++,
image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
blur_image->type=image->type;
blur_view=DestroyCacheView(blur_view);
image_view=DestroyCacheView(image_view);
luminance_image=DestroyImage(luminance_image);
kernel=(MagickRealType *) RelinquishAlignedMemory(kernel);
if (status == MagickFalse)
blur_image=DestroyImage(blur_image);
return(blur_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S h a d e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ShadeImage() shines a distant light on an image to create a
% three-dimensional effect. You control the positioning of the light with
% azimuth and elevation; azimuth is measured in degrees off the x axis
% and elevation is measured in pixels above the Z axis.
%
% The format of the ShadeImage method is:
%
% Image *ShadeImage(const Image *image,const MagickBooleanType gray,
% const double azimuth,const double elevation,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o gray: A value other than zero shades the intensity of each pixel.
%
% o azimuth, elevation: Define the light source direction.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *ShadeImage(const Image *image,const MagickBooleanType gray,
const double azimuth,const double elevation,ExceptionInfo *exception)
{
#define ShadeImageTag "Shade/Image"
CacheView
*image_view,
*shade_view;
Image
*linear_image,
*shade_image;
MagickBooleanType
status;
MagickOffsetType
progress;
PrimaryInfo
light;
ssize_t
y;
/*
Initialize shaded image attributes.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
linear_image=CloneImage(image,0,0,MagickTrue,exception);
shade_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception);
if ((linear_image == (Image *) NULL) || (shade_image == (Image *) NULL))
{
if (linear_image != (Image *) NULL)
linear_image=DestroyImage(linear_image);
if (shade_image != (Image *) NULL)
shade_image=DestroyImage(shade_image);
return((Image *) NULL);
}
if (SetImageStorageClass(shade_image,DirectClass,exception) == MagickFalse)
{
linear_image=DestroyImage(linear_image);
shade_image=DestroyImage(shade_image);
return((Image *) NULL);
}
/*
Compute the light vector.
*/
light.x=(double) QuantumRange*cos(DegreesToRadians(azimuth))*
cos(DegreesToRadians(elevation));
light.y=(double) QuantumRange*sin(DegreesToRadians(azimuth))*
cos(DegreesToRadians(elevation));
light.z=(double) QuantumRange*sin(DegreesToRadians(elevation));
/*
Shade image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(linear_image,exception);
shade_view=AcquireAuthenticCacheView(shade_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status) \
magick_threads(linear_image,shade_image,linear_image->rows,1)
#endif
for (y=0; y < (ssize_t) linear_image->rows; y++)
{
double
distance,
normal_distance,
shade;
PrimaryInfo
normal;
register const Quantum
*magick_restrict center,
*magick_restrict p,
*magick_restrict post,
*magick_restrict pre;
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,-1,y-1,linear_image->columns+2,3,
exception);
q=QueueCacheViewAuthenticPixels(shade_view,0,y,shade_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
/*
Shade this row of pixels.
*/
normal.z=2.0*(double) QuantumRange; /* constant Z of surface normal */
for (x=0; x < (ssize_t) linear_image->columns; x++)
{
register ssize_t
i;
/*
Determine the surface normal and compute shading.
*/
pre=p+GetPixelChannels(linear_image);
center=pre+(linear_image->columns+2)*GetPixelChannels(linear_image);
post=center+(linear_image->columns+2)*GetPixelChannels(linear_image);
normal.x=(double) (
GetPixelIntensity(linear_image,pre-GetPixelChannels(linear_image))+
GetPixelIntensity(linear_image,center-GetPixelChannels(linear_image))+
GetPixelIntensity(linear_image,post-GetPixelChannels(linear_image))-
GetPixelIntensity(linear_image,pre+GetPixelChannels(linear_image))-
GetPixelIntensity(linear_image,center+GetPixelChannels(linear_image))-
GetPixelIntensity(linear_image,post+GetPixelChannels(linear_image)));
normal.y=(double) (
GetPixelIntensity(linear_image,post-GetPixelChannels(linear_image))+
GetPixelIntensity(linear_image,post)+
GetPixelIntensity(linear_image,post+GetPixelChannels(linear_image))-
GetPixelIntensity(linear_image,pre-GetPixelChannels(linear_image))-
GetPixelIntensity(linear_image,pre)-
GetPixelIntensity(linear_image,pre+GetPixelChannels(linear_image)));
if ((fabs(normal.x) <= MagickEpsilon) &&
(fabs(normal.y) <= MagickEpsilon))
shade=light.z;
else
{
shade=0.0;
distance=normal.x*light.x+normal.y*light.y+normal.z*light.z;
if (distance > MagickEpsilon)
{
normal_distance=normal.x*normal.x+normal.y*normal.y+
normal.z*normal.z;
if (normal_distance > (MagickEpsilon*MagickEpsilon))
shade=distance/sqrt((double) normal_distance);
}
}
for (i=0; i < (ssize_t) GetPixelChannels(linear_image); i++)
{
PixelChannel
channel;
PixelTrait
shade_traits,
traits;
channel=GetPixelChannelChannel(linear_image,i);
traits=GetPixelChannelTraits(linear_image,channel);
shade_traits=GetPixelChannelTraits(shade_image,channel);
if ((traits == UndefinedPixelTrait) ||
(shade_traits == UndefinedPixelTrait))
continue;
if (((shade_traits & CopyPixelTrait) != 0) ||
(GetPixelWriteMask(linear_image,center) <= (QuantumRange/2)))
{
SetPixelChannel(shade_image,channel,center[i],q);
continue;
}
if ((traits & UpdatePixelTrait) == 0)
{
SetPixelChannel(shade_image,channel,center[i],q);
continue;
}
if (gray != MagickFalse)
{
SetPixelChannel(shade_image,channel,ClampToQuantum(shade),q);
continue;
}
SetPixelChannel(shade_image,channel,ClampToQuantum(QuantumScale*shade*
center[i]),q);
}
p+=GetPixelChannels(linear_image);
q+=GetPixelChannels(shade_image);
}
if (SyncCacheViewAuthenticPixels(shade_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_ShadeImage)
#endif
proceed=SetImageProgress(image,ShadeImageTag,progress++,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
shade_view=DestroyCacheView(shade_view);
image_view=DestroyCacheView(image_view);
linear_image=DestroyImage(linear_image);
if (status == MagickFalse)
shade_image=DestroyImage(shade_image);
return(shade_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S h a r p e n I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SharpenImage() sharpens the image. We convolve the image with a Gaussian
% operator of the given radius and standard deviation (sigma). For
% reasonable results, radius should be larger than sigma. Use a radius of 0
% and SharpenImage() selects a suitable radius for you.
%
% Using a separable kernel would be faster, but the negative weights cancel
% out on the corners of the kernel producing often undesirable ringing in the
% filtered result; this can be avoided by using a 2D gaussian shaped image
% sharpening kernel instead.
%
% The format of the SharpenImage method is:
%
% Image *SharpenImage(const Image *image,const double radius,
% const double sigma,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the Gaussian, in pixels, not counting the center
% pixel.
%
% o sigma: the standard deviation of the Laplacian, in pixels.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *SharpenImage(const Image *image,const double radius,
const double sigma,ExceptionInfo *exception)
{
double
gamma,
normalize;
Image
*sharp_image;
KernelInfo
*kernel_info;
register ssize_t
i;
size_t
width;
ssize_t
j,
u,
v;
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
width=GetOptimalKernelWidth2D(radius,sigma);
kernel_info=AcquireKernelInfo((const char *) NULL,exception);
if (kernel_info == (KernelInfo *) NULL)
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
(void) ResetMagickMemory(kernel_info,0,sizeof(*kernel_info));
kernel_info->width=width;
kernel_info->height=width;
kernel_info->x=(ssize_t) (width-1)/2;
kernel_info->y=(ssize_t) (width-1)/2;
kernel_info->signature=MagickCoreSignature;
kernel_info->values=(MagickRealType *) MagickAssumeAligned(
AcquireAlignedMemory(kernel_info->width,kernel_info->height*
sizeof(*kernel_info->values)));
if (kernel_info->values == (MagickRealType *) NULL)
{
kernel_info=DestroyKernelInfo(kernel_info);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
normalize=0.0;
j=(ssize_t) (kernel_info->width-1)/2;
i=0;
for (v=(-j); v <= j; v++)
{
for (u=(-j); u <= j; u++)
{
kernel_info->values[i]=(MagickRealType) (-exp(-((double) u*u+v*v)/(2.0*
MagickSigma*MagickSigma))/(2.0*MagickPI*MagickSigma*MagickSigma));
normalize+=kernel_info->values[i];
i++;
}
}
kernel_info->values[i/2]=(double) ((-2.0)*normalize);
normalize=0.0;
for (i=0; i < (ssize_t) (kernel_info->width*kernel_info->height); i++)
normalize+=kernel_info->values[i];
gamma=PerceptibleReciprocal(normalize);
for (i=0; i < (ssize_t) (kernel_info->width*kernel_info->height); i++)
kernel_info->values[i]*=gamma;
sharp_image=ConvolveImage(image,kernel_info,exception);
kernel_info=DestroyKernelInfo(kernel_info);
return(sharp_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S p r e a d I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SpreadImage() is a special effects method that randomly displaces each
% pixel in a square area defined by the radius parameter.
%
% The format of the SpreadImage method is:
%
% Image *SpreadImage(const Image *image,
% const PixelInterpolateMethod method,const double radius,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o method: intepolation method.
%
% o radius: choose a random pixel in a neighborhood of this extent.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *SpreadImage(const Image *image,
const PixelInterpolateMethod method,const double radius,
ExceptionInfo *exception)
{
#define SpreadImageTag "Spread/Image"
CacheView
*image_view,
*spread_view;
Image
*spread_image;
MagickBooleanType
status;
MagickOffsetType
progress;
RandomInfo
**magick_restrict random_info;
size_t
width;
ssize_t
y;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
unsigned long
key;
#endif
/*
Initialize spread image attributes.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
spread_image=CloneImage(image,image->columns,image->rows,MagickTrue,
exception);
if (spread_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(spread_image,DirectClass,exception) == MagickFalse)
{
spread_image=DestroyImage(spread_image);
return((Image *) NULL);
}
/*
Spread image.
*/
status=MagickTrue;
progress=0;
width=GetOptimalKernelWidth1D(radius,0.5);
random_info=AcquireRandomInfoThreadSet();
image_view=AcquireVirtualCacheView(image,exception);
spread_view=AcquireAuthenticCacheView(spread_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
key=GetRandomSecretKey(random_info[0]);
#pragma omp parallel for schedule(static,4) shared(progress,status) \
magick_threads(image,spread_image,image->rows,key == ~0UL)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
const int
id = GetOpenMPThreadId();
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
q=QueueCacheViewAuthenticPixels(spread_view,0,y,spread_image->columns,1,
exception);
if (q == (Quantum *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
PointInfo
point;
point.x=GetPseudoRandomValue(random_info[id]);
point.y=GetPseudoRandomValue(random_info[id]);
status=InterpolatePixelChannels(image,image_view,spread_image,method,
(double) x+width*(point.x-0.5),(double) y+width*(point.y-0.5),q,
exception);
q+=GetPixelChannels(spread_image);
}
if (SyncCacheViewAuthenticPixels(spread_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_SpreadImage)
#endif
proceed=SetImageProgress(image,SpreadImageTag,progress++,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
spread_view=DestroyCacheView(spread_view);
image_view=DestroyCacheView(image_view);
random_info=DestroyRandomInfoThreadSet(random_info);
if (status == MagickFalse)
spread_image=DestroyImage(spread_image);
return(spread_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% U n s h a r p M a s k I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% UnsharpMaskImage() sharpens one or more image channels. We convolve the
% image with a Gaussian operator of the given radius and standard deviation
% (sigma). For reasonable results, radius should be larger than sigma. Use a
% radius of 0 and UnsharpMaskImage() selects a suitable radius for you.
%
% The format of the UnsharpMaskImage method is:
%
% Image *UnsharpMaskImage(const Image *image,const double radius,
% const double sigma,const double amount,const double threshold,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the Gaussian, in pixels, not counting the center
% pixel.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o gain: the percentage of the difference between the original and the
% blur image that is added back into the original.
%
% o threshold: the threshold in pixels needed to apply the diffence gain.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *UnsharpMaskImage(const Image *image,const double radius,
const double sigma,const double gain,const double threshold,
ExceptionInfo *exception)
{
#define SharpenImageTag "Sharpen/Image"
CacheView
*image_view,
*unsharp_view;
Image
*unsharp_image;
MagickBooleanType
status;
MagickOffsetType
progress;
double
quantum_threshold;
ssize_t
y;
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
#if defined(MAGICKCORE_OPENCL_SUPPORT)
unsharp_image=AccelerateUnsharpMaskImage(image,radius,sigma,gain,threshold,
exception);
if (unsharp_image != (Image *) NULL)
return(unsharp_image);
#endif
unsharp_image=BlurImage(image,radius,sigma,exception);
if (unsharp_image == (Image *) NULL)
return((Image *) NULL);
quantum_threshold=(double) QuantumRange*threshold;
/*
Unsharp-mask image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(image,exception);
unsharp_view=AcquireAuthenticCacheView(unsharp_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,4) shared(progress,status) \
magick_threads(image,unsharp_image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
register const Quantum
*magick_restrict p;
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
q=QueueCacheViewAuthenticPixels(unsharp_view,0,y,unsharp_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
double
pixel;
PixelChannel
channel;
PixelTrait
traits,
unsharp_traits;
channel=GetPixelChannelChannel(image,i);
traits=GetPixelChannelTraits(image,channel);
unsharp_traits=GetPixelChannelTraits(unsharp_image,channel);
if ((traits == UndefinedPixelTrait) ||
(unsharp_traits == UndefinedPixelTrait))
continue;
if (((unsharp_traits & CopyPixelTrait) != 0) ||
(GetPixelWriteMask(image,p) <= (QuantumRange/2)))
{
SetPixelChannel(unsharp_image,channel,p[i],q);
continue;
}
pixel=p[i]-(double) GetPixelChannel(unsharp_image,channel,q);
if (fabs(2.0*pixel) < quantum_threshold)
pixel=(double) p[i];
else
pixel=(double) p[i]+gain*pixel;
SetPixelChannel(unsharp_image,channel,ClampToQuantum(pixel),q);
}
p+=GetPixelChannels(image);
q+=GetPixelChannels(unsharp_image);
}
if (SyncCacheViewAuthenticPixels(unsharp_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_UnsharpMaskImage)
#endif
proceed=SetImageProgress(image,SharpenImageTag,progress++,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
unsharp_image->type=image->type;
unsharp_view=DestroyCacheView(unsharp_view);
image_view=DestroyCacheView(image_view);
if (status == MagickFalse)
unsharp_image=DestroyImage(unsharp_image);
return(unsharp_image);
}