blob: ace5dbb55560539a9342fff0815b04251e7f31a3 [file] [log] [blame]
cristy3ed852e2009-09-05 21:47:34 +00001/*
2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3% %
4% %
5% %
6% QQQ U U AAA N N TTTTT IIIII ZZZZZ EEEEE %
7% Q Q U U A A NN N T I ZZ E %
8% Q Q U U AAAAA N N N T I ZZZ EEEEE %
9% Q QQ U U A A N NN T I ZZ E %
10% QQQQ UUU A A N N T IIIII ZZZZZ EEEEE %
11% %
12% %
13% MagickCore Methods to Reduce the Number of Unique Colors in an Image %
14% %
15% Software Design %
16% John Cristy %
17% July 1992 %
18% %
19% %
cristy7e41fe82010-12-04 23:12:08 +000020% Copyright 1999-2011 ImageMagick Studio LLC, a non-profit organization %
cristy3ed852e2009-09-05 21:47:34 +000021% dedicated to making software imaging solutions freely available. %
22% %
23% You may not use this file except in compliance with the License. You may %
24% obtain a copy of the License at %
25% %
26% http://www.imagemagick.org/script/license.php %
27% %
28% Unless required by applicable law or agreed to in writing, software %
29% distributed under the License is distributed on an "AS IS" BASIS, %
30% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
31% See the License for the specific language governing permissions and %
32% limitations under the License. %
33% %
34%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35%
36% Realism in computer graphics typically requires using 24 bits/pixel to
37% generate an image. Yet many graphic display devices do not contain the
38% amount of memory necessary to match the spatial and color resolution of
39% the human eye. The Quantize methods takes a 24 bit image and reduces
40% the number of colors so it can be displayed on raster device with less
41% bits per pixel. In most instances, the quantized image closely
42% resembles the original reference image.
43%
44% A reduction of colors in an image is also desirable for image
45% transmission and real-time animation.
46%
47% QuantizeImage() takes a standard RGB or monochrome images and quantizes
48% them down to some fixed number of colors.
49%
50% For purposes of color allocation, an image is a set of n pixels, where
51% each pixel is a point in RGB space. RGB space is a 3-dimensional
52% vector space, and each pixel, Pi, is defined by an ordered triple of
53% red, green, and blue coordinates, (Ri, Gi, Bi).
54%
55% Each primary color component (red, green, or blue) represents an
56% intensity which varies linearly from 0 to a maximum value, Cmax, which
57% corresponds to full saturation of that color. Color allocation is
58% defined over a domain consisting of the cube in RGB space with opposite
59% vertices at (0,0,0) and (Cmax, Cmax, Cmax). QUANTIZE requires Cmax =
60% 255.
61%
62% The algorithm maps this domain onto a tree in which each node
63% represents a cube within that domain. In the following discussion
64% these cubes are defined by the coordinate of two opposite vertices:
65% The vertex nearest the origin in RGB space and the vertex farthest from
66% the origin.
67%
68% The tree's root node represents the entire domain, (0,0,0) through
69% (Cmax,Cmax,Cmax). Each lower level in the tree is generated by
70% subdividing one node's cube into eight smaller cubes of equal size.
71% This corresponds to bisecting the parent cube with planes passing
72% through the midpoints of each edge.
73%
74% The basic algorithm operates in three phases: Classification,
75% Reduction, and Assignment. Classification builds a color description
76% tree for the image. Reduction collapses the tree until the number it
77% represents, at most, the number of colors desired in the output image.
78% Assignment defines the output image's color map and sets each pixel's
79% color by restorage_class in the reduced tree. Our goal is to minimize
80% the numerical discrepancies between the original colors and quantized
81% colors (quantization error).
82%
83% Classification begins by initializing a color description tree of
84% sufficient depth to represent each possible input color in a leaf.
85% However, it is impractical to generate a fully-formed color description
86% tree in the storage_class phase for realistic values of Cmax. If
87% colors components in the input image are quantized to k-bit precision,
88% so that Cmax= 2k-1, the tree would need k levels below the root node to
89% allow representing each possible input color in a leaf. This becomes
90% prohibitive because the tree's total number of nodes is 1 +
91% sum(i=1, k, 8k).
92%
93% A complete tree would require 19,173,961 nodes for k = 8, Cmax = 255.
94% Therefore, to avoid building a fully populated tree, QUANTIZE: (1)
95% Initializes data structures for nodes only as they are needed; (2)
96% Chooses a maximum depth for the tree as a function of the desired
97% number of colors in the output image (currently log2(colormap size)).
98%
99% For each pixel in the input image, storage_class scans downward from
100% the root of the color description tree. At each level of the tree it
101% identifies the single node which represents a cube in RGB space
102% containing the pixel's color. It updates the following data for each
103% such node:
104%
105% n1: Number of pixels whose color is contained in the RGB cube which
106% this node represents;
107%
108% n2: Number of pixels whose color is not represented in a node at
109% lower depth in the tree; initially, n2 = 0 for all nodes except
110% leaves of the tree.
111%
112% Sr, Sg, Sb: Sums of the red, green, and blue component values for all
113% pixels not classified at a lower depth. The combination of these sums
114% and n2 will ultimately characterize the mean color of a set of
115% pixels represented by this node.
116%
117% E: the distance squared in RGB space between each pixel contained
118% within a node and the nodes' center. This represents the
119% quantization error for a node.
120%
121% Reduction repeatedly prunes the tree until the number of nodes with n2
122% > 0 is less than or equal to the maximum number of colors allowed in
123% the output image. On any given iteration over the tree, it selects
124% those nodes whose E count is minimal for pruning and merges their color
125% statistics upward. It uses a pruning threshold, Ep, to govern node
126% selection as follows:
127%
128% Ep = 0
129% while number of nodes with (n2 > 0) > required maximum number of colors
130% prune all nodes such that E <= Ep
131% Set Ep to minimum E in remaining nodes
132%
133% This has the effect of minimizing any quantization error when merging
134% two nodes together.
135%
136% When a node to be pruned has offspring, the pruning procedure invokes
137% itself recursively in order to prune the tree from the leaves upward.
138% n2, Sr, Sg, and Sb in a node being pruned are always added to the
139% corresponding data in that node's parent. This retains the pruned
140% node's color characteristics for later averaging.
141%
142% For each node, n2 pixels exist for which that node represents the
143% smallest volume in RGB space containing those pixel's colors. When n2
144% > 0 the node will uniquely define a color in the output image. At the
145% beginning of reduction, n2 = 0 for all nodes except a the leaves of
146% the tree which represent colors present in the input image.
147%
148% The other pixel count, n1, indicates the total number of colors within
149% the cubic volume which the node represents. This includes n1 - n2
150% pixels whose colors should be defined by nodes at a lower level in the
151% tree.
152%
153% Assignment generates the output image from the pruned tree. The output
154% image consists of two parts: (1) A color map, which is an array of
155% color descriptions (RGB triples) for each color present in the output
156% image; (2) A pixel array, which represents each pixel as an index
157% into the color map array.
158%
159% First, the assignment phase makes one pass over the pruned color
160% description tree to establish the image's color map. For each node
161% with n2 > 0, it divides Sr, Sg, and Sb by n2 . This produces the mean
162% color of all pixels that classify no lower than this node. Each of
163% these colors becomes an entry in the color map.
164%
165% Finally, the assignment phase reclassifies each pixel in the pruned
166% tree to identify the deepest node containing the pixel's color. The
167% pixel's value in the pixel array becomes the index of this node's mean
168% color in the color map.
169%
170% This method is based on a similar algorithm written by Paul Raveling.
171%
172*/
173
174/*
175 Include declarations.
176*/
cristy4c08aed2011-07-01 19:47:50 +0000177#include "MagickCore/studio.h"
178#include "MagickCore/attribute.h"
179#include "MagickCore/cache-view.h"
180#include "MagickCore/color.h"
181#include "MagickCore/color-private.h"
182#include "MagickCore/colormap.h"
183#include "MagickCore/colorspace.h"
184#include "MagickCore/enhance.h"
185#include "MagickCore/exception.h"
186#include "MagickCore/exception-private.h"
187#include "MagickCore/histogram.h"
188#include "MagickCore/image.h"
189#include "MagickCore/image-private.h"
190#include "MagickCore/list.h"
191#include "MagickCore/memory_.h"
192#include "MagickCore/monitor.h"
193#include "MagickCore/monitor-private.h"
194#include "MagickCore/option.h"
195#include "MagickCore/pixel-accessor.h"
196#include "MagickCore/quantize.h"
197#include "MagickCore/quantum.h"
198#include "MagickCore/quantum-private.h"
199#include "MagickCore/string_.h"
200#include "MagickCore/thread-private.h"
cristy3ed852e2009-09-05 21:47:34 +0000201
202/*
203 Define declarations.
204*/
cristye1287512010-06-19 17:38:25 +0000205#if !defined(__APPLE__) && !defined(TARGET_OS_IPHONE)
cristy3ed852e2009-09-05 21:47:34 +0000206#define CacheShift 2
cristye1287512010-06-19 17:38:25 +0000207#else
208#define CacheShift 3
209#endif
cristy3ed852e2009-09-05 21:47:34 +0000210#define ErrorQueueLength 16
211#define MaxNodes 266817
212#define MaxTreeDepth 8
213#define NodesInAList 1920
214
215/*
216 Typdef declarations.
217*/
218typedef struct _RealPixelPacket
219{
220 MagickRealType
221 red,
222 green,
223 blue,
cristy4c08aed2011-07-01 19:47:50 +0000224 alpha;
cristy3ed852e2009-09-05 21:47:34 +0000225} RealPixelPacket;
226
227typedef struct _NodeInfo
228{
229 struct _NodeInfo
230 *parent,
231 *child[16];
232
233 MagickSizeType
234 number_unique;
235
236 RealPixelPacket
237 total_color;
238
239 MagickRealType
240 quantize_error;
241
cristybb503372010-05-27 20:51:26 +0000242 size_t
cristy3ed852e2009-09-05 21:47:34 +0000243 color_number,
244 id,
245 level;
246} NodeInfo;
247
248typedef struct _Nodes
249{
250 NodeInfo
251 *nodes;
252
253 struct _Nodes
254 *next;
255} Nodes;
256
257typedef struct _CubeInfo
258{
259 NodeInfo
260 *root;
261
cristybb503372010-05-27 20:51:26 +0000262 size_t
cristy3ed852e2009-09-05 21:47:34 +0000263 colors,
264 maximum_colors;
265
cristybb503372010-05-27 20:51:26 +0000266 ssize_t
cristy3ed852e2009-09-05 21:47:34 +0000267 transparent_index;
268
269 MagickSizeType
270 transparent_pixels;
271
272 RealPixelPacket
273 target;
274
275 MagickRealType
276 distance,
277 pruning_threshold,
278 next_threshold;
279
cristybb503372010-05-27 20:51:26 +0000280 size_t
cristy3ed852e2009-09-05 21:47:34 +0000281 nodes,
282 free_nodes,
283 color_number;
284
285 NodeInfo
286 *next_node;
287
288 Nodes
289 *node_queue;
290
cristybb503372010-05-27 20:51:26 +0000291 ssize_t
cristy3ed852e2009-09-05 21:47:34 +0000292 *cache;
293
294 RealPixelPacket
295 error[ErrorQueueLength];
296
297 MagickRealType
298 weights[ErrorQueueLength];
299
300 QuantizeInfo
301 *quantize_info;
302
303 MagickBooleanType
304 associate_alpha;
305
cristybb503372010-05-27 20:51:26 +0000306 ssize_t
cristy3ed852e2009-09-05 21:47:34 +0000307 x,
308 y;
309
cristybb503372010-05-27 20:51:26 +0000310 size_t
cristy3ed852e2009-09-05 21:47:34 +0000311 depth;
312
313 MagickOffsetType
314 offset;
315
316 MagickSizeType
317 span;
318} CubeInfo;
319
320/*
321 Method prototypes.
322*/
323static CubeInfo
cristybb503372010-05-27 20:51:26 +0000324 *GetCubeInfo(const QuantizeInfo *,const size_t,const size_t);
cristy3ed852e2009-09-05 21:47:34 +0000325
326static NodeInfo
cristybb503372010-05-27 20:51:26 +0000327 *GetNodeInfo(CubeInfo *,const size_t,const size_t,NodeInfo *);
cristy3ed852e2009-09-05 21:47:34 +0000328
329static MagickBooleanType
330 AssignImageColors(Image *,CubeInfo *),
331 ClassifyImageColors(CubeInfo *,const Image *,ExceptionInfo *),
332 DitherImage(Image *,CubeInfo *),
333 SetGrayscaleImage(Image *);
334
cristybb503372010-05-27 20:51:26 +0000335static size_t
cristy3ed852e2009-09-05 21:47:34 +0000336 DefineImageColormap(Image *,CubeInfo *,NodeInfo *);
337
338static void
339 ClosestColor(const Image *,CubeInfo *,const NodeInfo *),
340 DestroyCubeInfo(CubeInfo *),
341 PruneLevel(const Image *,CubeInfo *,const NodeInfo *),
342 PruneToCubeDepth(const Image *,CubeInfo *,const NodeInfo *),
343 ReduceImageColors(const Image *,CubeInfo *);
344
345/*
346%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
347% %
348% %
349% %
350% A c q u i r e Q u a n t i z e I n f o %
351% %
352% %
353% %
354%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
355%
356% AcquireQuantizeInfo() allocates the QuantizeInfo structure.
357%
358% The format of the AcquireQuantizeInfo method is:
359%
360% QuantizeInfo *AcquireQuantizeInfo(const ImageInfo *image_info)
361%
362% A description of each parameter follows:
363%
364% o image_info: the image info.
365%
366*/
367MagickExport QuantizeInfo *AcquireQuantizeInfo(const ImageInfo *image_info)
368{
369 QuantizeInfo
370 *quantize_info;
371
cristy73bd4a52010-10-05 11:24:23 +0000372 quantize_info=(QuantizeInfo *) AcquireMagickMemory(sizeof(*quantize_info));
cristy3ed852e2009-09-05 21:47:34 +0000373 if (quantize_info == (QuantizeInfo *) NULL)
374 ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
375 GetQuantizeInfo(quantize_info);
376 if (image_info != (ImageInfo *) NULL)
377 {
378 const char
379 *option;
380
381 quantize_info->dither=image_info->dither;
382 option=GetImageOption(image_info,"dither");
383 if (option != (const char *) NULL)
cristy042ee782011-04-22 18:48:30 +0000384 quantize_info->dither_method=(DitherMethod) ParseCommandOption(
cristy3ed852e2009-09-05 21:47:34 +0000385 MagickDitherOptions,MagickFalse,option);
386 quantize_info->measure_error=image_info->verbose;
387 }
388 return(quantize_info);
389}
390
391/*
392%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
393% %
394% %
395% %
396+ A s s i g n I m a g e C o l o r s %
397% %
398% %
399% %
400%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
401%
402% AssignImageColors() generates the output image from the pruned tree. The
403% output image consists of two parts: (1) A color map, which is an array
404% of color descriptions (RGB triples) for each color present in the
405% output image; (2) A pixel array, which represents each pixel as an
406% index into the color map array.
407%
408% First, the assignment phase makes one pass over the pruned color
409% description tree to establish the image's color map. For each node
410% with n2 > 0, it divides Sr, Sg, and Sb by n2 . This produces the mean
411% color of all pixels that classify no lower than this node. Each of
412% these colors becomes an entry in the color map.
413%
414% Finally, the assignment phase reclassifies each pixel in the pruned
415% tree to identify the deepest node containing the pixel's color. The
416% pixel's value in the pixel array becomes the index of this node's mean
417% color in the color map.
418%
419% The format of the AssignImageColors() method is:
420%
421% MagickBooleanType AssignImageColors(Image *image,CubeInfo *cube_info)
422%
423% A description of each parameter follows.
424%
425% o image: the image.
426%
427% o cube_info: A pointer to the Cube structure.
428%
429*/
430
cristy4c08aed2011-07-01 19:47:50 +0000431static inline void AssociateAlphaPixel(const Image *image,
432 const CubeInfo *cube_info,const Quantum *pixel,
433 RealPixelPacket *alpha_pixel)
cristy3ed852e2009-09-05 21:47:34 +0000434{
435 MagickRealType
436 alpha;
437
438 if ((cube_info->associate_alpha == MagickFalse) ||
cristy4c08aed2011-07-01 19:47:50 +0000439 (GetPixelAlpha(image,pixel)== OpaqueAlpha))
cristy3ed852e2009-09-05 21:47:34 +0000440 {
cristy4c08aed2011-07-01 19:47:50 +0000441 alpha_pixel->red=(MagickRealType) GetPixelRed(image,pixel);
442 alpha_pixel->green=(MagickRealType) GetPixelGreen(image,pixel);
443 alpha_pixel->blue=(MagickRealType) GetPixelBlue(image,pixel);
444 alpha_pixel->alpha=(MagickRealType) GetPixelAlpha(image,pixel);
cristy3ed852e2009-09-05 21:47:34 +0000445 return;
446 }
cristy4c08aed2011-07-01 19:47:50 +0000447 alpha=(MagickRealType) (QuantumScale*GetPixelAlpha(image,pixel));
448 alpha_pixel->red=alpha*GetPixelRed(image,pixel);
449 alpha_pixel->green=alpha*GetPixelGreen(image,pixel);
450 alpha_pixel->blue=alpha*GetPixelBlue(image,pixel);
451 alpha_pixel->alpha=(MagickRealType) GetPixelAlpha(image,pixel);
452}
453
454static inline void AssociateAlphaPixelPacket(const Image *image,
455 const CubeInfo *cube_info,const PixelPacket *pixel,
456 RealPixelPacket *alpha_pixel)
457{
458 MagickRealType
459 alpha;
460
461 if ((cube_info->associate_alpha == MagickFalse) ||
462 (pixel->alpha == OpaqueAlpha))
463 {
464 alpha_pixel->red=(MagickRealType) pixel->red;
465 alpha_pixel->green=(MagickRealType) pixel->green;
466 alpha_pixel->blue=(MagickRealType) pixel->blue;
467 alpha_pixel->alpha=(MagickRealType) pixel->alpha;
468 return;
469 }
470 alpha=(MagickRealType) (QuantumScale*pixel->alpha);
471 alpha_pixel->red=alpha*pixel->red;
472 alpha_pixel->green=alpha*pixel->green;
473 alpha_pixel->blue=alpha*pixel->blue;
474 alpha_pixel->alpha=(MagickRealType) pixel->alpha;
cristy3ed852e2009-09-05 21:47:34 +0000475}
476
cristy75ffdb72010-01-07 17:40:12 +0000477static inline Quantum ClampToUnsignedQuantum(const MagickRealType value)
cristy3ed852e2009-09-05 21:47:34 +0000478{
479 if (value <= 0.0)
480 return((Quantum) 0);
481 if (value >= QuantumRange)
482 return((Quantum) QuantumRange);
483 return((Quantum) (value+0.5));
484}
485
cristybb503372010-05-27 20:51:26 +0000486static inline size_t ColorToNodeId(const CubeInfo *cube_info,
487 const RealPixelPacket *pixel,size_t index)
cristy3ed852e2009-09-05 21:47:34 +0000488{
cristybb503372010-05-27 20:51:26 +0000489 size_t
cristy3ed852e2009-09-05 21:47:34 +0000490 id;
491
cristy4c08aed2011-07-01 19:47:50 +0000492 id=(size_t) (((ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->red)) >> index) & 0x01) |
493 ((ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->green)) >> index) & 0x01) << 1 |
494 ((ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->blue)) >> index) & 0x01) << 2);
cristy3ed852e2009-09-05 21:47:34 +0000495 if (cube_info->associate_alpha != MagickFalse)
cristy4c08aed2011-07-01 19:47:50 +0000496 id|=((ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->alpha)) >> index) & 0x1) << 3;
cristy3ed852e2009-09-05 21:47:34 +0000497 return(id);
498}
499
cristy3ed852e2009-09-05 21:47:34 +0000500static MagickBooleanType AssignImageColors(Image *image,CubeInfo *cube_info)
501{
502#define AssignImageTag "Assign/Image"
503
cristyecc31b12011-02-13 00:32:29 +0000504 ssize_t
cristyecc31b12011-02-13 00:32:29 +0000505 y;
506
cristy3ed852e2009-09-05 21:47:34 +0000507 /*
508 Allocate image colormap.
509 */
510 if ((cube_info->quantize_info->colorspace != UndefinedColorspace) &&
511 (cube_info->quantize_info->colorspace != CMYKColorspace))
512 (void) TransformImageColorspace((Image *) image,
513 cube_info->quantize_info->colorspace);
514 else
515 if ((image->colorspace != GRAYColorspace) &&
516 (image->colorspace != RGBColorspace) &&
517 (image->colorspace != CMYColorspace))
518 (void) TransformImageColorspace((Image *) image,RGBColorspace);
519 if (AcquireImageColormap(image,cube_info->colors) == MagickFalse)
520 ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
521 image->filename);
522 image->colors=0;
523 cube_info->transparent_pixels=0;
524 cube_info->transparent_index=(-1);
525 (void) DefineImageColormap(image,cube_info,cube_info->root);
526 /*
527 Create a reduced color image.
528 */
529 if ((cube_info->quantize_info->dither != MagickFalse) &&
cristyd5acfd12010-06-15 00:11:38 +0000530 (cube_info->quantize_info->dither_method != NoDitherMethod))
cristy3ed852e2009-09-05 21:47:34 +0000531 (void) DitherImage(image,cube_info);
532 else
533 {
cristy3ed852e2009-09-05 21:47:34 +0000534 CacheView
535 *image_view;
536
cristye9717ac2011-02-20 16:17:17 +0000537 ExceptionInfo
538 *exception;
539
540 MagickBooleanType
541 status;
542
543 status=MagickTrue;
cristy3ed852e2009-09-05 21:47:34 +0000544 exception=(&image->exception);
545 image_view=AcquireCacheView(image);
cristye9717ac2011-02-20 16:17:17 +0000546#if defined(MAGICKCORE_OPENMP_SUPPORT)
547 #pragma omp parallel for schedule(dynamic,4) shared(status)
548#endif
cristybb503372010-05-27 20:51:26 +0000549 for (y=0; y < (ssize_t) image->rows; y++)
cristy3ed852e2009-09-05 21:47:34 +0000550 {
cristye9717ac2011-02-20 16:17:17 +0000551 CubeInfo
552 cube;
553
cristy4c08aed2011-07-01 19:47:50 +0000554 register Quantum
cristyc47d1f82009-11-26 01:44:43 +0000555 *restrict q;
cristy3ed852e2009-09-05 21:47:34 +0000556
cristye9717ac2011-02-20 16:17:17 +0000557 register ssize_t
558 x;
559
560 ssize_t
561 count;
562
563 if (status == MagickFalse)
564 continue;
cristy3ed852e2009-09-05 21:47:34 +0000565 q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,
566 exception);
cristy4c08aed2011-07-01 19:47:50 +0000567 if (q == (const Quantum *) NULL)
cristye9717ac2011-02-20 16:17:17 +0000568 {
569 status=MagickFalse;
570 continue;
571 }
cristye9717ac2011-02-20 16:17:17 +0000572 cube=(*cube_info);
cristybb503372010-05-27 20:51:26 +0000573 for (x=0; x < (ssize_t) image->columns; x+=count)
cristy3ed852e2009-09-05 21:47:34 +0000574 {
cristye9717ac2011-02-20 16:17:17 +0000575 RealPixelPacket
576 pixel;
577
578 register const NodeInfo
579 *node_info;
580
581 register ssize_t
582 i;
583
584 size_t
585 id,
586 index;
587
cristy3ed852e2009-09-05 21:47:34 +0000588 /*
589 Identify the deepest node containing the pixel's color.
590 */
cristybb503372010-05-27 20:51:26 +0000591 for (count=1; (x+count) < (ssize_t) image->columns; count++)
cristy4c08aed2011-07-01 19:47:50 +0000592 {
593 PixelPacket
594 packet;
595
596 GetPixelPacket(image,q+count*GetPixelChannels(image),&packet);
597 if (IsPixelEquivalent(image,q,&packet) == MagickFalse)
cristy3ed852e2009-09-05 21:47:34 +0000598 break;
cristy4c08aed2011-07-01 19:47:50 +0000599 }
600 AssociateAlphaPixel(image,&cube,q,&pixel);
cristye9717ac2011-02-20 16:17:17 +0000601 node_info=cube.root;
cristybb503372010-05-27 20:51:26 +0000602 for (index=MaxTreeDepth-1; (ssize_t) index > 0; index--)
cristy3ed852e2009-09-05 21:47:34 +0000603 {
cristye9717ac2011-02-20 16:17:17 +0000604 id=ColorToNodeId(&cube,&pixel,index);
cristy3ed852e2009-09-05 21:47:34 +0000605 if (node_info->child[id] == (NodeInfo *) NULL)
606 break;
607 node_info=node_info->child[id];
608 }
609 /*
610 Find closest color among siblings and their children.
611 */
cristye9717ac2011-02-20 16:17:17 +0000612 cube.target=pixel;
613 cube.distance=(MagickRealType) (4.0*(QuantumRange+1.0)*
cristy3ed852e2009-09-05 21:47:34 +0000614 (QuantumRange+1.0)+1.0);
cristye9717ac2011-02-20 16:17:17 +0000615 ClosestColor(image,&cube,node_info->parent);
616 index=cube.color_number;
cristybb503372010-05-27 20:51:26 +0000617 for (i=0; i < (ssize_t) count; i++)
cristy3ed852e2009-09-05 21:47:34 +0000618 {
619 if (image->storage_class == PseudoClass)
cristy4c08aed2011-07-01 19:47:50 +0000620 SetPixelIndex(image,(Quantum) index,q);
cristye9717ac2011-02-20 16:17:17 +0000621 if (cube.quantize_info->measure_error == MagickFalse)
cristy3ed852e2009-09-05 21:47:34 +0000622 {
cristy4c08aed2011-07-01 19:47:50 +0000623 SetPixelRed(image,image->colormap[index].red,q);
624 SetPixelGreen(image,image->colormap[index].green,q);
625 SetPixelBlue(image,image->colormap[index].blue,q);
cristye9717ac2011-02-20 16:17:17 +0000626 if (cube.associate_alpha != MagickFalse)
cristy4c08aed2011-07-01 19:47:50 +0000627 SetPixelAlpha(image,image->colormap[index].alpha,q);
cristy3ed852e2009-09-05 21:47:34 +0000628 }
cristy4c08aed2011-07-01 19:47:50 +0000629 q+=GetPixelChannels(image);
cristy3ed852e2009-09-05 21:47:34 +0000630 }
631 }
632 if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
cristye9717ac2011-02-20 16:17:17 +0000633 status=MagickFalse;
634 if (image->progress_monitor != (MagickProgressMonitor) NULL)
635 {
636 MagickBooleanType
637 proceed;
638
639#if defined(MAGICKCORE_OPENMP_SUPPORT)
640 #pragma omp critical (MagickCore_AssignImageColors)
641#endif
642 proceed=SetImageProgress(image,AssignImageTag,(MagickOffsetType) y,
643 image->rows);
644 if (proceed == MagickFalse)
645 status=MagickFalse;
646 }
cristy3ed852e2009-09-05 21:47:34 +0000647 }
648 image_view=DestroyCacheView(image_view);
649 }
650 if (cube_info->quantize_info->measure_error != MagickFalse)
651 (void) GetImageQuantizeError(image);
652 if ((cube_info->quantize_info->number_colors == 2) &&
653 (cube_info->quantize_info->colorspace == GRAYColorspace))
654 {
655 Quantum
656 intensity;
657
658 register PixelPacket
cristyc47d1f82009-11-26 01:44:43 +0000659 *restrict q;
cristy3ed852e2009-09-05 21:47:34 +0000660
cristye9717ac2011-02-20 16:17:17 +0000661 register ssize_t
662 i;
663
cristy3ed852e2009-09-05 21:47:34 +0000664 /*
665 Monochrome image.
666 */
667 q=image->colormap;
cristybb503372010-05-27 20:51:26 +0000668 for (i=0; i < (ssize_t) image->colors; i++)
cristy3ed852e2009-09-05 21:47:34 +0000669 {
cristy4c08aed2011-07-01 19:47:50 +0000670 intensity=(Quantum) ((MagickRealType) GetPixelPacketIntensity(q) <
671 ((MagickRealType) QuantumRange/2.0) ? 0 : QuantumRange);
672 q->red=intensity;
673 q->green=intensity;
674 q->blue=intensity;
cristy3ed852e2009-09-05 21:47:34 +0000675 q++;
676 }
677 }
678 (void) SyncImage(image);
679 if ((cube_info->quantize_info->colorspace != UndefinedColorspace) &&
680 (cube_info->quantize_info->colorspace != CMYKColorspace))
681 (void) TransformImageColorspace((Image *) image,RGBColorspace);
682 return(MagickTrue);
683}
684
685/*
686%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
687% %
688% %
689% %
690+ C l a s s i f y I m a g e C o l o r s %
691% %
692% %
693% %
694%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
695%
696% ClassifyImageColors() begins by initializing a color description tree
697% of sufficient depth to represent each possible input color in a leaf.
698% However, it is impractical to generate a fully-formed color
699% description tree in the storage_class phase for realistic values of
700% Cmax. If colors components in the input image are quantized to k-bit
701% precision, so that Cmax= 2k-1, the tree would need k levels below the
702% root node to allow representing each possible input color in a leaf.
703% This becomes prohibitive because the tree's total number of nodes is
704% 1 + sum(i=1,k,8k).
705%
706% A complete tree would require 19,173,961 nodes for k = 8, Cmax = 255.
707% Therefore, to avoid building a fully populated tree, QUANTIZE: (1)
708% Initializes data structures for nodes only as they are needed; (2)
709% Chooses a maximum depth for the tree as a function of the desired
710% number of colors in the output image (currently log2(colormap size)).
711%
712% For each pixel in the input image, storage_class scans downward from
713% the root of the color description tree. At each level of the tree it
714% identifies the single node which represents a cube in RGB space
715% containing It updates the following data for each such node:
716%
717% n1 : Number of pixels whose color is contained in the RGB cube
718% which this node represents;
719%
720% n2 : Number of pixels whose color is not represented in a node at
721% lower depth in the tree; initially, n2 = 0 for all nodes except
722% leaves of the tree.
723%
724% Sr, Sg, Sb : Sums of the red, green, and blue component values for
725% all pixels not classified at a lower depth. The combination of
726% these sums and n2 will ultimately characterize the mean color of a
727% set of pixels represented by this node.
728%
729% E: the distance squared in RGB space between each pixel contained
730% within a node and the nodes' center. This represents the quantization
731% error for a node.
732%
733% The format of the ClassifyImageColors() method is:
734%
735% MagickBooleanType ClassifyImageColors(CubeInfo *cube_info,
736% const Image *image,ExceptionInfo *exception)
737%
738% A description of each parameter follows.
739%
740% o cube_info: A pointer to the Cube structure.
741%
742% o image: the image.
743%
744*/
745
746static inline void SetAssociatedAlpha(const Image *image,CubeInfo *cube_info)
747{
748 MagickBooleanType
749 associate_alpha;
750
751 associate_alpha=image->matte;
752 if (cube_info->quantize_info->colorspace == TransparentColorspace)
753 associate_alpha=MagickFalse;
754 if ((cube_info->quantize_info->number_colors == 2) &&
755 (cube_info->quantize_info->colorspace == GRAYColorspace))
756 associate_alpha=MagickFalse;
757 cube_info->associate_alpha=associate_alpha;
758}
759
760static MagickBooleanType ClassifyImageColors(CubeInfo *cube_info,
761 const Image *image,ExceptionInfo *exception)
762{
763#define ClassifyImageTag "Classify/Image"
764
cristyc4c8d132010-01-07 01:58:38 +0000765 CacheView
766 *image_view;
767
cristy3ed852e2009-09-05 21:47:34 +0000768 MagickBooleanType
769 proceed;
770
771 MagickRealType
772 bisect;
773
774 NodeInfo
775 *node_info;
776
777 RealPixelPacket
778 error,
779 mid,
780 midpoint,
781 pixel;
782
783 size_t
cristyecc31b12011-02-13 00:32:29 +0000784 count,
cristy3ed852e2009-09-05 21:47:34 +0000785 id,
786 index,
787 level;
788
cristyecc31b12011-02-13 00:32:29 +0000789 ssize_t
790 y;
791
cristy3ed852e2009-09-05 21:47:34 +0000792 /*
793 Classify the first cube_info->maximum_colors colors to a tree depth of 8.
794 */
795 SetAssociatedAlpha(image,cube_info);
796 if ((cube_info->quantize_info->colorspace != UndefinedColorspace) &&
797 (cube_info->quantize_info->colorspace != CMYKColorspace))
798 (void) TransformImageColorspace((Image *) image,
799 cube_info->quantize_info->colorspace);
800 else
801 if ((image->colorspace != GRAYColorspace) &&
802 (image->colorspace != CMYColorspace) &&
803 (image->colorspace != RGBColorspace))
804 (void) TransformImageColorspace((Image *) image,RGBColorspace);
805 midpoint.red=(MagickRealType) QuantumRange/2.0;
806 midpoint.green=(MagickRealType) QuantumRange/2.0;
807 midpoint.blue=(MagickRealType) QuantumRange/2.0;
cristy4c08aed2011-07-01 19:47:50 +0000808 midpoint.alpha=(MagickRealType) QuantumRange/2.0;
809 error.alpha=0.0;
cristy3ed852e2009-09-05 21:47:34 +0000810 image_view=AcquireCacheView(image);
cristybb503372010-05-27 20:51:26 +0000811 for (y=0; y < (ssize_t) image->rows; y++)
cristy3ed852e2009-09-05 21:47:34 +0000812 {
cristy4c08aed2011-07-01 19:47:50 +0000813 register const Quantum
cristyc47d1f82009-11-26 01:44:43 +0000814 *restrict p;
cristy3ed852e2009-09-05 21:47:34 +0000815
cristybb503372010-05-27 20:51:26 +0000816 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +0000817 x;
818
819 p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
cristy4c08aed2011-07-01 19:47:50 +0000820 if (p == (const Quantum *) NULL)
cristy3ed852e2009-09-05 21:47:34 +0000821 break;
822 if (cube_info->nodes > MaxNodes)
823 {
824 /*
825 Prune one level if the color tree is too large.
826 */
827 PruneLevel(image,cube_info,cube_info->root);
828 cube_info->depth--;
829 }
cristybb503372010-05-27 20:51:26 +0000830 for (x=0; x < (ssize_t) image->columns; x+=(ssize_t) count)
cristy3ed852e2009-09-05 21:47:34 +0000831 {
832 /*
833 Start at the root and descend the color cube tree.
834 */
cristybb66d9c2010-10-09 01:40:31 +0000835 for (count=1; (x+(ssize_t) count) < (ssize_t) image->columns; count++)
cristy4c08aed2011-07-01 19:47:50 +0000836 {
837 PixelPacket
838 packet;
839
840 GetPixelPacket(image,p+count*GetPixelChannels(image),&packet);
841 if (IsPixelEquivalent(image,p,&packet) == MagickFalse)
cristy3ed852e2009-09-05 21:47:34 +0000842 break;
cristy4c08aed2011-07-01 19:47:50 +0000843 }
844 AssociateAlphaPixel(image,cube_info,p,&pixel);
cristy3ed852e2009-09-05 21:47:34 +0000845 index=MaxTreeDepth-1;
846 bisect=((MagickRealType) QuantumRange+1.0)/2.0;
847 mid=midpoint;
848 node_info=cube_info->root;
849 for (level=1; level <= MaxTreeDepth; level++)
850 {
851 bisect*=0.5;
852 id=ColorToNodeId(cube_info,&pixel,index);
853 mid.red+=(id & 1) != 0 ? bisect : -bisect;
854 mid.green+=(id & 2) != 0 ? bisect : -bisect;
855 mid.blue+=(id & 4) != 0 ? bisect : -bisect;
cristy4c08aed2011-07-01 19:47:50 +0000856 mid.alpha+=(id & 8) != 0 ? bisect : -bisect;
cristy3ed852e2009-09-05 21:47:34 +0000857 if (node_info->child[id] == (NodeInfo *) NULL)
858 {
859 /*
860 Set colors of new node to contain pixel.
861 */
862 node_info->child[id]=GetNodeInfo(cube_info,id,level,node_info);
863 if (node_info->child[id] == (NodeInfo *) NULL)
864 (void) ThrowMagickException(exception,GetMagickModule(),
865 ResourceLimitError,"MemoryAllocationFailed","`%s'",
866 image->filename);
867 if (level == MaxTreeDepth)
868 cube_info->colors++;
869 }
870 /*
871 Approximate the quantization error represented by this node.
872 */
873 node_info=node_info->child[id];
874 error.red=QuantumScale*(pixel.red-mid.red);
875 error.green=QuantumScale*(pixel.green-mid.green);
876 error.blue=QuantumScale*(pixel.blue-mid.blue);
877 if (cube_info->associate_alpha != MagickFalse)
cristy4c08aed2011-07-01 19:47:50 +0000878 error.alpha=QuantumScale*(pixel.alpha-mid.alpha);
cristy3ed852e2009-09-05 21:47:34 +0000879 node_info->quantize_error+=sqrt((double) (count*error.red*error.red+
880 count*error.green*error.green+count*error.blue*error.blue+
cristy4c08aed2011-07-01 19:47:50 +0000881 count*error.alpha*error.alpha));
cristy3ed852e2009-09-05 21:47:34 +0000882 cube_info->root->quantize_error+=node_info->quantize_error;
883 index--;
884 }
885 /*
886 Sum RGB for this leaf for later derivation of the mean cube color.
887 */
888 node_info->number_unique+=count;
889 node_info->total_color.red+=count*QuantumScale*pixel.red;
890 node_info->total_color.green+=count*QuantumScale*pixel.green;
891 node_info->total_color.blue+=count*QuantumScale*pixel.blue;
892 if (cube_info->associate_alpha != MagickFalse)
cristy4c08aed2011-07-01 19:47:50 +0000893 node_info->total_color.alpha+=count*QuantumScale*pixel.alpha;
894 p+=count*GetPixelChannels(image);
cristy3ed852e2009-09-05 21:47:34 +0000895 }
896 if (cube_info->colors > cube_info->maximum_colors)
897 {
898 PruneToCubeDepth(image,cube_info,cube_info->root);
899 break;
900 }
cristycee97112010-05-28 00:44:52 +0000901 proceed=SetImageProgress(image,ClassifyImageTag,(MagickOffsetType) y,
902 image->rows);
cristy3ed852e2009-09-05 21:47:34 +0000903 if (proceed == MagickFalse)
904 break;
905 }
cristybb503372010-05-27 20:51:26 +0000906 for (y++; y < (ssize_t) image->rows; y++)
cristy3ed852e2009-09-05 21:47:34 +0000907 {
cristy4c08aed2011-07-01 19:47:50 +0000908 register const Quantum
cristyc47d1f82009-11-26 01:44:43 +0000909 *restrict p;
cristy3ed852e2009-09-05 21:47:34 +0000910
cristybb503372010-05-27 20:51:26 +0000911 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +0000912 x;
913
914 p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
cristy4c08aed2011-07-01 19:47:50 +0000915 if (p == (const Quantum *) NULL)
cristy3ed852e2009-09-05 21:47:34 +0000916 break;
917 if (cube_info->nodes > MaxNodes)
918 {
919 /*
920 Prune one level if the color tree is too large.
921 */
922 PruneLevel(image,cube_info,cube_info->root);
923 cube_info->depth--;
924 }
cristybb503372010-05-27 20:51:26 +0000925 for (x=0; x < (ssize_t) image->columns; x+=(ssize_t) count)
cristy3ed852e2009-09-05 21:47:34 +0000926 {
927 /*
928 Start at the root and descend the color cube tree.
929 */
cristybb66d9c2010-10-09 01:40:31 +0000930 for (count=1; (x+(ssize_t) count) < (ssize_t) image->columns; count++)
cristy4c08aed2011-07-01 19:47:50 +0000931 {
932 PixelPacket
933 packet;
934
935 GetPixelPacket(image,p+count*GetPixelChannels(image),&packet);
936 if (IsPixelEquivalent(image,p,&packet) == MagickFalse)
cristy3ed852e2009-09-05 21:47:34 +0000937 break;
cristy4c08aed2011-07-01 19:47:50 +0000938 }
939 AssociateAlphaPixel(image,cube_info,p,&pixel);
cristy3ed852e2009-09-05 21:47:34 +0000940 index=MaxTreeDepth-1;
941 bisect=((MagickRealType) QuantumRange+1.0)/2.0;
942 mid=midpoint;
943 node_info=cube_info->root;
944 for (level=1; level <= cube_info->depth; level++)
945 {
946 bisect*=0.5;
947 id=ColorToNodeId(cube_info,&pixel,index);
948 mid.red+=(id & 1) != 0 ? bisect : -bisect;
949 mid.green+=(id & 2) != 0 ? bisect : -bisect;
950 mid.blue+=(id & 4) != 0 ? bisect : -bisect;
cristy4c08aed2011-07-01 19:47:50 +0000951 mid.alpha+=(id & 8) != 0 ? bisect : -bisect;
cristy3ed852e2009-09-05 21:47:34 +0000952 if (node_info->child[id] == (NodeInfo *) NULL)
953 {
954 /*
955 Set colors of new node to contain pixel.
956 */
957 node_info->child[id]=GetNodeInfo(cube_info,id,level,node_info);
958 if (node_info->child[id] == (NodeInfo *) NULL)
959 (void) ThrowMagickException(exception,GetMagickModule(),
960 ResourceLimitError,"MemoryAllocationFailed","%s",
961 image->filename);
962 if (level == cube_info->depth)
963 cube_info->colors++;
964 }
965 /*
966 Approximate the quantization error represented by this node.
967 */
968 node_info=node_info->child[id];
969 error.red=QuantumScale*(pixel.red-mid.red);
970 error.green=QuantumScale*(pixel.green-mid.green);
971 error.blue=QuantumScale*(pixel.blue-mid.blue);
972 if (cube_info->associate_alpha != MagickFalse)
cristy4c08aed2011-07-01 19:47:50 +0000973 error.alpha=QuantumScale*(pixel.alpha-mid.alpha);
cristy3ed852e2009-09-05 21:47:34 +0000974 node_info->quantize_error+=sqrt((double) (count*error.red*error.red+
cristy83b6e792011-01-26 15:46:06 +0000975 count*error.green*error.green+count*error.blue*error.blue+
cristy4c08aed2011-07-01 19:47:50 +0000976 count*error.alpha*error.alpha));
cristy3ed852e2009-09-05 21:47:34 +0000977 cube_info->root->quantize_error+=node_info->quantize_error;
978 index--;
979 }
980 /*
981 Sum RGB for this leaf for later derivation of the mean cube color.
982 */
983 node_info->number_unique+=count;
984 node_info->total_color.red+=count*QuantumScale*pixel.red;
985 node_info->total_color.green+=count*QuantumScale*pixel.green;
986 node_info->total_color.blue+=count*QuantumScale*pixel.blue;
987 if (cube_info->associate_alpha != MagickFalse)
cristy4c08aed2011-07-01 19:47:50 +0000988 node_info->total_color.alpha+=count*QuantumScale*pixel.alpha;
989 p+=count*GetPixelChannels(image);
cristy3ed852e2009-09-05 21:47:34 +0000990 }
cristycee97112010-05-28 00:44:52 +0000991 proceed=SetImageProgress(image,ClassifyImageTag,(MagickOffsetType) y,
992 image->rows);
cristy3ed852e2009-09-05 21:47:34 +0000993 if (proceed == MagickFalse)
994 break;
995 }
996 image_view=DestroyCacheView(image_view);
997 if ((cube_info->quantize_info->colorspace != UndefinedColorspace) &&
998 (cube_info->quantize_info->colorspace != CMYKColorspace))
999 (void) TransformImageColorspace((Image *) image,RGBColorspace);
1000 return(MagickTrue);
1001}
1002
1003/*
1004%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1005% %
1006% %
1007% %
1008% C l o n e Q u a n t i z e I n f o %
1009% %
1010% %
1011% %
1012%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1013%
1014% CloneQuantizeInfo() makes a duplicate of the given quantize info structure,
1015% or if quantize info is NULL, a new one.
1016%
1017% The format of the CloneQuantizeInfo method is:
1018%
1019% QuantizeInfo *CloneQuantizeInfo(const QuantizeInfo *quantize_info)
1020%
1021% A description of each parameter follows:
1022%
1023% o clone_info: Method CloneQuantizeInfo returns a duplicate of the given
1024% quantize info, or if image info is NULL a new one.
1025%
1026% o quantize_info: a structure of type info.
1027%
1028*/
1029MagickExport QuantizeInfo *CloneQuantizeInfo(const QuantizeInfo *quantize_info)
1030{
1031 QuantizeInfo
1032 *clone_info;
1033
cristy73bd4a52010-10-05 11:24:23 +00001034 clone_info=(QuantizeInfo *) AcquireMagickMemory(sizeof(*clone_info));
cristy3ed852e2009-09-05 21:47:34 +00001035 if (clone_info == (QuantizeInfo *) NULL)
1036 ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
1037 GetQuantizeInfo(clone_info);
1038 if (quantize_info == (QuantizeInfo *) NULL)
1039 return(clone_info);
1040 clone_info->number_colors=quantize_info->number_colors;
1041 clone_info->tree_depth=quantize_info->tree_depth;
1042 clone_info->dither=quantize_info->dither;
1043 clone_info->dither_method=quantize_info->dither_method;
1044 clone_info->colorspace=quantize_info->colorspace;
1045 clone_info->measure_error=quantize_info->measure_error;
1046 return(clone_info);
1047}
1048
1049/*
1050%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1051% %
1052% %
1053% %
1054+ C l o s e s t C o l o r %
1055% %
1056% %
1057% %
1058%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1059%
1060% ClosestColor() traverses the color cube tree at a particular node and
1061% determines which colormap entry best represents the input color.
1062%
1063% The format of the ClosestColor method is:
1064%
1065% void ClosestColor(const Image *image,CubeInfo *cube_info,
1066% const NodeInfo *node_info)
1067%
1068% A description of each parameter follows.
1069%
1070% o image: the image.
1071%
1072% o cube_info: A pointer to the Cube structure.
1073%
1074% o node_info: the address of a structure of type NodeInfo which points to a
1075% node in the color cube tree that is to be pruned.
1076%
1077*/
1078static void ClosestColor(const Image *image,CubeInfo *cube_info,
1079 const NodeInfo *node_info)
1080{
cristybb503372010-05-27 20:51:26 +00001081 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00001082 i;
1083
cristybb503372010-05-27 20:51:26 +00001084 size_t
cristy3ed852e2009-09-05 21:47:34 +00001085 number_children;
1086
1087 /*
1088 Traverse any children.
1089 */
1090 number_children=cube_info->associate_alpha == MagickFalse ? 8UL : 16UL;
cristybb503372010-05-27 20:51:26 +00001091 for (i=0; i < (ssize_t) number_children; i++)
cristy3ed852e2009-09-05 21:47:34 +00001092 if (node_info->child[i] != (NodeInfo *) NULL)
1093 ClosestColor(image,cube_info,node_info->child[i]);
1094 if (node_info->number_unique != 0)
1095 {
1096 MagickRealType
1097 pixel;
1098
1099 register MagickRealType
1100 alpha,
1101 beta,
1102 distance;
1103
1104 register PixelPacket
cristyc47d1f82009-11-26 01:44:43 +00001105 *restrict p;
cristy3ed852e2009-09-05 21:47:34 +00001106
1107 register RealPixelPacket
cristyc47d1f82009-11-26 01:44:43 +00001108 *restrict q;
cristy3ed852e2009-09-05 21:47:34 +00001109
1110 /*
1111 Determine if this color is "closest".
1112 */
1113 p=image->colormap+node_info->color_number;
1114 q=(&cube_info->target);
1115 alpha=1.0;
1116 beta=1.0;
cristy847620f2011-02-09 02:24:21 +00001117 if (cube_info->associate_alpha != MagickFalse)
cristy3ed852e2009-09-05 21:47:34 +00001118 {
cristy4c08aed2011-07-01 19:47:50 +00001119 alpha=(MagickRealType) (QuantumScale*p->alpha);
1120 beta=(MagickRealType) (QuantumScale*q->alpha);
cristy3ed852e2009-09-05 21:47:34 +00001121 }
cristy4c08aed2011-07-01 19:47:50 +00001122 pixel=alpha*p->red-beta*q->red;
cristy3ed852e2009-09-05 21:47:34 +00001123 distance=pixel*pixel;
cristy36fbc3b2011-02-09 02:30:04 +00001124 if (distance <= cube_info->distance)
cristy3ed852e2009-09-05 21:47:34 +00001125 {
cristy4c08aed2011-07-01 19:47:50 +00001126 pixel=alpha*p->green-beta*q->green;
cristy3ed852e2009-09-05 21:47:34 +00001127 distance+=pixel*pixel;
cristy36fbc3b2011-02-09 02:30:04 +00001128 if (distance <= cube_info->distance)
cristy3ed852e2009-09-05 21:47:34 +00001129 {
cristy4c08aed2011-07-01 19:47:50 +00001130 pixel=alpha*p->blue-beta*q->blue;
cristy3ed852e2009-09-05 21:47:34 +00001131 distance+=pixel*pixel;
cristy36fbc3b2011-02-09 02:30:04 +00001132 if (distance <= cube_info->distance)
cristy3ed852e2009-09-05 21:47:34 +00001133 {
1134 pixel=alpha-beta;
1135 distance+=pixel*pixel;
cristyc4080402011-02-09 02:55:58 +00001136 if (distance <= cube_info->distance)
cristy3ed852e2009-09-05 21:47:34 +00001137 {
1138 cube_info->distance=distance;
1139 cube_info->color_number=node_info->color_number;
1140 }
1141 }
1142 }
1143 }
1144 }
1145}
1146
1147/*
1148%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1149% %
1150% %
1151% %
1152% C o m p r e s s I m a g e C o l o r m a p %
1153% %
1154% %
1155% %
1156%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1157%
1158% CompressImageColormap() compresses an image colormap by removing any
1159% duplicate or unused color entries.
1160%
1161% The format of the CompressImageColormap method is:
1162%
1163% MagickBooleanType CompressImageColormap(Image *image)
1164%
1165% A description of each parameter follows:
1166%
1167% o image: the image.
1168%
1169*/
1170MagickExport MagickBooleanType CompressImageColormap(Image *image)
1171{
1172 QuantizeInfo
1173 quantize_info;
1174
1175 assert(image != (Image *) NULL);
1176 assert(image->signature == MagickSignature);
1177 if (image->debug != MagickFalse)
1178 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1179 if (IsPaletteImage(image,&image->exception) == MagickFalse)
1180 return(MagickFalse);
1181 GetQuantizeInfo(&quantize_info);
1182 quantize_info.number_colors=image->colors;
1183 quantize_info.tree_depth=MaxTreeDepth;
1184 return(QuantizeImage(&quantize_info,image));
1185}
1186
1187/*
1188%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1189% %
1190% %
1191% %
1192+ D e f i n e I m a g e C o l o r m a p %
1193% %
1194% %
1195% %
1196%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1197%
1198% DefineImageColormap() traverses the color cube tree and notes each colormap
1199% entry. A colormap entry is any node in the color cube tree where the
1200% of unique colors is not zero. DefineImageColormap() returns the number of
1201% colors in the image colormap.
1202%
1203% The format of the DefineImageColormap method is:
1204%
cristybb503372010-05-27 20:51:26 +00001205% size_t DefineImageColormap(Image *image,CubeInfo *cube_info,
cristy3ed852e2009-09-05 21:47:34 +00001206% NodeInfo *node_info)
1207%
1208% A description of each parameter follows.
1209%
1210% o image: the image.
1211%
1212% o cube_info: A pointer to the Cube structure.
1213%
1214% o node_info: the address of a structure of type NodeInfo which points to a
1215% node in the color cube tree that is to be pruned.
1216%
1217*/
cristybb503372010-05-27 20:51:26 +00001218static size_t DefineImageColormap(Image *image,CubeInfo *cube_info,
cristy3ed852e2009-09-05 21:47:34 +00001219 NodeInfo *node_info)
1220{
cristybb503372010-05-27 20:51:26 +00001221 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00001222 i;
1223
cristybb503372010-05-27 20:51:26 +00001224 size_t
cristy3ed852e2009-09-05 21:47:34 +00001225 number_children;
1226
1227 /*
1228 Traverse any children.
1229 */
1230 number_children=cube_info->associate_alpha == MagickFalse ? 8UL : 16UL;
cristybb503372010-05-27 20:51:26 +00001231 for (i=0; i < (ssize_t) number_children; i++)
cristy3ed852e2009-09-05 21:47:34 +00001232 if (node_info->child[i] != (NodeInfo *) NULL)
cristycee97112010-05-28 00:44:52 +00001233 (void) DefineImageColormap(image,cube_info,node_info->child[i]);
cristy3ed852e2009-09-05 21:47:34 +00001234 if (node_info->number_unique != 0)
1235 {
1236 register MagickRealType
1237 alpha;
1238
1239 register PixelPacket
cristyc47d1f82009-11-26 01:44:43 +00001240 *restrict q;
cristy3ed852e2009-09-05 21:47:34 +00001241
1242 /*
1243 Colormap entry is defined by the mean color in this cube.
1244 */
1245 q=image->colormap+image->colors;
1246 alpha=(MagickRealType) ((MagickOffsetType) node_info->number_unique);
1247 alpha=1.0/(fabs(alpha) <= MagickEpsilon ? 1.0 : alpha);
1248 if (cube_info->associate_alpha == MagickFalse)
1249 {
cristy4c08aed2011-07-01 19:47:50 +00001250 q->red=ClampToQuantum((MagickRealType)
1251 (alpha*QuantumRange*node_info->total_color.red));
1252 q->green=ClampToQuantum((MagickRealType)
1253 (alpha*QuantumRange*node_info->total_color.green));
1254 q->blue=ClampToQuantum((MagickRealType)
1255 (alpha*QuantumRange*node_info->total_color.blue));
1256 q->alpha=OpaqueAlpha;
cristy3ed852e2009-09-05 21:47:34 +00001257 }
1258 else
1259 {
1260 MagickRealType
1261 opacity;
1262
1263 opacity=(MagickRealType) (alpha*QuantumRange*
cristy4c08aed2011-07-01 19:47:50 +00001264 node_info->total_color.alpha);
1265 q->alpha=ClampToQuantum(opacity);
1266 if (q->alpha == OpaqueAlpha)
cristy3ed852e2009-09-05 21:47:34 +00001267 {
cristy4c08aed2011-07-01 19:47:50 +00001268 q->red=ClampToQuantum((MagickRealType)
1269 (alpha*QuantumRange*node_info->total_color.red));
1270 q->green=ClampToQuantum((MagickRealType)
1271 (alpha*QuantumRange*node_info->total_color.green));
1272 q->blue=ClampToQuantum((MagickRealType)
1273 (alpha*QuantumRange*node_info->total_color.blue));
cristy3ed852e2009-09-05 21:47:34 +00001274 }
1275 else
1276 {
1277 MagickRealType
1278 gamma;
1279
cristy4c08aed2011-07-01 19:47:50 +00001280 gamma=(MagickRealType) (QuantumScale*q->alpha);
cristy3ed852e2009-09-05 21:47:34 +00001281 gamma=1.0/(fabs(gamma) <= MagickEpsilon ? 1.0 : gamma);
cristy4c08aed2011-07-01 19:47:50 +00001282 q->red=ClampToQuantum((MagickRealType)
1283 (alpha*gamma*QuantumRange*node_info->total_color.red));
1284 q->green=ClampToQuantum((MagickRealType)
1285 (alpha*gamma*QuantumRange*node_info->total_color.green));
1286 q->blue=ClampToQuantum((MagickRealType)
1287 (alpha*gamma*QuantumRange*node_info->total_color.blue));
cristy3ed852e2009-09-05 21:47:34 +00001288 if (node_info->number_unique > cube_info->transparent_pixels)
1289 {
1290 cube_info->transparent_pixels=node_info->number_unique;
cristybb503372010-05-27 20:51:26 +00001291 cube_info->transparent_index=(ssize_t) image->colors;
cristy3ed852e2009-09-05 21:47:34 +00001292 }
1293 }
1294 }
1295 node_info->color_number=image->colors++;
1296 }
1297 return(image->colors);
1298}
1299
1300/*
1301%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1302% %
1303% %
1304% %
1305+ D e s t r o y C u b e I n f o %
1306% %
1307% %
1308% %
1309%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1310%
1311% DestroyCubeInfo() deallocates memory associated with an image.
1312%
1313% The format of the DestroyCubeInfo method is:
1314%
1315% DestroyCubeInfo(CubeInfo *cube_info)
1316%
1317% A description of each parameter follows:
1318%
1319% o cube_info: the address of a structure of type CubeInfo.
1320%
1321*/
1322static void DestroyCubeInfo(CubeInfo *cube_info)
1323{
1324 register Nodes
1325 *nodes;
1326
1327 /*
1328 Release color cube tree storage.
1329 */
1330 do
1331 {
1332 nodes=cube_info->node_queue->next;
1333 cube_info->node_queue->nodes=(NodeInfo *) RelinquishMagickMemory(
1334 cube_info->node_queue->nodes);
1335 cube_info->node_queue=(Nodes *) RelinquishMagickMemory(
1336 cube_info->node_queue);
1337 cube_info->node_queue=nodes;
1338 } while (cube_info->node_queue != (Nodes *) NULL);
cristybb503372010-05-27 20:51:26 +00001339 if (cube_info->cache != (ssize_t *) NULL)
1340 cube_info->cache=(ssize_t *) RelinquishMagickMemory(cube_info->cache);
cristy3ed852e2009-09-05 21:47:34 +00001341 cube_info->quantize_info=DestroyQuantizeInfo(cube_info->quantize_info);
1342 cube_info=(CubeInfo *) RelinquishMagickMemory(cube_info);
1343}
1344
1345/*
1346%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1347% %
1348% %
1349% %
1350% D e s t r o y Q u a n t i z e I n f o %
1351% %
1352% %
1353% %
1354%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1355%
1356% DestroyQuantizeInfo() deallocates memory associated with an QuantizeInfo
1357% structure.
1358%
1359% The format of the DestroyQuantizeInfo method is:
1360%
1361% QuantizeInfo *DestroyQuantizeInfo(QuantizeInfo *quantize_info)
1362%
1363% A description of each parameter follows:
1364%
1365% o quantize_info: Specifies a pointer to an QuantizeInfo structure.
1366%
1367*/
1368MagickExport QuantizeInfo *DestroyQuantizeInfo(QuantizeInfo *quantize_info)
1369{
1370 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
1371 assert(quantize_info != (QuantizeInfo *) NULL);
1372 assert(quantize_info->signature == MagickSignature);
1373 quantize_info->signature=(~MagickSignature);
1374 quantize_info=(QuantizeInfo *) RelinquishMagickMemory(quantize_info);
1375 return(quantize_info);
1376}
1377
1378/*
1379%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1380% %
1381% %
1382% %
1383+ D i t h e r I m a g e %
1384% %
1385% %
1386% %
1387%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1388%
1389% DitherImage() distributes the difference between an original image and
1390% the corresponding color reduced algorithm to neighboring pixels using
1391% serpentine-scan Floyd-Steinberg error diffusion. DitherImage returns
1392% MagickTrue if the image is dithered otherwise MagickFalse.
1393%
1394% The format of the DitherImage method is:
1395%
1396% MagickBooleanType DitherImage(Image *image,CubeInfo *cube_info)
1397%
1398% A description of each parameter follows.
1399%
1400% o image: the image.
1401%
1402% o cube_info: A pointer to the Cube structure.
1403%
1404*/
1405
cristye9717ac2011-02-20 16:17:17 +00001406static RealPixelPacket **DestroyPixelThreadSet(RealPixelPacket **pixels)
1407{
1408 register ssize_t
1409 i;
1410
1411 assert(pixels != (RealPixelPacket **) NULL);
1412 for (i=0; i < (ssize_t) GetOpenMPMaximumThreads(); i++)
1413 if (pixels[i] != (RealPixelPacket *) NULL)
1414 pixels[i]=(RealPixelPacket *) RelinquishMagickMemory(pixels[i]);
1415 pixels=(RealPixelPacket **) RelinquishMagickMemory(pixels);
1416 return(pixels);
1417}
1418
1419static RealPixelPacket **AcquirePixelThreadSet(const size_t count)
1420{
1421 RealPixelPacket
1422 **pixels;
1423
1424 register ssize_t
1425 i;
1426
1427 size_t
1428 number_threads;
1429
1430 number_threads=GetOpenMPMaximumThreads();
1431 pixels=(RealPixelPacket **) AcquireQuantumMemory(number_threads,
1432 sizeof(*pixels));
1433 if (pixels == (RealPixelPacket **) NULL)
1434 return((RealPixelPacket **) NULL);
1435 (void) ResetMagickMemory(pixels,0,number_threads*sizeof(*pixels));
1436 for (i=0; i < (ssize_t) number_threads; i++)
1437 {
1438 pixels[i]=(RealPixelPacket *) AcquireQuantumMemory(count,
1439 2*sizeof(**pixels));
1440 if (pixels[i] == (RealPixelPacket *) NULL)
1441 return(DestroyPixelThreadSet(pixels));
1442 }
1443 return(pixels);
1444}
1445
cristyca972de2010-06-20 23:37:02 +00001446static inline ssize_t CacheOffset(CubeInfo *cube_info,
1447 const RealPixelPacket *pixel)
1448{
1449#define RedShift(pixel) (((pixel) >> CacheShift) << (0*(8-CacheShift)))
1450#define GreenShift(pixel) (((pixel) >> CacheShift) << (1*(8-CacheShift)))
1451#define BlueShift(pixel) (((pixel) >> CacheShift) << (2*(8-CacheShift)))
1452#define AlphaShift(pixel) (((pixel) >> CacheShift) << (3*(8-CacheShift)))
1453
1454 ssize_t
1455 offset;
1456
1457 offset=(ssize_t)
cristy15893a42010-11-20 18:57:15 +00001458 (RedShift(ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->red))) |
cristyca972de2010-06-20 23:37:02 +00001459 GreenShift(ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->green))) |
cristy15893a42010-11-20 18:57:15 +00001460 BlueShift(ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->blue))));
cristyca972de2010-06-20 23:37:02 +00001461 if (cube_info->associate_alpha != MagickFalse)
cristy15893a42010-11-20 18:57:15 +00001462 offset|=AlphaShift(ScaleQuantumToChar(ClampToUnsignedQuantum(
cristy4c08aed2011-07-01 19:47:50 +00001463 pixel->alpha)));
cristyca972de2010-06-20 23:37:02 +00001464 return(offset);
1465}
1466
cristy3ed852e2009-09-05 21:47:34 +00001467static MagickBooleanType FloydSteinbergDither(Image *image,CubeInfo *cube_info)
1468{
1469#define DitherImageTag "Dither/Image"
1470
cristyc4c8d132010-01-07 01:58:38 +00001471 CacheView
1472 *image_view;
1473
cristy3ed852e2009-09-05 21:47:34 +00001474 ExceptionInfo
1475 *exception;
1476
cristy3ed852e2009-09-05 21:47:34 +00001477 MagickBooleanType
cristye9717ac2011-02-20 16:17:17 +00001478 status;
cristy3ed852e2009-09-05 21:47:34 +00001479
1480 RealPixelPacket
cristye9717ac2011-02-20 16:17:17 +00001481 **pixels;
cristy3ed852e2009-09-05 21:47:34 +00001482
cristy847620f2011-02-09 02:24:21 +00001483 ssize_t
cristy847620f2011-02-09 02:24:21 +00001484 y;
1485
cristy3ed852e2009-09-05 21:47:34 +00001486 /*
1487 Distribute quantization error using Floyd-Steinberg.
1488 */
cristye9717ac2011-02-20 16:17:17 +00001489 pixels=AcquirePixelThreadSet(image->columns);
1490 if (pixels == (RealPixelPacket **) NULL)
cristy3ed852e2009-09-05 21:47:34 +00001491 return(MagickFalse);
cristy3ed852e2009-09-05 21:47:34 +00001492 exception=(&image->exception);
cristye9717ac2011-02-20 16:17:17 +00001493 status=MagickTrue;
cristy3ed852e2009-09-05 21:47:34 +00001494 image_view=AcquireCacheView(image);
cristybb503372010-05-27 20:51:26 +00001495 for (y=0; y < (ssize_t) image->rows; y++)
cristy3ed852e2009-09-05 21:47:34 +00001496 {
cristye9717ac2011-02-20 16:17:17 +00001497 const int
1498 id = GetOpenMPThreadId();
1499
1500 CubeInfo
1501 cube;
1502
1503 RealPixelPacket
1504 *current,
1505 *previous;
1506
cristy4c08aed2011-07-01 19:47:50 +00001507 register Quantum
cristyecc31b12011-02-13 00:32:29 +00001508 *restrict q;
1509
cristybb503372010-05-27 20:51:26 +00001510 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00001511 x;
1512
cristye9717ac2011-02-20 16:17:17 +00001513 size_t
1514 index;
1515
1516 ssize_t
1517 v;
1518
1519 if (status == MagickFalse)
1520 continue;
cristy3ed852e2009-09-05 21:47:34 +00001521 q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
cristy4c08aed2011-07-01 19:47:50 +00001522 if (q == (const Quantum *) NULL)
cristye9717ac2011-02-20 16:17:17 +00001523 {
1524 status=MagickFalse;
cristy00cbdd62011-02-20 17:29:26 +00001525 continue;
cristye9717ac2011-02-20 16:17:17 +00001526 }
cristy4c08aed2011-07-01 19:47:50 +00001527 q+=(y & 0x01)*image->columns*GetPixelChannels(image);
cristye9717ac2011-02-20 16:17:17 +00001528 cube=(*cube_info);
1529 current=pixels[id]+(y & 0x01)*image->columns;
1530 previous=pixels[id]+((y+1) & 0x01)*image->columns;
cristy4c08aed2011-07-01 19:47:50 +00001531 v=(ssize_t) ((y & 0x01) != 0 ? -1 : 1);
cristybb503372010-05-27 20:51:26 +00001532 for (x=0; x < (ssize_t) image->columns; x++)
cristy3ed852e2009-09-05 21:47:34 +00001533 {
cristye9717ac2011-02-20 16:17:17 +00001534 RealPixelPacket
1535 color,
1536 pixel;
1537
1538 register ssize_t
1539 i;
1540
1541 ssize_t
1542 u;
1543
cristy4c08aed2011-07-01 19:47:50 +00001544 q-=(y & 0x01)*GetPixelChannels(image);
1545 u=(y & 0x01) != 0 ? (ssize_t) image->columns-1-x : x;
1546 AssociateAlphaPixel(image,&cube,q,&pixel);
cristy3ed852e2009-09-05 21:47:34 +00001547 if (x > 0)
1548 {
1549 pixel.red+=7*current[u-v].red/16;
1550 pixel.green+=7*current[u-v].green/16;
1551 pixel.blue+=7*current[u-v].blue/16;
cristye9717ac2011-02-20 16:17:17 +00001552 if (cube.associate_alpha != MagickFalse)
cristy4c08aed2011-07-01 19:47:50 +00001553 pixel.alpha+=7*current[u-v].alpha/16;
cristy3ed852e2009-09-05 21:47:34 +00001554 }
1555 if (y > 0)
1556 {
cristybb503372010-05-27 20:51:26 +00001557 if (x < (ssize_t) (image->columns-1))
cristy3ed852e2009-09-05 21:47:34 +00001558 {
1559 pixel.red+=previous[u+v].red/16;
1560 pixel.green+=previous[u+v].green/16;
1561 pixel.blue+=previous[u+v].blue/16;
cristye9717ac2011-02-20 16:17:17 +00001562 if (cube.associate_alpha != MagickFalse)
cristy4c08aed2011-07-01 19:47:50 +00001563 pixel.alpha+=previous[u+v].alpha/16;
cristy3ed852e2009-09-05 21:47:34 +00001564 }
1565 pixel.red+=5*previous[u].red/16;
1566 pixel.green+=5*previous[u].green/16;
1567 pixel.blue+=5*previous[u].blue/16;
cristye9717ac2011-02-20 16:17:17 +00001568 if (cube.associate_alpha != MagickFalse)
cristy4c08aed2011-07-01 19:47:50 +00001569 pixel.alpha+=5*previous[u].alpha/16;
cristy3ed852e2009-09-05 21:47:34 +00001570 if (x > 0)
1571 {
1572 pixel.red+=3*previous[u-v].red/16;
1573 pixel.green+=3*previous[u-v].green/16;
1574 pixel.blue+=3*previous[u-v].blue/16;
cristye9717ac2011-02-20 16:17:17 +00001575 if (cube.associate_alpha != MagickFalse)
cristy4c08aed2011-07-01 19:47:50 +00001576 pixel.alpha+=3*previous[u-v].alpha/16;
cristy3ed852e2009-09-05 21:47:34 +00001577 }
1578 }
cristy75ffdb72010-01-07 17:40:12 +00001579 pixel.red=(MagickRealType) ClampToUnsignedQuantum(pixel.red);
1580 pixel.green=(MagickRealType) ClampToUnsignedQuantum(pixel.green);
1581 pixel.blue=(MagickRealType) ClampToUnsignedQuantum(pixel.blue);
cristye9717ac2011-02-20 16:17:17 +00001582 if (cube.associate_alpha != MagickFalse)
cristy4c08aed2011-07-01 19:47:50 +00001583 pixel.alpha=(MagickRealType) ClampToUnsignedQuantum(pixel.alpha);
cristye9717ac2011-02-20 16:17:17 +00001584 i=CacheOffset(&cube,&pixel);
1585 if (cube.cache[i] < 0)
cristy3ed852e2009-09-05 21:47:34 +00001586 {
1587 register NodeInfo
1588 *node_info;
1589
cristybb503372010-05-27 20:51:26 +00001590 register size_t
cristy3ed852e2009-09-05 21:47:34 +00001591 id;
1592
1593 /*
1594 Identify the deepest node containing the pixel's color.
1595 */
cristye9717ac2011-02-20 16:17:17 +00001596 node_info=cube.root;
cristybb503372010-05-27 20:51:26 +00001597 for (index=MaxTreeDepth-1; (ssize_t) index > 0; index--)
cristy3ed852e2009-09-05 21:47:34 +00001598 {
cristye9717ac2011-02-20 16:17:17 +00001599 id=ColorToNodeId(&cube,&pixel,index);
cristy3ed852e2009-09-05 21:47:34 +00001600 if (node_info->child[id] == (NodeInfo *) NULL)
1601 break;
1602 node_info=node_info->child[id];
1603 }
1604 /*
1605 Find closest color among siblings and their children.
1606 */
cristye9717ac2011-02-20 16:17:17 +00001607 cube.target=pixel;
1608 cube.distance=(MagickRealType) (4.0*(QuantumRange+1.0)*(QuantumRange+
cristy3ed852e2009-09-05 21:47:34 +00001609 1.0)+1.0);
cristye9717ac2011-02-20 16:17:17 +00001610 ClosestColor(image,&cube,node_info->parent);
1611 cube.cache[i]=(ssize_t) cube.color_number;
cristy3ed852e2009-09-05 21:47:34 +00001612 }
1613 /*
1614 Assign pixel to closest colormap entry.
1615 */
cristye9717ac2011-02-20 16:17:17 +00001616 index=(size_t) cube.cache[i];
cristy3ed852e2009-09-05 21:47:34 +00001617 if (image->storage_class == PseudoClass)
cristy4c08aed2011-07-01 19:47:50 +00001618 SetPixelIndex(image,(Quantum) index,q);
cristye9717ac2011-02-20 16:17:17 +00001619 if (cube.quantize_info->measure_error == MagickFalse)
cristy3ed852e2009-09-05 21:47:34 +00001620 {
cristy4c08aed2011-07-01 19:47:50 +00001621 SetPixelRed(image,image->colormap[index].red,q);
1622 SetPixelGreen(image,image->colormap[index].green,q);
1623 SetPixelBlue(image,image->colormap[index].blue,q);
cristye9717ac2011-02-20 16:17:17 +00001624 if (cube.associate_alpha != MagickFalse)
cristy4c08aed2011-07-01 19:47:50 +00001625 SetPixelAlpha(image,image->colormap[index].alpha,q);
cristy3ed852e2009-09-05 21:47:34 +00001626 }
1627 if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
cristye9717ac2011-02-20 16:17:17 +00001628 status=MagickFalse;
cristy3ed852e2009-09-05 21:47:34 +00001629 /*
1630 Store the error.
1631 */
cristy4c08aed2011-07-01 19:47:50 +00001632 AssociateAlphaPixelPacket(image,&cube,image->colormap+index,&color);
cristy3ed852e2009-09-05 21:47:34 +00001633 current[u].red=pixel.red-color.red;
1634 current[u].green=pixel.green-color.green;
1635 current[u].blue=pixel.blue-color.blue;
cristye9717ac2011-02-20 16:17:17 +00001636 if (cube.associate_alpha != MagickFalse)
cristy4c08aed2011-07-01 19:47:50 +00001637 current[u].alpha=pixel.alpha-color.alpha;
cristye9717ac2011-02-20 16:17:17 +00001638 if (image->progress_monitor != (MagickProgressMonitor) NULL)
1639 {
1640 MagickBooleanType
1641 proceed;
1642
1643#if defined(MAGICKCORE_OPENMP_SUPPORT)
1644 #pragma omp critical (MagickCore_FloydSteinbergDither)
1645#endif
1646 proceed=SetImageProgress(image,DitherImageTag,(MagickOffsetType) y,
1647 image->rows);
1648 if (proceed == MagickFalse)
1649 status=MagickFalse;
1650 }
cristy4c08aed2011-07-01 19:47:50 +00001651 q+=((y+1) & 0x01)*GetPixelChannels(image);
cristy3ed852e2009-09-05 21:47:34 +00001652 }
1653 }
cristy3ed852e2009-09-05 21:47:34 +00001654 image_view=DestroyCacheView(image_view);
cristye9717ac2011-02-20 16:17:17 +00001655 pixels=DestroyPixelThreadSet(pixels);
cristy3ed852e2009-09-05 21:47:34 +00001656 return(MagickTrue);
1657}
1658
1659static MagickBooleanType
1660 RiemersmaDither(Image *,CacheView *,CubeInfo *,const unsigned int);
1661
1662static void Riemersma(Image *image,CacheView *image_view,CubeInfo *cube_info,
cristybb503372010-05-27 20:51:26 +00001663 const size_t level,const unsigned int direction)
cristy3ed852e2009-09-05 21:47:34 +00001664{
1665 if (level == 1)
1666 switch (direction)
1667 {
1668 case WestGravity:
1669 {
1670 (void) RiemersmaDither(image,image_view,cube_info,EastGravity);
1671 (void) RiemersmaDither(image,image_view,cube_info,SouthGravity);
1672 (void) RiemersmaDither(image,image_view,cube_info,WestGravity);
1673 break;
1674 }
1675 case EastGravity:
1676 {
1677 (void) RiemersmaDither(image,image_view,cube_info,WestGravity);
1678 (void) RiemersmaDither(image,image_view,cube_info,NorthGravity);
1679 (void) RiemersmaDither(image,image_view,cube_info,EastGravity);
1680 break;
1681 }
1682 case NorthGravity:
1683 {
1684 (void) RiemersmaDither(image,image_view,cube_info,SouthGravity);
1685 (void) RiemersmaDither(image,image_view,cube_info,EastGravity);
1686 (void) RiemersmaDither(image,image_view,cube_info,NorthGravity);
1687 break;
1688 }
1689 case SouthGravity:
1690 {
1691 (void) RiemersmaDither(image,image_view,cube_info,NorthGravity);
1692 (void) RiemersmaDither(image,image_view,cube_info,WestGravity);
1693 (void) RiemersmaDither(image,image_view,cube_info,SouthGravity);
1694 break;
1695 }
1696 default:
1697 break;
1698 }
1699 else
1700 switch (direction)
1701 {
1702 case WestGravity:
1703 {
1704 Riemersma(image,image_view,cube_info,level-1,NorthGravity);
1705 (void) RiemersmaDither(image,image_view,cube_info,EastGravity);
1706 Riemersma(image,image_view,cube_info,level-1,WestGravity);
1707 (void) RiemersmaDither(image,image_view,cube_info,SouthGravity);
1708 Riemersma(image,image_view,cube_info,level-1,WestGravity);
1709 (void) RiemersmaDither(image,image_view,cube_info,WestGravity);
1710 Riemersma(image,image_view,cube_info,level-1,SouthGravity);
1711 break;
1712 }
1713 case EastGravity:
1714 {
1715 Riemersma(image,image_view,cube_info,level-1,SouthGravity);
1716 (void) RiemersmaDither(image,image_view,cube_info,WestGravity);
1717 Riemersma(image,image_view,cube_info,level-1,EastGravity);
1718 (void) RiemersmaDither(image,image_view,cube_info,NorthGravity);
1719 Riemersma(image,image_view,cube_info,level-1,EastGravity);
1720 (void) RiemersmaDither(image,image_view,cube_info,EastGravity);
1721 Riemersma(image,image_view,cube_info,level-1,NorthGravity);
1722 break;
1723 }
1724 case NorthGravity:
1725 {
1726 Riemersma(image,image_view,cube_info,level-1,WestGravity);
1727 (void) RiemersmaDither(image,image_view,cube_info,SouthGravity);
1728 Riemersma(image,image_view,cube_info,level-1,NorthGravity);
1729 (void) RiemersmaDither(image,image_view,cube_info,EastGravity);
1730 Riemersma(image,image_view,cube_info,level-1,NorthGravity);
1731 (void) RiemersmaDither(image,image_view,cube_info,NorthGravity);
1732 Riemersma(image,image_view,cube_info,level-1,EastGravity);
1733 break;
1734 }
1735 case SouthGravity:
1736 {
1737 Riemersma(image,image_view,cube_info,level-1,EastGravity);
1738 (void) RiemersmaDither(image,image_view,cube_info,NorthGravity);
1739 Riemersma(image,image_view,cube_info,level-1,SouthGravity);
1740 (void) RiemersmaDither(image,image_view,cube_info,WestGravity);
1741 Riemersma(image,image_view,cube_info,level-1,SouthGravity);
1742 (void) RiemersmaDither(image,image_view,cube_info,SouthGravity);
1743 Riemersma(image,image_view,cube_info,level-1,WestGravity);
1744 break;
1745 }
1746 default:
1747 break;
1748 }
1749}
1750
1751static MagickBooleanType RiemersmaDither(Image *image,CacheView *image_view,
1752 CubeInfo *cube_info,const unsigned int direction)
1753{
1754#define DitherImageTag "Dither/Image"
1755
1756 MagickBooleanType
1757 proceed;
1758
1759 RealPixelPacket
1760 color,
1761 pixel;
1762
1763 register CubeInfo
1764 *p;
1765
cristybb503372010-05-27 20:51:26 +00001766 size_t
cristy3ed852e2009-09-05 21:47:34 +00001767 index;
1768
1769 p=cube_info;
cristybb503372010-05-27 20:51:26 +00001770 if ((p->x >= 0) && (p->x < (ssize_t) image->columns) &&
1771 (p->y >= 0) && (p->y < (ssize_t) image->rows))
cristy3ed852e2009-09-05 21:47:34 +00001772 {
1773 ExceptionInfo
1774 *exception;
1775
cristy4c08aed2011-07-01 19:47:50 +00001776 register Quantum
cristyc47d1f82009-11-26 01:44:43 +00001777 *restrict q;
cristy3ed852e2009-09-05 21:47:34 +00001778
cristyecc31b12011-02-13 00:32:29 +00001779 register ssize_t
1780 i;
1781
cristy3ed852e2009-09-05 21:47:34 +00001782 /*
1783 Distribute error.
1784 */
1785 exception=(&image->exception);
1786 q=GetCacheViewAuthenticPixels(image_view,p->x,p->y,1,1,exception);
cristy4c08aed2011-07-01 19:47:50 +00001787 if (q == (const Quantum *) NULL)
cristy3ed852e2009-09-05 21:47:34 +00001788 return(MagickFalse);
cristy4c08aed2011-07-01 19:47:50 +00001789 AssociateAlphaPixel(image,cube_info,q,&pixel);
cristy3ed852e2009-09-05 21:47:34 +00001790 for (i=0; i < ErrorQueueLength; i++)
1791 {
1792 pixel.red+=p->weights[i]*p->error[i].red;
1793 pixel.green+=p->weights[i]*p->error[i].green;
1794 pixel.blue+=p->weights[i]*p->error[i].blue;
1795 if (cube_info->associate_alpha != MagickFalse)
cristy4c08aed2011-07-01 19:47:50 +00001796 pixel.alpha+=p->weights[i]*p->error[i].alpha;
cristy3ed852e2009-09-05 21:47:34 +00001797 }
cristy75ffdb72010-01-07 17:40:12 +00001798 pixel.red=(MagickRealType) ClampToUnsignedQuantum(pixel.red);
1799 pixel.green=(MagickRealType) ClampToUnsignedQuantum(pixel.green);
1800 pixel.blue=(MagickRealType) ClampToUnsignedQuantum(pixel.blue);
cristy3ed852e2009-09-05 21:47:34 +00001801 if (cube_info->associate_alpha != MagickFalse)
cristy4c08aed2011-07-01 19:47:50 +00001802 pixel.alpha=(MagickRealType) ClampToUnsignedQuantum(pixel.alpha);
cristyca972de2010-06-20 23:37:02 +00001803 i=CacheOffset(cube_info,&pixel);
cristy3ed852e2009-09-05 21:47:34 +00001804 if (p->cache[i] < 0)
1805 {
1806 register NodeInfo
1807 *node_info;
1808
cristybb503372010-05-27 20:51:26 +00001809 register size_t
cristy3ed852e2009-09-05 21:47:34 +00001810 id;
1811
1812 /*
1813 Identify the deepest node containing the pixel's color.
1814 */
1815 node_info=p->root;
cristybb503372010-05-27 20:51:26 +00001816 for (index=MaxTreeDepth-1; (ssize_t) index > 0; index--)
cristy3ed852e2009-09-05 21:47:34 +00001817 {
1818 id=ColorToNodeId(cube_info,&pixel,index);
1819 if (node_info->child[id] == (NodeInfo *) NULL)
1820 break;
1821 node_info=node_info->child[id];
1822 }
cristyecc31b12011-02-13 00:32:29 +00001823 node_info=node_info->parent;
cristy3ed852e2009-09-05 21:47:34 +00001824 /*
1825 Find closest color among siblings and their children.
1826 */
1827 p->target=pixel;
1828 p->distance=(MagickRealType) (4.0*(QuantumRange+1.0)*((MagickRealType)
1829 QuantumRange+1.0)+1.0);
1830 ClosestColor(image,p,node_info->parent);
cristybb503372010-05-27 20:51:26 +00001831 p->cache[i]=(ssize_t) p->color_number;
cristy3ed852e2009-09-05 21:47:34 +00001832 }
1833 /*
1834 Assign pixel to closest colormap entry.
1835 */
cristy4c08aed2011-07-01 19:47:50 +00001836 index=(size_t) p->cache[i];
cristy3ed852e2009-09-05 21:47:34 +00001837 if (image->storage_class == PseudoClass)
cristy4c08aed2011-07-01 19:47:50 +00001838 SetPixelIndex(image,(Quantum) index,q);
cristy3ed852e2009-09-05 21:47:34 +00001839 if (cube_info->quantize_info->measure_error == MagickFalse)
1840 {
cristy4c08aed2011-07-01 19:47:50 +00001841 SetPixelRed(image,image->colormap[index].red,q);
1842 SetPixelGreen(image,image->colormap[index].green,q);
1843 SetPixelBlue(image,image->colormap[index].blue,q);
cristy3ed852e2009-09-05 21:47:34 +00001844 if (cube_info->associate_alpha != MagickFalse)
cristy4c08aed2011-07-01 19:47:50 +00001845 SetPixelAlpha(image,image->colormap[index].alpha,q);
cristy3ed852e2009-09-05 21:47:34 +00001846 }
1847 if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
1848 return(MagickFalse);
1849 /*
1850 Propagate the error as the last entry of the error queue.
1851 */
1852 (void) CopyMagickMemory(p->error,p->error+1,(ErrorQueueLength-1)*
1853 sizeof(p->error[0]));
cristy4c08aed2011-07-01 19:47:50 +00001854 AssociateAlphaPixelPacket(image,cube_info,image->colormap+index,&color);
cristy3ed852e2009-09-05 21:47:34 +00001855 p->error[ErrorQueueLength-1].red=pixel.red-color.red;
1856 p->error[ErrorQueueLength-1].green=pixel.green-color.green;
1857 p->error[ErrorQueueLength-1].blue=pixel.blue-color.blue;
1858 if (cube_info->associate_alpha != MagickFalse)
cristy4c08aed2011-07-01 19:47:50 +00001859 p->error[ErrorQueueLength-1].alpha=pixel.alpha-color.alpha;
cristy3ed852e2009-09-05 21:47:34 +00001860 proceed=SetImageProgress(image,DitherImageTag,p->offset,p->span);
1861 if (proceed == MagickFalse)
1862 return(MagickFalse);
1863 p->offset++;
1864 }
1865 switch (direction)
1866 {
1867 case WestGravity: p->x--; break;
1868 case EastGravity: p->x++; break;
1869 case NorthGravity: p->y--; break;
1870 case SouthGravity: p->y++; break;
1871 }
1872 return(MagickTrue);
1873}
1874
cristybb503372010-05-27 20:51:26 +00001875static inline ssize_t MagickMax(const ssize_t x,const ssize_t y)
cristy3ed852e2009-09-05 21:47:34 +00001876{
1877 if (x > y)
1878 return(x);
1879 return(y);
1880}
1881
cristybb503372010-05-27 20:51:26 +00001882static inline ssize_t MagickMin(const ssize_t x,const ssize_t y)
cristy3ed852e2009-09-05 21:47:34 +00001883{
1884 if (x < y)
1885 return(x);
1886 return(y);
1887}
1888
1889static MagickBooleanType DitherImage(Image *image,CubeInfo *cube_info)
1890{
cristyc4c8d132010-01-07 01:58:38 +00001891 CacheView
1892 *image_view;
1893
cristy3ed852e2009-09-05 21:47:34 +00001894 MagickBooleanType
1895 status;
1896
cristybb503372010-05-27 20:51:26 +00001897 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00001898 i;
1899
cristybb503372010-05-27 20:51:26 +00001900 size_t
cristy3ed852e2009-09-05 21:47:34 +00001901 depth;
1902
cristyfb7e9cd2011-02-20 16:26:15 +00001903 if (cube_info->quantize_info->dither_method != RiemersmaDitherMethod)
cristy3ed852e2009-09-05 21:47:34 +00001904 return(FloydSteinbergDither(image,cube_info));
1905 /*
cristycee97112010-05-28 00:44:52 +00001906 Distribute quantization error along a Hilbert curve.
cristy3ed852e2009-09-05 21:47:34 +00001907 */
1908 (void) ResetMagickMemory(cube_info->error,0,ErrorQueueLength*
1909 sizeof(*cube_info->error));
1910 cube_info->x=0;
1911 cube_info->y=0;
cristybb503372010-05-27 20:51:26 +00001912 i=MagickMax((ssize_t) image->columns,(ssize_t) image->rows);
cristy3ed852e2009-09-05 21:47:34 +00001913 for (depth=1; i != 0; depth++)
1914 i>>=1;
cristybb503372010-05-27 20:51:26 +00001915 if ((ssize_t) (1L << depth) < MagickMax((ssize_t) image->columns,(ssize_t) image->rows))
cristy3ed852e2009-09-05 21:47:34 +00001916 depth++;
1917 cube_info->offset=0;
1918 cube_info->span=(MagickSizeType) image->columns*image->rows;
1919 image_view=AcquireCacheView(image);
1920 if (depth > 1)
1921 Riemersma(image,image_view,cube_info,depth-1,NorthGravity);
1922 status=RiemersmaDither(image,image_view,cube_info,ForgetGravity);
1923 image_view=DestroyCacheView(image_view);
1924 return(status);
1925}
1926
1927/*
1928%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1929% %
1930% %
1931% %
1932+ G e t C u b e I n f o %
1933% %
1934% %
1935% %
1936%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1937%
1938% GetCubeInfo() initialize the Cube data structure.
1939%
1940% The format of the GetCubeInfo method is:
1941%
1942% CubeInfo GetCubeInfo(const QuantizeInfo *quantize_info,
cristybb503372010-05-27 20:51:26 +00001943% const size_t depth,const size_t maximum_colors)
cristy3ed852e2009-09-05 21:47:34 +00001944%
1945% A description of each parameter follows.
1946%
1947% o quantize_info: Specifies a pointer to an QuantizeInfo structure.
1948%
1949% o depth: Normally, this integer value is zero or one. A zero or
1950% one tells Quantize to choose a optimal tree depth of Log4(number_colors).
1951% A tree of this depth generally allows the best representation of the
1952% reference image with the least amount of memory and the fastest
1953% computational speed. In some cases, such as an image with low color
1954% dispersion (a few number of colors), a value other than
1955% Log4(number_colors) is required. To expand the color tree completely,
1956% use a value of 8.
1957%
1958% o maximum_colors: maximum colors.
1959%
1960*/
1961static CubeInfo *GetCubeInfo(const QuantizeInfo *quantize_info,
cristybb503372010-05-27 20:51:26 +00001962 const size_t depth,const size_t maximum_colors)
cristy3ed852e2009-09-05 21:47:34 +00001963{
1964 CubeInfo
1965 *cube_info;
1966
1967 MagickRealType
1968 sum,
1969 weight;
1970
cristybb503372010-05-27 20:51:26 +00001971 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00001972 i;
1973
cristyecc31b12011-02-13 00:32:29 +00001974 size_t
1975 length;
1976
cristy3ed852e2009-09-05 21:47:34 +00001977 /*
1978 Initialize tree to describe color cube_info.
1979 */
cristy73bd4a52010-10-05 11:24:23 +00001980 cube_info=(CubeInfo *) AcquireMagickMemory(sizeof(*cube_info));
cristy3ed852e2009-09-05 21:47:34 +00001981 if (cube_info == (CubeInfo *) NULL)
1982 return((CubeInfo *) NULL);
1983 (void) ResetMagickMemory(cube_info,0,sizeof(*cube_info));
1984 cube_info->depth=depth;
1985 if (cube_info->depth > MaxTreeDepth)
1986 cube_info->depth=MaxTreeDepth;
1987 if (cube_info->depth < 2)
1988 cube_info->depth=2;
1989 cube_info->maximum_colors=maximum_colors;
1990 /*
1991 Initialize root node.
1992 */
1993 cube_info->root=GetNodeInfo(cube_info,0,0,(NodeInfo *) NULL);
1994 if (cube_info->root == (NodeInfo *) NULL)
1995 return((CubeInfo *) NULL);
1996 cube_info->root->parent=cube_info->root;
1997 cube_info->quantize_info=CloneQuantizeInfo(quantize_info);
1998 if (cube_info->quantize_info->dither == MagickFalse)
1999 return(cube_info);
2000 /*
2001 Initialize dither resources.
2002 */
2003 length=(size_t) (1UL << (4*(8-CacheShift)));
cristybb503372010-05-27 20:51:26 +00002004 cube_info->cache=(ssize_t *) AcquireQuantumMemory(length,
cristy3ed852e2009-09-05 21:47:34 +00002005 sizeof(*cube_info->cache));
cristybb503372010-05-27 20:51:26 +00002006 if (cube_info->cache == (ssize_t *) NULL)
cristy3ed852e2009-09-05 21:47:34 +00002007 return((CubeInfo *) NULL);
2008 /*
2009 Initialize color cache.
2010 */
cristybb503372010-05-27 20:51:26 +00002011 for (i=0; i < (ssize_t) length; i++)
cristy3ed852e2009-09-05 21:47:34 +00002012 cube_info->cache[i]=(-1);
2013 /*
cristycee97112010-05-28 00:44:52 +00002014 Distribute weights along a curve of exponential decay.
cristy3ed852e2009-09-05 21:47:34 +00002015 */
2016 weight=1.0;
2017 for (i=0; i < ErrorQueueLength; i++)
2018 {
2019 cube_info->weights[ErrorQueueLength-i-1]=1.0/weight;
2020 weight*=exp(log(((double) QuantumRange+1.0))/(ErrorQueueLength-1.0));
2021 }
2022 /*
2023 Normalize the weighting factors.
2024 */
2025 weight=0.0;
2026 for (i=0; i < ErrorQueueLength; i++)
2027 weight+=cube_info->weights[i];
2028 sum=0.0;
2029 for (i=0; i < ErrorQueueLength; i++)
2030 {
2031 cube_info->weights[i]/=weight;
2032 sum+=cube_info->weights[i];
2033 }
2034 cube_info->weights[0]+=1.0-sum;
2035 return(cube_info);
2036}
2037
2038/*
2039%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2040% %
2041% %
2042% %
2043+ G e t N o d e I n f o %
2044% %
2045% %
2046% %
2047%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2048%
2049% GetNodeInfo() allocates memory for a new node in the color cube tree and
2050% presets all fields to zero.
2051%
2052% The format of the GetNodeInfo method is:
2053%
cristybb503372010-05-27 20:51:26 +00002054% NodeInfo *GetNodeInfo(CubeInfo *cube_info,const size_t id,
2055% const size_t level,NodeInfo *parent)
cristy3ed852e2009-09-05 21:47:34 +00002056%
2057% A description of each parameter follows.
2058%
2059% o node: The GetNodeInfo method returns a pointer to a queue of nodes.
2060%
2061% o id: Specifies the child number of the node.
2062%
2063% o level: Specifies the level in the storage_class the node resides.
2064%
2065*/
cristybb503372010-05-27 20:51:26 +00002066static NodeInfo *GetNodeInfo(CubeInfo *cube_info,const size_t id,
2067 const size_t level,NodeInfo *parent)
cristy3ed852e2009-09-05 21:47:34 +00002068{
2069 NodeInfo
2070 *node_info;
2071
2072 if (cube_info->free_nodes == 0)
2073 {
2074 Nodes
2075 *nodes;
2076
2077 /*
2078 Allocate a new queue of nodes.
2079 */
cristy73bd4a52010-10-05 11:24:23 +00002080 nodes=(Nodes *) AcquireMagickMemory(sizeof(*nodes));
cristy3ed852e2009-09-05 21:47:34 +00002081 if (nodes == (Nodes *) NULL)
2082 return((NodeInfo *) NULL);
2083 nodes->nodes=(NodeInfo *) AcquireQuantumMemory(NodesInAList,
2084 sizeof(*nodes->nodes));
2085 if (nodes->nodes == (NodeInfo *) NULL)
2086 return((NodeInfo *) NULL);
2087 nodes->next=cube_info->node_queue;
2088 cube_info->node_queue=nodes;
2089 cube_info->next_node=nodes->nodes;
2090 cube_info->free_nodes=NodesInAList;
2091 }
2092 cube_info->nodes++;
2093 cube_info->free_nodes--;
2094 node_info=cube_info->next_node++;
2095 (void) ResetMagickMemory(node_info,0,sizeof(*node_info));
2096 node_info->parent=parent;
2097 node_info->id=id;
2098 node_info->level=level;
2099 return(node_info);
2100}
2101
2102/*
2103%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2104% %
2105% %
2106% %
2107% G e t I m a g e Q u a n t i z e E r r o r %
2108% %
2109% %
2110% %
2111%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2112%
2113% GetImageQuantizeError() measures the difference between the original
2114% and quantized images. This difference is the total quantization error.
2115% The error is computed by summing over all pixels in an image the distance
2116% squared in RGB space between each reference pixel value and its quantized
2117% value. These values are computed:
2118%
2119% o mean_error_per_pixel: This value is the mean error for any single
2120% pixel in the image.
2121%
2122% o normalized_mean_square_error: This value is the normalized mean
2123% quantization error for any single pixel in the image. This distance
2124% measure is normalized to a range between 0 and 1. It is independent
2125% of the range of red, green, and blue values in the image.
2126%
2127% o normalized_maximum_square_error: Thsi value is the normalized
2128% maximum quantization error for any single pixel in the image. This
2129% distance measure is normalized to a range between 0 and 1. It is
2130% independent of the range of red, green, and blue values in your image.
2131%
2132% The format of the GetImageQuantizeError method is:
2133%
2134% MagickBooleanType GetImageQuantizeError(Image *image)
2135%
2136% A description of each parameter follows.
2137%
2138% o image: the image.
2139%
2140*/
2141MagickExport MagickBooleanType GetImageQuantizeError(Image *image)
2142{
cristyc4c8d132010-01-07 01:58:38 +00002143 CacheView
2144 *image_view;
2145
cristy3ed852e2009-09-05 21:47:34 +00002146 ExceptionInfo
2147 *exception;
2148
cristy3ed852e2009-09-05 21:47:34 +00002149 MagickRealType
2150 alpha,
2151 area,
2152 beta,
2153 distance,
2154 maximum_error,
2155 mean_error,
2156 mean_error_per_pixel;
2157
cristybb503372010-05-27 20:51:26 +00002158 size_t
cristy3ed852e2009-09-05 21:47:34 +00002159 index;
2160
cristyecc31b12011-02-13 00:32:29 +00002161 ssize_t
2162 y;
2163
cristy3ed852e2009-09-05 21:47:34 +00002164 assert(image != (Image *) NULL);
2165 assert(image->signature == MagickSignature);
2166 if (image->debug != MagickFalse)
2167 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2168 image->total_colors=GetNumberColors(image,(FILE *) NULL,&image->exception);
2169 (void) ResetMagickMemory(&image->error,0,sizeof(image->error));
2170 if (image->storage_class == DirectClass)
2171 return(MagickTrue);
2172 alpha=1.0;
2173 beta=1.0;
2174 area=3.0*image->columns*image->rows;
2175 maximum_error=0.0;
2176 mean_error_per_pixel=0.0;
2177 mean_error=0.0;
2178 exception=(&image->exception);
2179 image_view=AcquireCacheView(image);
cristybb503372010-05-27 20:51:26 +00002180 for (y=0; y < (ssize_t) image->rows; y++)
cristy3ed852e2009-09-05 21:47:34 +00002181 {
cristy4c08aed2011-07-01 19:47:50 +00002182 register const Quantum
cristyc47d1f82009-11-26 01:44:43 +00002183 *restrict p;
cristy3ed852e2009-09-05 21:47:34 +00002184
cristybb503372010-05-27 20:51:26 +00002185 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00002186 x;
2187
2188 p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
cristy4c08aed2011-07-01 19:47:50 +00002189 if (p == (const Quantum *) NULL)
cristy3ed852e2009-09-05 21:47:34 +00002190 break;
cristybb503372010-05-27 20:51:26 +00002191 for (x=0; x < (ssize_t) image->columns; x++)
cristy3ed852e2009-09-05 21:47:34 +00002192 {
cristy4c08aed2011-07-01 19:47:50 +00002193 index=1UL*GetPixelIndex(image,p);
cristy3ed852e2009-09-05 21:47:34 +00002194 if (image->matte != MagickFalse)
2195 {
cristy4c08aed2011-07-01 19:47:50 +00002196 alpha=(MagickRealType) (QuantumScale*GetPixelAlpha(image,p));
2197 beta=(MagickRealType) (QuantumScale*image->colormap[index].alpha);
cristy3ed852e2009-09-05 21:47:34 +00002198 }
cristy4c08aed2011-07-01 19:47:50 +00002199 distance=fabs(alpha*GetPixelRed(image,p)-beta*
cristy01e4e7d2011-05-01 23:00:41 +00002200 image->colormap[index].red);
cristy3ed852e2009-09-05 21:47:34 +00002201 mean_error_per_pixel+=distance;
2202 mean_error+=distance*distance;
2203 if (distance > maximum_error)
2204 maximum_error=distance;
cristy4c08aed2011-07-01 19:47:50 +00002205 distance=fabs(alpha*GetPixelGreen(image,p)-beta*
cristy01e4e7d2011-05-01 23:00:41 +00002206 image->colormap[index].green);
cristy3ed852e2009-09-05 21:47:34 +00002207 mean_error_per_pixel+=distance;
2208 mean_error+=distance*distance;
2209 if (distance > maximum_error)
2210 maximum_error=distance;
cristy4c08aed2011-07-01 19:47:50 +00002211 distance=fabs(alpha*GetPixelBlue(image,p)-beta*
cristy01e4e7d2011-05-01 23:00:41 +00002212 image->colormap[index].blue);
cristy3ed852e2009-09-05 21:47:34 +00002213 mean_error_per_pixel+=distance;
2214 mean_error+=distance*distance;
2215 if (distance > maximum_error)
2216 maximum_error=distance;
cristy4c08aed2011-07-01 19:47:50 +00002217 p+=GetPixelChannels(image);
cristy3ed852e2009-09-05 21:47:34 +00002218 }
2219 }
2220 image_view=DestroyCacheView(image_view);
2221 image->error.mean_error_per_pixel=(double) mean_error_per_pixel/area;
2222 image->error.normalized_mean_error=(double) QuantumScale*QuantumScale*
2223 mean_error/area;
2224 image->error.normalized_maximum_error=(double) QuantumScale*maximum_error;
2225 return(MagickTrue);
2226}
2227
2228/*
2229%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2230% %
2231% %
2232% %
2233% G e t Q u a n t i z e I n f o %
2234% %
2235% %
2236% %
2237%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2238%
2239% GetQuantizeInfo() initializes the QuantizeInfo structure.
2240%
2241% The format of the GetQuantizeInfo method is:
2242%
2243% GetQuantizeInfo(QuantizeInfo *quantize_info)
2244%
2245% A description of each parameter follows:
2246%
2247% o quantize_info: Specifies a pointer to a QuantizeInfo structure.
2248%
2249*/
2250MagickExport void GetQuantizeInfo(QuantizeInfo *quantize_info)
2251{
2252 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
2253 assert(quantize_info != (QuantizeInfo *) NULL);
2254 (void) ResetMagickMemory(quantize_info,0,sizeof(*quantize_info));
2255 quantize_info->number_colors=256;
2256 quantize_info->dither=MagickTrue;
2257 quantize_info->dither_method=RiemersmaDitherMethod;
2258 quantize_info->colorspace=UndefinedColorspace;
2259 quantize_info->measure_error=MagickFalse;
2260 quantize_info->signature=MagickSignature;
2261}
2262
2263/*
2264%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2265% %
2266% %
2267% %
cristyd1a2c0f2011-02-09 14:14:50 +00002268% P o s t e r i z e I m a g e C h a n n e l %
cristy3ed852e2009-09-05 21:47:34 +00002269% %
2270% %
2271% %
2272%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2273%
2274% PosterizeImage() reduces the image to a limited number of colors for a
2275% "poster" effect.
2276%
2277% The format of the PosterizeImage method is:
2278%
cristybb503372010-05-27 20:51:26 +00002279% MagickBooleanType PosterizeImage(Image *image,const size_t levels,
cristy3ed852e2009-09-05 21:47:34 +00002280% const MagickBooleanType dither)
cristyd1a2c0f2011-02-09 14:14:50 +00002281% MagickBooleanType PosterizeImageChannel(Image *image,
2282% const ChannelType channel,const size_t levels,
2283% const MagickBooleanType dither)
cristy3ed852e2009-09-05 21:47:34 +00002284%
2285% A description of each parameter follows:
2286%
2287% o image: Specifies a pointer to an Image structure.
2288%
2289% o levels: Number of color levels allowed in each channel. Very low values
2290% (2, 3, or 4) have the most visible effect.
2291%
cristy847620f2011-02-09 02:24:21 +00002292% o dither: Set this integer value to something other than zero to dither
2293% the mapped image.
cristy3ed852e2009-09-05 21:47:34 +00002294%
2295*/
cristyd1a2c0f2011-02-09 14:14:50 +00002296
cristy4d727152011-02-10 19:57:21 +00002297static inline ssize_t MagickRound(MagickRealType x)
2298{
2299 /*
cristyecc31b12011-02-13 00:32:29 +00002300 Round the fraction to nearest integer.
cristy4d727152011-02-10 19:57:21 +00002301 */
2302 if (x >= 0.0)
2303 return((ssize_t) (x+0.5));
2304 return((ssize_t) (x-0.5));
2305}
2306
cristyd1a2c0f2011-02-09 14:14:50 +00002307MagickExport MagickBooleanType PosterizeImage(Image *image,const size_t levels,
2308 const MagickBooleanType dither)
cristy3ed852e2009-09-05 21:47:34 +00002309{
cristyd1a2c0f2011-02-09 14:14:50 +00002310 MagickBooleanType
2311 status;
2312
2313 status=PosterizeImageChannel(image,DefaultChannels,levels,dither);
2314 return(status);
2315}
2316
2317MagickExport MagickBooleanType PosterizeImageChannel(Image *image,
2318 const ChannelType channel,const size_t levels,const MagickBooleanType dither)
2319{
2320#define PosterizeImageTag "Posterize/Image"
cristy4d727152011-02-10 19:57:21 +00002321#define PosterizePixel(pixel) (Quantum) (QuantumRange*(MagickRound( \
cristy3e9cad02011-02-20 01:42:00 +00002322 QuantumScale*pixel*(levels-1)))/MagickMax((ssize_t) levels-1,1))
cristyd1a2c0f2011-02-09 14:14:50 +00002323
cristyc4c8d132010-01-07 01:58:38 +00002324 CacheView
cristyd1a2c0f2011-02-09 14:14:50 +00002325 *image_view;
cristyc4c8d132010-01-07 01:58:38 +00002326
cristy3ed852e2009-09-05 21:47:34 +00002327 ExceptionInfo
2328 *exception;
2329
cristy3ed852e2009-09-05 21:47:34 +00002330 MagickBooleanType
2331 status;
2332
cristyd1a2c0f2011-02-09 14:14:50 +00002333 MagickOffsetType
2334 progress;
2335
cristy3ed852e2009-09-05 21:47:34 +00002336 QuantizeInfo
2337 *quantize_info;
2338
cristy847620f2011-02-09 02:24:21 +00002339 register ssize_t
2340 i;
2341
cristy847620f2011-02-09 02:24:21 +00002342 ssize_t
cristyd1a2c0f2011-02-09 14:14:50 +00002343 y;
cristy847620f2011-02-09 02:24:21 +00002344
cristy3ed852e2009-09-05 21:47:34 +00002345 assert(image != (Image *) NULL);
2346 assert(image->signature == MagickSignature);
2347 if (image->debug != MagickFalse)
2348 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
cristyd1a2c0f2011-02-09 14:14:50 +00002349 if (image->storage_class == PseudoClass)
2350#if defined(MAGICKCORE_OPENMP_SUPPORT)
cristy00cbdd62011-02-20 17:29:26 +00002351 #pragma omp parallel for schedule(dynamic,4) shared(progress,status)
cristyd1a2c0f2011-02-09 14:14:50 +00002352#endif
2353 for (i=0; i < (ssize_t) image->colors; i++)
cristy3ed852e2009-09-05 21:47:34 +00002354 {
cristyd1a2c0f2011-02-09 14:14:50 +00002355 /*
2356 Posterize colormap.
2357 */
cristy2b9582a2011-07-04 17:38:56 +00002358 if ((GetPixelRedTraits(image) & ActivePixelTrait) != 0)
cristyd1a2c0f2011-02-09 14:14:50 +00002359 image->colormap[i].red=PosterizePixel(image->colormap[i].red);
cristy2b9582a2011-07-04 17:38:56 +00002360 if ((GetPixelGreenTraits(image) & ActivePixelTrait) != 0)
cristyd1a2c0f2011-02-09 14:14:50 +00002361 image->colormap[i].green=PosterizePixel(image->colormap[i].green);
cristy2b9582a2011-07-04 17:38:56 +00002362 if ((GetPixelBlueTraits(image) & ActivePixelTrait) != 0)
cristyd1a2c0f2011-02-09 14:14:50 +00002363 image->colormap[i].blue=PosterizePixel(image->colormap[i].blue);
cristy2b9582a2011-07-04 17:38:56 +00002364 if ((GetPixelAlphaTraits(image) & ActivePixelTrait) != 0)
cristy4c08aed2011-07-01 19:47:50 +00002365 image->colormap[i].alpha=PosterizePixel(image->colormap[i].alpha);
cristy3ed852e2009-09-05 21:47:34 +00002366 }
cristyd1a2c0f2011-02-09 14:14:50 +00002367 /*
2368 Posterize image.
2369 */
2370 status=MagickTrue;
2371 progress=0;
cristy3ed852e2009-09-05 21:47:34 +00002372 exception=(&image->exception);
cristyd1a2c0f2011-02-09 14:14:50 +00002373 image_view=AcquireCacheView(image);
2374#if defined(MAGICKCORE_OPENMP_SUPPORT)
2375 #pragma omp parallel for schedule(dynamic,4) shared(progress,status)
2376#endif
2377 for (y=0; y < (ssize_t) image->rows; y++)
2378 {
cristy4c08aed2011-07-01 19:47:50 +00002379 register Quantum
cristyd1a2c0f2011-02-09 14:14:50 +00002380 *restrict q;
2381
2382 register ssize_t
2383 x;
2384
2385 if (status == MagickFalse)
2386 continue;
2387 q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
cristy4c08aed2011-07-01 19:47:50 +00002388 if (q == (const Quantum *) NULL)
cristy3ed852e2009-09-05 21:47:34 +00002389 {
cristyd1a2c0f2011-02-09 14:14:50 +00002390 status=MagickFalse;
2391 continue;
cristy3ed852e2009-09-05 21:47:34 +00002392 }
cristyd1a2c0f2011-02-09 14:14:50 +00002393 for (x=0; x < (ssize_t) image->columns; x++)
cristy3ed852e2009-09-05 21:47:34 +00002394 {
cristy2b9582a2011-07-04 17:38:56 +00002395 if ((GetPixelRedTraits(image) & ActivePixelTrait) != 0)
cristy4c08aed2011-07-01 19:47:50 +00002396 SetPixelRed(image,PosterizePixel(GetPixelRed(image,q)),q);
cristy2b9582a2011-07-04 17:38:56 +00002397 if ((GetPixelGreenTraits(image) & ActivePixelTrait) != 0)
cristy4c08aed2011-07-01 19:47:50 +00002398 SetPixelGreen(image,PosterizePixel(GetPixelGreen(image,q)),q);
cristy2b9582a2011-07-04 17:38:56 +00002399 if ((GetPixelBlueTraits(image) & ActivePixelTrait) != 0)
cristy4c08aed2011-07-01 19:47:50 +00002400 SetPixelBlue(image,PosterizePixel(GetPixelBlue(image,q)),q);
cristy2b9582a2011-07-04 17:38:56 +00002401 if (((GetPixelBlackTraits(image) & ActivePixelTrait) != 0) &&
cristy4c08aed2011-07-01 19:47:50 +00002402 (image->colorspace == CMYKColorspace))
2403 SetPixelBlack(image,PosterizePixel(GetPixelBlack(image,q)),q);
cristy2b9582a2011-07-04 17:38:56 +00002404 if (((GetPixelAlphaTraits(image) & ActivePixelTrait) != 0) &&
cristyd1a2c0f2011-02-09 14:14:50 +00002405 (image->matte == MagickTrue))
cristy4c08aed2011-07-01 19:47:50 +00002406 SetPixelAlpha(image,PosterizePixel(GetPixelAlpha(image,q)),q);
2407 q+=GetPixelChannels(image);
cristy3ed852e2009-09-05 21:47:34 +00002408 }
cristyd1a2c0f2011-02-09 14:14:50 +00002409 if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
2410 status=MagickFalse;
2411 if (image->progress_monitor != (MagickProgressMonitor) NULL)
2412 {
2413 MagickBooleanType
2414 proceed;
2415
2416#if defined(MAGICKCORE_OPENMP_SUPPORT)
cristy00cbdd62011-02-20 17:29:26 +00002417 #pragma omp critical (MagickCore_PosterizeImageChannel)
cristyd1a2c0f2011-02-09 14:14:50 +00002418#endif
2419 proceed=SetImageProgress(image,PosterizeImageTag,progress++,
2420 image->rows);
2421 if (proceed == MagickFalse)
2422 status=MagickFalse;
2423 }
2424 }
2425 image_view=DestroyCacheView(image_view);
cristy3ed852e2009-09-05 21:47:34 +00002426 quantize_info=AcquireQuantizeInfo((ImageInfo *) NULL);
cristyd1a2c0f2011-02-09 14:14:50 +00002427 quantize_info->number_colors=(size_t) MagickMin((ssize_t) levels*levels*
2428 levels,MaxColormapSize+1);
cristy3ed852e2009-09-05 21:47:34 +00002429 quantize_info->dither=dither;
cristy3e9cad02011-02-20 01:42:00 +00002430 quantize_info->tree_depth=MaxTreeDepth;
cristyd1a2c0f2011-02-09 14:14:50 +00002431 status=QuantizeImage(quantize_info,image);
cristy3ed852e2009-09-05 21:47:34 +00002432 quantize_info=DestroyQuantizeInfo(quantize_info);
cristy3ed852e2009-09-05 21:47:34 +00002433 return(status);
2434}
2435
2436/*
2437%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2438% %
2439% %
2440% %
2441+ P r u n e C h i l d %
2442% %
2443% %
2444% %
2445%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2446%
2447% PruneChild() deletes the given node and merges its statistics into its
2448% parent.
2449%
2450% The format of the PruneSubtree method is:
2451%
2452% PruneChild(const Image *image,CubeInfo *cube_info,
2453% const NodeInfo *node_info)
2454%
2455% A description of each parameter follows.
2456%
2457% o image: the image.
2458%
2459% o cube_info: A pointer to the Cube structure.
2460%
2461% o node_info: pointer to node in color cube tree that is to be pruned.
2462%
2463*/
2464static void PruneChild(const Image *image,CubeInfo *cube_info,
2465 const NodeInfo *node_info)
2466{
2467 NodeInfo
2468 *parent;
2469
cristybb503372010-05-27 20:51:26 +00002470 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00002471 i;
2472
cristybb503372010-05-27 20:51:26 +00002473 size_t
cristy3ed852e2009-09-05 21:47:34 +00002474 number_children;
2475
2476 /*
2477 Traverse any children.
2478 */
2479 number_children=cube_info->associate_alpha == MagickFalse ? 8UL : 16UL;
cristybb503372010-05-27 20:51:26 +00002480 for (i=0; i < (ssize_t) number_children; i++)
cristy3ed852e2009-09-05 21:47:34 +00002481 if (node_info->child[i] != (NodeInfo *) NULL)
2482 PruneChild(image,cube_info,node_info->child[i]);
2483 /*
2484 Merge color statistics into parent.
2485 */
2486 parent=node_info->parent;
2487 parent->number_unique+=node_info->number_unique;
2488 parent->total_color.red+=node_info->total_color.red;
2489 parent->total_color.green+=node_info->total_color.green;
2490 parent->total_color.blue+=node_info->total_color.blue;
cristy4c08aed2011-07-01 19:47:50 +00002491 parent->total_color.alpha+=node_info->total_color.alpha;
cristy3ed852e2009-09-05 21:47:34 +00002492 parent->child[node_info->id]=(NodeInfo *) NULL;
2493 cube_info->nodes--;
2494}
2495
2496/*
2497%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2498% %
2499% %
2500% %
2501+ P r u n e L e v e l %
2502% %
2503% %
2504% %
2505%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2506%
2507% PruneLevel() deletes all nodes at the bottom level of the color tree merging
2508% their color statistics into their parent node.
2509%
2510% The format of the PruneLevel method is:
2511%
2512% PruneLevel(const Image *image,CubeInfo *cube_info,
2513% const NodeInfo *node_info)
2514%
2515% A description of each parameter follows.
2516%
2517% o image: the image.
2518%
2519% o cube_info: A pointer to the Cube structure.
2520%
2521% o node_info: pointer to node in color cube tree that is to be pruned.
2522%
2523*/
2524static void PruneLevel(const Image *image,CubeInfo *cube_info,
2525 const NodeInfo *node_info)
2526{
cristybb503372010-05-27 20:51:26 +00002527 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00002528 i;
2529
cristybb503372010-05-27 20:51:26 +00002530 size_t
cristy3ed852e2009-09-05 21:47:34 +00002531 number_children;
2532
2533 /*
2534 Traverse any children.
2535 */
2536 number_children=cube_info->associate_alpha == MagickFalse ? 8UL : 16UL;
cristybb503372010-05-27 20:51:26 +00002537 for (i=0; i < (ssize_t) number_children; i++)
cristy3ed852e2009-09-05 21:47:34 +00002538 if (node_info->child[i] != (NodeInfo *) NULL)
2539 PruneLevel(image,cube_info,node_info->child[i]);
2540 if (node_info->level == cube_info->depth)
2541 PruneChild(image,cube_info,node_info);
2542}
2543
2544/*
2545%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2546% %
2547% %
2548% %
2549+ P r u n e T o C u b e D e p t h %
2550% %
2551% %
2552% %
2553%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2554%
2555% PruneToCubeDepth() deletes any nodes at a depth greater than
2556% cube_info->depth while merging their color statistics into their parent
2557% node.
2558%
2559% The format of the PruneToCubeDepth method is:
2560%
2561% PruneToCubeDepth(const Image *image,CubeInfo *cube_info,
2562% const NodeInfo *node_info)
2563%
2564% A description of each parameter follows.
2565%
2566% o cube_info: A pointer to the Cube structure.
2567%
2568% o node_info: pointer to node in color cube tree that is to be pruned.
2569%
2570*/
2571static void PruneToCubeDepth(const Image *image,CubeInfo *cube_info,
2572 const NodeInfo *node_info)
2573{
cristybb503372010-05-27 20:51:26 +00002574 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00002575 i;
2576
cristybb503372010-05-27 20:51:26 +00002577 size_t
cristy3ed852e2009-09-05 21:47:34 +00002578 number_children;
2579
2580 /*
2581 Traverse any children.
2582 */
2583 number_children=cube_info->associate_alpha == MagickFalse ? 8UL : 16UL;
cristybb503372010-05-27 20:51:26 +00002584 for (i=0; i < (ssize_t) number_children; i++)
cristy3ed852e2009-09-05 21:47:34 +00002585 if (node_info->child[i] != (NodeInfo *) NULL)
2586 PruneToCubeDepth(image,cube_info,node_info->child[i]);
2587 if (node_info->level > cube_info->depth)
2588 PruneChild(image,cube_info,node_info);
2589}
2590
2591/*
2592%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2593% %
2594% %
2595% %
2596% Q u a n t i z e I m a g e %
2597% %
2598% %
2599% %
2600%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2601%
2602% QuantizeImage() analyzes the colors within a reference image and chooses a
2603% fixed number of colors to represent the image. The goal of the algorithm
2604% is to minimize the color difference between the input and output image while
2605% minimizing the processing time.
2606%
2607% The format of the QuantizeImage method is:
2608%
2609% MagickBooleanType QuantizeImage(const QuantizeInfo *quantize_info,
2610% Image *image)
2611%
2612% A description of each parameter follows:
2613%
2614% o quantize_info: Specifies a pointer to an QuantizeInfo structure.
2615%
2616% o image: the image.
2617%
2618*/
2619MagickExport MagickBooleanType QuantizeImage(const QuantizeInfo *quantize_info,
2620 Image *image)
2621{
2622 CubeInfo
2623 *cube_info;
2624
2625 MagickBooleanType
2626 status;
2627
cristybb503372010-05-27 20:51:26 +00002628 size_t
cristy3ed852e2009-09-05 21:47:34 +00002629 depth,
2630 maximum_colors;
2631
2632 assert(quantize_info != (const QuantizeInfo *) NULL);
2633 assert(quantize_info->signature == MagickSignature);
2634 assert(image != (Image *) NULL);
2635 assert(image->signature == MagickSignature);
2636 if (image->debug != MagickFalse)
2637 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2638 maximum_colors=quantize_info->number_colors;
2639 if (maximum_colors == 0)
2640 maximum_colors=MaxColormapSize;
2641 if (maximum_colors > MaxColormapSize)
2642 maximum_colors=MaxColormapSize;
cristy4c08aed2011-07-01 19:47:50 +00002643 if ((IsImageGray(image,&image->exception) != MagickFalse) &&
cristy8e752752011-04-16 13:48:22 +00002644 (image->matte == MagickFalse))
2645 (void) SetGrayscaleImage(image);
cristy3ed852e2009-09-05 21:47:34 +00002646 if ((image->storage_class == PseudoClass) &&
2647 (image->colors <= maximum_colors))
2648 return(MagickTrue);
2649 depth=quantize_info->tree_depth;
2650 if (depth == 0)
2651 {
cristybb503372010-05-27 20:51:26 +00002652 size_t
cristy3ed852e2009-09-05 21:47:34 +00002653 colors;
2654
2655 /*
2656 Depth of color tree is: Log4(colormap size)+2.
2657 */
2658 colors=maximum_colors;
2659 for (depth=1; colors != 0; depth++)
2660 colors>>=2;
2661 if ((quantize_info->dither != MagickFalse) && (depth > 2))
2662 depth--;
2663 if ((image->matte != MagickFalse) && (depth > 5))
2664 depth--;
2665 }
2666 /*
2667 Initialize color cube.
2668 */
2669 cube_info=GetCubeInfo(quantize_info,depth,maximum_colors);
2670 if (cube_info == (CubeInfo *) NULL)
2671 ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
2672 image->filename);
2673 status=ClassifyImageColors(cube_info,image,&image->exception);
2674 if (status != MagickFalse)
2675 {
2676 /*
2677 Reduce the number of colors in the image.
2678 */
2679 ReduceImageColors(image,cube_info);
2680 status=AssignImageColors(image,cube_info);
2681 }
2682 DestroyCubeInfo(cube_info);
2683 return(status);
2684}
2685
2686/*
2687%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2688% %
2689% %
2690% %
2691% Q u a n t i z e I m a g e s %
2692% %
2693% %
2694% %
2695%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2696%
2697% QuantizeImages() analyzes the colors within a set of reference images and
2698% chooses a fixed number of colors to represent the set. The goal of the
2699% algorithm is to minimize the color difference between the input and output
2700% images while minimizing the processing time.
2701%
2702% The format of the QuantizeImages method is:
2703%
2704% MagickBooleanType QuantizeImages(const QuantizeInfo *quantize_info,
2705% Image *images)
2706%
2707% A description of each parameter follows:
2708%
2709% o quantize_info: Specifies a pointer to an QuantizeInfo structure.
2710%
2711% o images: Specifies a pointer to a list of Image structures.
2712%
2713*/
2714MagickExport MagickBooleanType QuantizeImages(const QuantizeInfo *quantize_info,
2715 Image *images)
2716{
2717 CubeInfo
2718 *cube_info;
2719
2720 Image
2721 *image;
2722
2723 MagickBooleanType
2724 proceed,
2725 status;
2726
2727 MagickProgressMonitor
2728 progress_monitor;
2729
cristybb503372010-05-27 20:51:26 +00002730 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00002731 i;
2732
cristybb503372010-05-27 20:51:26 +00002733 size_t
cristy3ed852e2009-09-05 21:47:34 +00002734 depth,
2735 maximum_colors,
2736 number_images;
2737
2738 assert(quantize_info != (const QuantizeInfo *) NULL);
2739 assert(quantize_info->signature == MagickSignature);
2740 assert(images != (Image *) NULL);
2741 assert(images->signature == MagickSignature);
2742 if (images->debug != MagickFalse)
2743 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",images->filename);
2744 if (GetNextImageInList(images) == (Image *) NULL)
2745 {
2746 /*
2747 Handle a single image with QuantizeImage.
2748 */
2749 status=QuantizeImage(quantize_info,images);
2750 return(status);
2751 }
2752 status=MagickFalse;
2753 maximum_colors=quantize_info->number_colors;
2754 if (maximum_colors == 0)
2755 maximum_colors=MaxColormapSize;
2756 if (maximum_colors > MaxColormapSize)
2757 maximum_colors=MaxColormapSize;
2758 depth=quantize_info->tree_depth;
2759 if (depth == 0)
2760 {
cristybb503372010-05-27 20:51:26 +00002761 size_t
cristy3ed852e2009-09-05 21:47:34 +00002762 colors;
2763
2764 /*
2765 Depth of color tree is: Log4(colormap size)+2.
2766 */
2767 colors=maximum_colors;
2768 for (depth=1; colors != 0; depth++)
2769 colors>>=2;
2770 if (quantize_info->dither != MagickFalse)
2771 depth--;
2772 }
2773 /*
2774 Initialize color cube.
2775 */
2776 cube_info=GetCubeInfo(quantize_info,depth,maximum_colors);
2777 if (cube_info == (CubeInfo *) NULL)
2778 {
2779 (void) ThrowMagickException(&images->exception,GetMagickModule(),
2780 ResourceLimitError,"MemoryAllocationFailed","`%s'",images->filename);
2781 return(MagickFalse);
2782 }
2783 number_images=GetImageListLength(images);
2784 image=images;
2785 for (i=0; image != (Image *) NULL; i++)
2786 {
2787 progress_monitor=SetImageProgressMonitor(image,(MagickProgressMonitor) NULL,
2788 image->client_data);
2789 status=ClassifyImageColors(cube_info,image,&image->exception);
2790 if (status == MagickFalse)
2791 break;
2792 (void) SetImageProgressMonitor(image,progress_monitor,image->client_data);
cristycee97112010-05-28 00:44:52 +00002793 proceed=SetImageProgress(image,AssignImageTag,(MagickOffsetType) i,
2794 number_images);
cristy3ed852e2009-09-05 21:47:34 +00002795 if (proceed == MagickFalse)
2796 break;
2797 image=GetNextImageInList(image);
2798 }
2799 if (status != MagickFalse)
2800 {
2801 /*
2802 Reduce the number of colors in an image sequence.
2803 */
2804 ReduceImageColors(images,cube_info);
2805 image=images;
2806 for (i=0; image != (Image *) NULL; i++)
2807 {
2808 progress_monitor=SetImageProgressMonitor(image,(MagickProgressMonitor)
2809 NULL,image->client_data);
2810 status=AssignImageColors(image,cube_info);
2811 if (status == MagickFalse)
2812 break;
2813 (void) SetImageProgressMonitor(image,progress_monitor,
2814 image->client_data);
cristycee97112010-05-28 00:44:52 +00002815 proceed=SetImageProgress(image,AssignImageTag,(MagickOffsetType) i,
2816 number_images);
cristy3ed852e2009-09-05 21:47:34 +00002817 if (proceed == MagickFalse)
2818 break;
2819 image=GetNextImageInList(image);
2820 }
2821 }
2822 DestroyCubeInfo(cube_info);
2823 return(status);
2824}
2825
2826/*
2827%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2828% %
2829% %
2830% %
2831+ R e d u c e %
2832% %
2833% %
2834% %
2835%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2836%
2837% Reduce() traverses the color cube tree and prunes any node whose
2838% quantization error falls below a particular threshold.
2839%
2840% The format of the Reduce method is:
2841%
2842% Reduce(const Image *image,CubeInfo *cube_info,const NodeInfo *node_info)
2843%
2844% A description of each parameter follows.
2845%
2846% o image: the image.
2847%
2848% o cube_info: A pointer to the Cube structure.
2849%
2850% o node_info: pointer to node in color cube tree that is to be pruned.
2851%
2852*/
2853static void Reduce(const Image *image,CubeInfo *cube_info,
2854 const NodeInfo *node_info)
2855{
cristybb503372010-05-27 20:51:26 +00002856 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00002857 i;
2858
cristybb503372010-05-27 20:51:26 +00002859 size_t
cristy3ed852e2009-09-05 21:47:34 +00002860 number_children;
2861
2862 /*
2863 Traverse any children.
2864 */
2865 number_children=cube_info->associate_alpha == MagickFalse ? 8UL : 16UL;
cristybb503372010-05-27 20:51:26 +00002866 for (i=0; i < (ssize_t) number_children; i++)
cristy3ed852e2009-09-05 21:47:34 +00002867 if (node_info->child[i] != (NodeInfo *) NULL)
2868 Reduce(image,cube_info,node_info->child[i]);
2869 if (node_info->quantize_error <= cube_info->pruning_threshold)
2870 PruneChild(image,cube_info,node_info);
2871 else
2872 {
2873 /*
2874 Find minimum pruning threshold.
2875 */
2876 if (node_info->number_unique > 0)
2877 cube_info->colors++;
2878 if (node_info->quantize_error < cube_info->next_threshold)
2879 cube_info->next_threshold=node_info->quantize_error;
2880 }
2881}
2882
2883/*
2884%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2885% %
2886% %
2887% %
2888+ R e d u c e I m a g e C o l o r s %
2889% %
2890% %
2891% %
2892%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2893%
2894% ReduceImageColors() repeatedly prunes the tree until the number of nodes
2895% with n2 > 0 is less than or equal to the maximum number of colors allowed
2896% in the output image. On any given iteration over the tree, it selects
2897% those nodes whose E value is minimal for pruning and merges their
2898% color statistics upward. It uses a pruning threshold, Ep, to govern
2899% node selection as follows:
2900%
2901% Ep = 0
2902% while number of nodes with (n2 > 0) > required maximum number of colors
2903% prune all nodes such that E <= Ep
2904% Set Ep to minimum E in remaining nodes
2905%
2906% This has the effect of minimizing any quantization error when merging
2907% two nodes together.
2908%
2909% When a node to be pruned has offspring, the pruning procedure invokes
2910% itself recursively in order to prune the tree from the leaves upward.
2911% n2, Sr, Sg, and Sb in a node being pruned are always added to the
2912% corresponding data in that node's parent. This retains the pruned
2913% node's color characteristics for later averaging.
2914%
2915% For each node, n2 pixels exist for which that node represents the
2916% smallest volume in RGB space containing those pixel's colors. When n2
2917% > 0 the node will uniquely define a color in the output image. At the
2918% beginning of reduction, n2 = 0 for all nodes except a the leaves of
2919% the tree which represent colors present in the input image.
2920%
2921% The other pixel count, n1, indicates the total number of colors
2922% within the cubic volume which the node represents. This includes n1 -
2923% n2 pixels whose colors should be defined by nodes at a lower level in
2924% the tree.
2925%
2926% The format of the ReduceImageColors method is:
2927%
2928% ReduceImageColors(const Image *image,CubeInfo *cube_info)
2929%
2930% A description of each parameter follows.
2931%
2932% o image: the image.
2933%
2934% o cube_info: A pointer to the Cube structure.
2935%
2936*/
2937static void ReduceImageColors(const Image *image,CubeInfo *cube_info)
2938{
2939#define ReduceImageTag "Reduce/Image"
2940
2941 MagickBooleanType
2942 proceed;
2943
2944 MagickOffsetType
2945 offset;
2946
cristybb503372010-05-27 20:51:26 +00002947 size_t
cristy3ed852e2009-09-05 21:47:34 +00002948 span;
2949
2950 cube_info->next_threshold=0.0;
2951 for (span=cube_info->colors; cube_info->colors > cube_info->maximum_colors; )
2952 {
2953 cube_info->pruning_threshold=cube_info->next_threshold;
2954 cube_info->next_threshold=cube_info->root->quantize_error-1;
2955 cube_info->colors=0;
2956 Reduce(image,cube_info,cube_info->root);
2957 offset=(MagickOffsetType) span-cube_info->colors;
2958 proceed=SetImageProgress(image,ReduceImageTag,offset,span-
2959 cube_info->maximum_colors+1);
2960 if (proceed == MagickFalse)
2961 break;
2962 }
2963}
2964
2965/*
2966%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2967% %
2968% %
2969% %
2970% R e m a p I m a g e %
2971% %
2972% %
2973% %
2974%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2975%
2976% RemapImage() replaces the colors of an image with the closest color from
2977% a reference image.
2978%
2979% The format of the RemapImage method is:
2980%
2981% MagickBooleanType RemapImage(const QuantizeInfo *quantize_info,
2982% Image *image,const Image *remap_image)
2983%
2984% A description of each parameter follows:
2985%
2986% o quantize_info: Specifies a pointer to an QuantizeInfo structure.
2987%
2988% o image: the image.
2989%
2990% o remap_image: the reference image.
2991%
2992*/
2993MagickExport MagickBooleanType RemapImage(const QuantizeInfo *quantize_info,
2994 Image *image,const Image *remap_image)
2995{
2996 CubeInfo
2997 *cube_info;
2998
2999 MagickBooleanType
3000 status;
3001
3002 /*
3003 Initialize color cube.
3004 */
3005 assert(image != (Image *) NULL);
3006 assert(image->signature == MagickSignature);
3007 if (image->debug != MagickFalse)
3008 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
3009 assert(remap_image != (Image *) NULL);
3010 assert(remap_image->signature == MagickSignature);
3011 cube_info=GetCubeInfo(quantize_info,MaxTreeDepth,
3012 quantize_info->number_colors);
3013 if (cube_info == (CubeInfo *) NULL)
3014 ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
3015 image->filename);
3016 status=ClassifyImageColors(cube_info,remap_image,&image->exception);
3017 if (status != MagickFalse)
3018 {
3019 /*
3020 Classify image colors from the reference image.
3021 */
3022 cube_info->quantize_info->number_colors=cube_info->colors;
3023 status=AssignImageColors(image,cube_info);
3024 }
3025 DestroyCubeInfo(cube_info);
3026 return(status);
3027}
3028
3029/*
3030%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3031% %
3032% %
3033% %
3034% R e m a p I m a g e s %
3035% %
3036% %
3037% %
3038%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3039%
3040% RemapImages() replaces the colors of a sequence of images with the
3041% closest color from a reference image.
3042%
3043% The format of the RemapImage method is:
3044%
3045% MagickBooleanType RemapImages(const QuantizeInfo *quantize_info,
3046% Image *images,Image *remap_image)
3047%
3048% A description of each parameter follows:
3049%
3050% o quantize_info: Specifies a pointer to an QuantizeInfo structure.
3051%
3052% o images: the image sequence.
3053%
3054% o remap_image: the reference image.
3055%
3056*/
3057MagickExport MagickBooleanType RemapImages(const QuantizeInfo *quantize_info,
3058 Image *images,const Image *remap_image)
3059{
3060 CubeInfo
3061 *cube_info;
3062
3063 Image
3064 *image;
3065
3066 MagickBooleanType
3067 status;
3068
3069 assert(images != (Image *) NULL);
3070 assert(images->signature == MagickSignature);
3071 if (images->debug != MagickFalse)
3072 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",images->filename);
3073 image=images;
3074 if (remap_image == (Image *) NULL)
3075 {
3076 /*
3077 Create a global colormap for an image sequence.
3078 */
3079 status=QuantizeImages(quantize_info,images);
3080 return(status);
3081 }
3082 /*
3083 Classify image colors from the reference image.
3084 */
3085 cube_info=GetCubeInfo(quantize_info,MaxTreeDepth,
3086 quantize_info->number_colors);
3087 if (cube_info == (CubeInfo *) NULL)
3088 ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
3089 image->filename);
3090 status=ClassifyImageColors(cube_info,remap_image,&image->exception);
3091 if (status != MagickFalse)
3092 {
3093 /*
3094 Classify image colors from the reference image.
3095 */
3096 cube_info->quantize_info->number_colors=cube_info->colors;
3097 image=images;
3098 for ( ; image != (Image *) NULL; image=GetNextImageInList(image))
3099 {
3100 status=AssignImageColors(image,cube_info);
3101 if (status == MagickFalse)
3102 break;
3103 }
3104 }
3105 DestroyCubeInfo(cube_info);
3106 return(status);
3107}
3108
3109/*
3110%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3111% %
3112% %
3113% %
3114% S e t G r a y s c a l e I m a g e %
3115% %
3116% %
3117% %
3118%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3119%
3120% SetGrayscaleImage() converts an image to a PseudoClass grayscale image.
3121%
3122% The format of the SetGrayscaleImage method is:
3123%
3124% MagickBooleanType SetGrayscaleImage(Image *image)
3125%
3126% A description of each parameter follows:
3127%
3128% o image: The image.
3129%
3130*/
3131
3132#if defined(__cplusplus) || defined(c_plusplus)
3133extern "C" {
3134#endif
3135
3136static int IntensityCompare(const void *x,const void *y)
3137{
cristy3ed852e2009-09-05 21:47:34 +00003138 PixelPacket
3139 *color_1,
3140 *color_2;
3141
cristyecc31b12011-02-13 00:32:29 +00003142 ssize_t
3143 intensity;
3144
cristy3ed852e2009-09-05 21:47:34 +00003145 color_1=(PixelPacket *) x;
3146 color_2=(PixelPacket *) y;
cristy4c08aed2011-07-01 19:47:50 +00003147 intensity=GetPixelPacketIntensity(color_1)-(ssize_t)
3148 GetPixelPacketIntensity(color_2);
cristycee97112010-05-28 00:44:52 +00003149 return((int) intensity);
cristy3ed852e2009-09-05 21:47:34 +00003150}
3151
3152#if defined(__cplusplus) || defined(c_plusplus)
3153}
3154#endif
3155
3156static MagickBooleanType SetGrayscaleImage(Image *image)
3157{
cristyc4c8d132010-01-07 01:58:38 +00003158 CacheView
3159 *image_view;
3160
cristy3ed852e2009-09-05 21:47:34 +00003161 ExceptionInfo
3162 *exception;
3163
cristyecc31b12011-02-13 00:32:29 +00003164 MagickBooleanType
3165 status;
cristy3ed852e2009-09-05 21:47:34 +00003166
3167 PixelPacket
3168 *colormap;
3169
cristybb503372010-05-27 20:51:26 +00003170 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00003171 i;
3172
cristyecc31b12011-02-13 00:32:29 +00003173 ssize_t
3174 *colormap_index,
3175 j,
3176 y;
cristy3ed852e2009-09-05 21:47:34 +00003177
cristy3ed852e2009-09-05 21:47:34 +00003178 assert(image != (Image *) NULL);
3179 assert(image->signature == MagickSignature);
3180 if (image->type != GrayscaleType)
3181 (void) TransformImageColorspace(image,GRAYColorspace);
cristybb503372010-05-27 20:51:26 +00003182 colormap_index=(ssize_t *) AcquireQuantumMemory(MaxMap+1,
cristy3ed852e2009-09-05 21:47:34 +00003183 sizeof(*colormap_index));
cristybb503372010-05-27 20:51:26 +00003184 if (colormap_index == (ssize_t *) NULL)
cristy3ed852e2009-09-05 21:47:34 +00003185 ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
3186 image->filename);
3187 if (image->storage_class != PseudoClass)
3188 {
3189 ExceptionInfo
3190 *exception;
3191
cristybb503372010-05-27 20:51:26 +00003192 for (i=0; i <= (ssize_t) MaxMap; i++)
cristy3ed852e2009-09-05 21:47:34 +00003193 colormap_index[i]=(-1);
3194 if (AcquireImageColormap(image,MaxMap+1) == MagickFalse)
3195 ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
3196 image->filename);
3197 image->colors=0;
3198 status=MagickTrue;
3199 exception=(&image->exception);
3200 image_view=AcquireCacheView(image);
cristyb5d5f722009-11-04 03:03:49 +00003201#if defined(MAGICKCORE_OPENMP_SUPPORT)
cristy00cbdd62011-02-20 17:29:26 +00003202 #pragma omp parallel for schedule(dynamic,4) shared(status)
cristy3ed852e2009-09-05 21:47:34 +00003203#endif
cristybb503372010-05-27 20:51:26 +00003204 for (y=0; y < (ssize_t) image->rows; y++)
cristy3ed852e2009-09-05 21:47:34 +00003205 {
cristy4c08aed2011-07-01 19:47:50 +00003206 register Quantum
cristyc47d1f82009-11-26 01:44:43 +00003207 *restrict q;
cristy3ed852e2009-09-05 21:47:34 +00003208
cristyecc31b12011-02-13 00:32:29 +00003209 register ssize_t
3210 x;
3211
cristy3ed852e2009-09-05 21:47:34 +00003212 if (status == MagickFalse)
3213 continue;
3214 q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,
3215 exception);
cristy4c08aed2011-07-01 19:47:50 +00003216 if (q == (const Quantum *) NULL)
cristy3ed852e2009-09-05 21:47:34 +00003217 {
3218 status=MagickFalse;
3219 continue;
3220 }
cristybb503372010-05-27 20:51:26 +00003221 for (x=0; x < (ssize_t) image->columns; x++)
cristy3ed852e2009-09-05 21:47:34 +00003222 {
cristybb503372010-05-27 20:51:26 +00003223 register size_t
cristy3ed852e2009-09-05 21:47:34 +00003224 intensity;
3225
cristy4c08aed2011-07-01 19:47:50 +00003226 intensity=ScaleQuantumToMap(GetPixelRed(image,q));
cristy3ed852e2009-09-05 21:47:34 +00003227 if (colormap_index[intensity] < 0)
3228 {
cristyb5d5f722009-11-04 03:03:49 +00003229#if defined(MAGICKCORE_OPENMP_SUPPORT)
cristy3ed852e2009-09-05 21:47:34 +00003230 #pragma omp critical (MagickCore_SetGrayscaleImage)
3231#endif
3232 if (colormap_index[intensity] < 0)
3233 {
cristybb503372010-05-27 20:51:26 +00003234 colormap_index[intensity]=(ssize_t) image->colors;
cristy4c08aed2011-07-01 19:47:50 +00003235 image->colormap[image->colors].red=GetPixelRed(image,q);
3236 image->colormap[image->colors].green=GetPixelGreen(image,q);
3237 image->colormap[image->colors].blue=GetPixelBlue(image,q);
cristy3ed852e2009-09-05 21:47:34 +00003238 image->colors++;
3239 }
3240 }
cristy4c08aed2011-07-01 19:47:50 +00003241 SetPixelIndex(image,(Quantum)
3242 colormap_index[intensity],q);
3243 q+=GetPixelChannels(image);
cristy3ed852e2009-09-05 21:47:34 +00003244 }
3245 if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
3246 status=MagickFalse;
3247 }
3248 image_view=DestroyCacheView(image_view);
3249 }
cristybb503372010-05-27 20:51:26 +00003250 for (i=0; i < (ssize_t) image->colors; i++)
cristy4c08aed2011-07-01 19:47:50 +00003251 image->colormap[i].alpha=(unsigned short) i;
cristy3ed852e2009-09-05 21:47:34 +00003252 qsort((void *) image->colormap,image->colors,sizeof(PixelPacket),
3253 IntensityCompare);
3254 colormap=(PixelPacket *) AcquireQuantumMemory(image->colors,
3255 sizeof(*colormap));
3256 if (colormap == (PixelPacket *) NULL)
3257 ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
3258 image->filename);
3259 j=0;
3260 colormap[j]=image->colormap[0];
cristybb503372010-05-27 20:51:26 +00003261 for (i=0; i < (ssize_t) image->colors; i++)
cristy3ed852e2009-09-05 21:47:34 +00003262 {
cristy4c08aed2011-07-01 19:47:50 +00003263 if (IsPixelPacketEquivalent(&colormap[j],&image->colormap[i]) == MagickFalse)
cristy3ed852e2009-09-05 21:47:34 +00003264 {
3265 j++;
3266 colormap[j]=image->colormap[i];
3267 }
cristy4c08aed2011-07-01 19:47:50 +00003268 colormap_index[(ssize_t) image->colormap[i].alpha]=j;
cristy3ed852e2009-09-05 21:47:34 +00003269 }
cristybb503372010-05-27 20:51:26 +00003270 image->colors=(size_t) (j+1);
cristy3ed852e2009-09-05 21:47:34 +00003271 image->colormap=(PixelPacket *) RelinquishMagickMemory(image->colormap);
3272 image->colormap=colormap;
3273 status=MagickTrue;
3274 exception=(&image->exception);
3275 image_view=AcquireCacheView(image);
cristyb5d5f722009-11-04 03:03:49 +00003276#if defined(MAGICKCORE_OPENMP_SUPPORT)
3277 #pragma omp parallel for schedule(dynamic,4) shared(status)
cristy3ed852e2009-09-05 21:47:34 +00003278#endif
cristybb503372010-05-27 20:51:26 +00003279 for (y=0; y < (ssize_t) image->rows; y++)
cristy3ed852e2009-09-05 21:47:34 +00003280 {
cristy4c08aed2011-07-01 19:47:50 +00003281 register Quantum
cristyc47d1f82009-11-26 01:44:43 +00003282 *restrict q;
cristy3ed852e2009-09-05 21:47:34 +00003283
cristyecc31b12011-02-13 00:32:29 +00003284 register ssize_t
3285 x;
3286
cristy3ed852e2009-09-05 21:47:34 +00003287 if (status == MagickFalse)
3288 continue;
3289 q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
cristy4c08aed2011-07-01 19:47:50 +00003290 if (q == (const Quantum *) NULL)
cristy3ed852e2009-09-05 21:47:34 +00003291 {
3292 status=MagickFalse;
3293 continue;
3294 }
cristybb503372010-05-27 20:51:26 +00003295 for (x=0; x < (ssize_t) image->columns; x++)
cristy4c08aed2011-07-01 19:47:50 +00003296 {
3297 SetPixelIndex(image,(Quantum) colormap_index[ScaleQuantumToMap(
3298 GetPixelIndex(image,q))],q);
3299 q+=GetPixelChannels(image);
3300 }
cristy3ed852e2009-09-05 21:47:34 +00003301 if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
3302 status=MagickFalse;
3303 }
3304 image_view=DestroyCacheView(image_view);
cristybb503372010-05-27 20:51:26 +00003305 colormap_index=(ssize_t *) RelinquishMagickMemory(colormap_index);
cristy3ed852e2009-09-05 21:47:34 +00003306 image->type=GrayscaleType;
cristy4c08aed2011-07-01 19:47:50 +00003307 if (IsImageMonochrome(image,&image->exception) != MagickFalse)
cristy3ed852e2009-09-05 21:47:34 +00003308 image->type=BilevelType;
3309 return(status);
3310}