cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame^] | 1 | /* |
| 2 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 3 | % % |
| 4 | % % |
| 5 | % % |
| 6 | % M M AAA TTTTT RRRR IIIII X X % |
| 7 | % MM MM A A T R R I X X % |
| 8 | % M M M AAAAA T RRRR I X % |
| 9 | % M M A A T R R I X X % |
| 10 | % M M A A T R R IIIII X X % |
| 11 | % % |
| 12 | % % |
| 13 | % MagickCore Matrix Methods % |
| 14 | % % |
| 15 | % Software Design % |
| 16 | % John Cristy % |
| 17 | % August 2007 % |
| 18 | % % |
| 19 | % % |
| 20 | % Copyright 1999-2009 ImageMagick Studio LLC, a non-profit organization % |
| 21 | % dedicated to making software imaging solutions freely available. % |
| 22 | % % |
| 23 | % You may not use this file except in compliance with the License. You may % |
| 24 | % obtain a copy of the License at % |
| 25 | % % |
| 26 | % http://www.imagemagick.org/script/license.php % |
| 27 | % % |
| 28 | % Unless required by applicable law or agreed to in writing, software % |
| 29 | % distributed under the License is distributed on an "AS IS" BASIS, % |
| 30 | % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % |
| 31 | % See the License for the specific language governing permissions and % |
| 32 | % limitations under the License. % |
| 33 | % % |
| 34 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 35 | % |
| 36 | % |
| 37 | */ |
| 38 | |
| 39 | /* |
| 40 | Include declarations. |
| 41 | */ |
| 42 | #include "magick/studio.h" |
| 43 | #include "magick/matrix.h" |
| 44 | #include "magick/memory_.h" |
| 45 | #include "magick/utility.h" |
| 46 | |
| 47 | /* |
| 48 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 49 | % % |
| 50 | % % |
| 51 | % % |
| 52 | % A c q u i r e M a g i c k M a t r i x % |
| 53 | % % |
| 54 | % % |
| 55 | % % |
| 56 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 57 | % |
| 58 | % AcquireMagickMatrix() allocates and returns a matrix in the form of an |
| 59 | % array of pointers to an array of doubles, with all values pre-set to zero. |
| 60 | % |
| 61 | % This used to generate the two dimentional matrix, and vectors required |
| 62 | % for the GaussJordanElimination() method below, solving some system of |
| 63 | % simultanious equations. |
| 64 | % |
| 65 | % The format of the AcquireMagickMatrix method is: |
| 66 | % |
| 67 | % double **AcquireMagickMatrix(const unsigned long nptrs, |
| 68 | % const unsigned long size) |
| 69 | % |
| 70 | % A description of each parameter follows: |
| 71 | % |
| 72 | % o nptrs: the number pointers for the array of pointers |
| 73 | % (first dimension) |
| 74 | % |
| 75 | % o size: the size of the array of doubles each pointer points to. |
| 76 | % (second dimension) |
| 77 | % |
| 78 | */ |
| 79 | MagickExport double **AcquireMagickMatrix(const unsigned long nptrs, |
| 80 | const unsigned long size) |
| 81 | { |
| 82 | double |
| 83 | **matrix; |
| 84 | |
| 85 | register unsigned long |
| 86 | i, |
| 87 | j; |
| 88 | |
| 89 | matrix=(double **) AcquireQuantumMemory(nptrs,sizeof(*matrix)); |
| 90 | if (matrix == (double **) NULL) |
| 91 | return((double **)NULL); |
| 92 | |
| 93 | for (i=0; i < nptrs; i++) |
| 94 | { |
| 95 | matrix[i]=(double *) AcquireQuantumMemory(size,sizeof(*matrix[i])); |
| 96 | if (matrix[i] == (double *) NULL) |
| 97 | { |
| 98 | for (j=0; j < i; j++) |
| 99 | matrix[j]=(double *) RelinquishMagickMemory(matrix[j]); |
| 100 | matrix=(double **) RelinquishMagickMemory(matrix); |
| 101 | return((double **) NULL); |
| 102 | } |
| 103 | /*(void) ResetMagickMemory(matrix[i],0,size*sizeof(*matrix[i])); */ |
| 104 | for (j=0; j < size; j++) |
| 105 | matrix[i][j] = 0.0; |
| 106 | } |
| 107 | return(matrix); |
| 108 | } |
| 109 | |
| 110 | /* |
| 111 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 112 | % % |
| 113 | % % |
| 114 | % % |
| 115 | % G a u s s J o r d a n E l i m i n a t i o n % |
| 116 | % % |
| 117 | % % |
| 118 | % % |
| 119 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 120 | % |
| 121 | % GaussJordanElimination() returns a matrix in reduced row echelon form, |
| 122 | % while simultaneously reducing and thus solving the augumented results |
| 123 | % matrix. |
| 124 | % |
| 125 | % See also http://en.wikipedia.org/wiki/Gauss-Jordan_elimination |
| 126 | % |
| 127 | % The format of the GaussJordanElimination method is: |
| 128 | % |
| 129 | % MagickBooleanType GaussJordanElimination(double **matrix, |
| 130 | % double **vectors, const unsigned long rank, const unsigned long nvecs) |
| 131 | % |
| 132 | % A description of each parameter follows: |
| 133 | % |
| 134 | % o matrix: the matrix to be reduced, as an 'array of row pointers'. |
| 135 | % |
| 136 | % o vectors: the additional matrix argumenting the matrix for row reduction. |
| 137 | % Producing an 'array of column vectors'. |
| 138 | % |
| 139 | % o rank: The size of the matrix (both rows and columns). |
| 140 | % Also represents the number terms that need to be solved. |
| 141 | % |
| 142 | % o nvecs: Number of vectors columns, argumenting the above matrix. |
| 143 | % Usally 1, but can be more for more complex equation solving. |
| 144 | % |
| 145 | % Note that the 'matrix' is given as a 'array of row pointers' of rank size. |
| 146 | % That is values can be assigned as matrix[row][column] where 'row' is |
| 147 | % typically the equation, and 'column' is the term of the equation. |
| 148 | % That is the matrix is in the form of a 'row first array'. |
| 149 | % |
| 150 | % However 'vectors' is a 'array of column pointers' which can have any number |
| 151 | % of columns, with each column array the same 'rank' size as 'matrix'. |
| 152 | % |
| 153 | % This allows for simpler handling of the results, especially is only one |
| 154 | % column 'vector' is all that is required to produce the desired solution. |
| 155 | % |
| 156 | % For example, the 'vectors' can consist of a pointer to a simple array of |
| 157 | % doubles. when only one set of simultanious equations is to be solved from |
| 158 | % the given set of coefficient weighted terms. |
| 159 | % |
| 160 | % double **matrix = AcquireMagickMatrix(8UL,8UL); |
| 161 | % double coefficents[8]; |
| 162 | % ... |
| 163 | % GaussJordanElimination(matrix, &coefficents, 8UL, 1UL); |
| 164 | % |
| 165 | % However by specifing more 'columns' (as an 'array of vector columns', |
| 166 | % you can use this function to solve a set of 'separable' equations. |
| 167 | % |
| 168 | % For example a distortion function where u = U(x,y) v = V(x,y) |
| 169 | % And the functions U() and V() have separate coefficents, but are being |
| 170 | % generated from a common x,y->u,v data set. |
| 171 | % |
| 172 | % Another example is generation of a color gradient from a set of colors |
| 173 | % at specific coordients, such as a list x,y -> r,g,b,a |
| 174 | % (Reference to be added - Anthony) |
| 175 | % |
| 176 | % You can also use the 'vectors' to generate an inverse of the given 'matrix' |
| 177 | % though as a 'column first array' rather than a 'row first array'. For |
| 178 | % details see http://en.wikipedia.org/wiki/Gauss-Jordan_elimination |
| 179 | % |
| 180 | */ |
| 181 | MagickExport MagickBooleanType GaussJordanElimination(double **matrix, |
| 182 | double **vectors, const unsigned long rank, const unsigned long nvecs) |
| 183 | { |
| 184 | #define GaussJordanSwap(x,y) \ |
| 185 | { \ |
| 186 | if ((x) != (y)) \ |
| 187 | { \ |
| 188 | (x)+=(y); \ |
| 189 | (y)=(x)-(y); \ |
| 190 | (x)=(x)-(y); \ |
| 191 | } \ |
| 192 | } |
| 193 | |
| 194 | double |
| 195 | max, |
| 196 | scale; |
| 197 | |
| 198 | long |
| 199 | column, |
| 200 | *columns, |
| 201 | *pivots, |
| 202 | row, |
| 203 | *rows; |
| 204 | |
| 205 | register long |
| 206 | i, |
| 207 | j, |
| 208 | k; |
| 209 | |
| 210 | columns=(long *) AcquireQuantumMemory(rank,sizeof(*columns)); |
| 211 | rows=(long *) AcquireQuantumMemory(rank,sizeof(*rows)); |
| 212 | pivots=(long *) AcquireQuantumMemory(rank,sizeof(*pivots)); |
| 213 | if ((rows == (long *) NULL) || (columns == (long *) NULL) || |
| 214 | (pivots == (long *) NULL)) |
| 215 | { |
| 216 | if (pivots != (long *) NULL) |
| 217 | pivots=(long *) RelinquishMagickMemory(pivots); |
| 218 | if (columns != (long *) NULL) |
| 219 | columns=(long *) RelinquishMagickMemory(columns); |
| 220 | if (rows != (long *) NULL) |
| 221 | rows=(long *) RelinquishMagickMemory(rows); |
| 222 | return(MagickFalse); |
| 223 | } |
| 224 | (void) ResetMagickMemory(columns,0,rank*sizeof(*columns)); |
| 225 | (void) ResetMagickMemory(rows,0,rank*sizeof(*rows)); |
| 226 | (void) ResetMagickMemory(pivots,0,rank*sizeof(*pivots)); |
| 227 | column=0; |
| 228 | row=0; |
| 229 | for (i=0; i < (long) rank; i++) |
| 230 | { |
| 231 | max=0.0; |
| 232 | for (j=0; j < (long) rank; j++) |
| 233 | if (pivots[j] != 1) |
| 234 | { |
| 235 | for (k=0; k < (long) rank; k++) |
| 236 | if (pivots[k] != 0) |
| 237 | { |
| 238 | if (pivots[k] > 1) |
| 239 | return(MagickFalse); |
| 240 | } |
| 241 | else |
| 242 | if (fabs(matrix[j][k]) >= max) |
| 243 | { |
| 244 | max=fabs(matrix[j][k]); |
| 245 | row=j; |
| 246 | column=k; |
| 247 | } |
| 248 | } |
| 249 | pivots[column]++; |
| 250 | if (row != column) |
| 251 | { |
| 252 | for (k=0; k < (long) rank; k++) |
| 253 | GaussJordanSwap(matrix[row][k],matrix[column][k]); |
| 254 | for (k=0; k < (long) nvecs; k++) |
| 255 | GaussJordanSwap(vectors[k][row],vectors[k][column]); |
| 256 | } |
| 257 | rows[i]=row; |
| 258 | columns[i]=column; |
| 259 | if (matrix[column][column] == 0.0) |
| 260 | return(MagickFalse); /* sigularity */ |
| 261 | scale=1.0/matrix[column][column]; |
| 262 | matrix[column][column]=1.0; |
| 263 | for (j=0; j < (long) rank; j++) |
| 264 | matrix[column][j]*=scale; |
| 265 | for (j=0; j < (long) nvecs; j++) |
| 266 | vectors[j][column]*=scale; |
| 267 | for (j=0; j < (long) rank; j++) |
| 268 | if (j != column) |
| 269 | { |
| 270 | scale=matrix[j][column]; |
| 271 | matrix[j][column]=0.0; |
| 272 | for (k=0; k < (long) rank; k++) |
| 273 | matrix[j][k]-=scale*matrix[column][k]; |
| 274 | for (k=0; k < (long) nvecs; k++) |
| 275 | vectors[k][j]-=scale*vectors[k][column]; |
| 276 | } |
| 277 | } |
| 278 | for (j=(long) rank-1; j >= 0; j--) |
| 279 | if (columns[j] != rows[j]) |
| 280 | for (i=0; i < (long) rank; i++) |
| 281 | GaussJordanSwap(matrix[i][rows[j]],matrix[i][columns[j]]); |
| 282 | pivots=(long *) RelinquishMagickMemory(pivots); |
| 283 | rows=(long *) RelinquishMagickMemory(rows); |
| 284 | columns=(long *) RelinquishMagickMemory(columns); |
| 285 | return(MagickTrue); |
| 286 | } |
| 287 | |
| 288 | /* |
| 289 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 290 | % % |
| 291 | % % |
| 292 | % % |
| 293 | % L e a s t S q u a r e s A d d T e r m s % |
| 294 | % % |
| 295 | % % |
| 296 | % % |
| 297 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 298 | % |
| 299 | % LeastSquaresAddTerms() adds one set of terms and associate results to the |
| 300 | % given matrix and vectors for solving using least-squares function fitting. |
| 301 | % |
| 302 | % The format of the AcquireMagickMatrix method is: |
| 303 | % |
| 304 | % void LeastSquaresAddTerms(double **matrix,double **vectors, |
| 305 | % const double *terms, const double *results, |
| 306 | % const unsigned long rank, const unsigned long nvecs); |
| 307 | % |
| 308 | % A description of each parameter follows: |
| 309 | % |
| 310 | % o matrix: the square matrix to add given terms/results to. |
| 311 | % |
| 312 | % o vectors: the result vectors to add terms/results to. |
| 313 | % |
| 314 | % o terms: the pre-calculated terms (without the unknown coefficent |
| 315 | % weights) that forms the equation being added. |
| 316 | % |
| 317 | % o results: the result(s) that should be generated from the given terms |
| 318 | % weighted by the yet-to-be-solved coefficents. |
| 319 | % |
| 320 | % o rank: the rank or size of the dimentions of the square matrix. |
| 321 | % Also the length of vectors, and number of terms being added. |
| 322 | % |
| 323 | % o nvecs: Number of result vectors, and number or results being added. |
| 324 | % Also represents the number of separable systems of equations |
| 325 | % that is being solved. |
| 326 | % |
| 327 | % Example of use... |
| 328 | % |
| 329 | % 2 dimentional Affine Equations (which are separable) |
| 330 | % c0*x + c2*y + c4*1 => u |
| 331 | % c1*x + c3*y + c5*1 => v |
| 332 | % |
| 333 | % double **matrix = AcquireMagickMatrix(3UL,3UL); |
| 334 | % double **vectors = AcquireMagickMatrix(2UL,3UL); |
| 335 | % double terms[3], results[2]; |
| 336 | % ... |
| 337 | % for each given x,y -> u,v |
| 338 | % terms[0] = x; |
| 339 | % terms[1] = y; |
| 340 | % terms[2] = 1; |
| 341 | % results[0] = u; |
| 342 | % results[1] = v; |
| 343 | % LeastSquaresAddTerms(matrix,vectors,terms,results,3UL,2UL); |
| 344 | % ... |
| 345 | % if ( GaussJordanElimination(matrix,vectors,3UL,2UL) ) { |
| 346 | % c0 = vectors[0][0]; |
| 347 | % c2 = vectors[0][1]; |
| 348 | % c4 = vectors[0][2]; |
| 349 | % c1 = vectors[1][0]; |
| 350 | % c3 = vectors[1][1]; |
| 351 | % c5 = vectors[1][2]; |
| 352 | % } |
| 353 | % else |
| 354 | % printf("Matrix unsolvable\n); |
| 355 | % RelinquishMagickMatrix(matrix,3UL); |
| 356 | % RelinquishMagickMatrix(vectors,2UL); |
| 357 | % |
| 358 | */ |
| 359 | MagickExport void LeastSquaresAddTerms(double **matrix,double **vectors, |
| 360 | const double *terms, const double *results, const unsigned long rank, |
| 361 | const unsigned long nvecs) |
| 362 | { |
| 363 | register unsigned long |
| 364 | i, |
| 365 | j; |
| 366 | |
| 367 | for(j=0; j<rank; j++) { |
| 368 | for(i=0; i<rank; i++) |
| 369 | matrix[i][j] += terms[i] * terms[j]; |
| 370 | for(i=0; i<nvecs; i++) |
| 371 | vectors[i][j] += results[i] * terms[j]; |
| 372 | } |
| 373 | |
| 374 | return; |
| 375 | } |
| 376 | |
| 377 | /* |
| 378 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 379 | % % |
| 380 | % % |
| 381 | % % |
| 382 | % R e l i n q u i s h M a g i c k M a t r i x % |
| 383 | % % |
| 384 | % % |
| 385 | % % |
| 386 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 387 | % |
| 388 | % RelinquishMagickMatrix() frees the previously acquired matrix (array of |
| 389 | % pointers to arrays of doubles). |
| 390 | % |
| 391 | % The format of the RelinquishMagickMatrix method is: |
| 392 | % |
| 393 | % double **RelinquishMagickMatrix(double **matrix, |
| 394 | % const unsigned long nptrs) |
| 395 | % |
| 396 | % A description of each parameter follows: |
| 397 | % |
| 398 | % o matrix: the matrix to relinquish |
| 399 | % |
| 400 | % o nptrs: the first dimention of the acquired matrix (number of pointers) |
| 401 | % |
| 402 | */ |
| 403 | MagickExport double **RelinquishMagickMatrix(double **matrix, |
| 404 | const unsigned long nptrs) |
| 405 | { |
| 406 | register unsigned long |
| 407 | i; |
| 408 | |
| 409 | if (matrix == (double **) NULL ) |
| 410 | return(matrix); |
| 411 | |
| 412 | for (i=0; i < nptrs; i++) |
| 413 | matrix[i]=(double *) RelinquishMagickMemory(matrix[i]); |
| 414 | matrix=(double **) RelinquishMagickMemory(matrix); |
| 415 | |
| 416 | return(matrix); |
| 417 | } |
| 418 | |