blob: ddb29a18cb90d19ab0ec280eae9bdc49900685aa [file] [log] [blame]
cristy3ed852e2009-09-05 21:47:34 +00001/*
2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3% %
4% %
5% %
6% M M AAA TTTTT RRRR IIIII X X %
7% MM MM A A T R R I X X %
8% M M M AAAAA T RRRR I X %
9% M M A A T R R I X X %
10% M M A A T R R IIIII X X %
11% %
12% %
13% MagickCore Matrix Methods %
14% %
15% Software Design %
16% John Cristy %
17% August 2007 %
18% %
19% %
20% Copyright 1999-2009 ImageMagick Studio LLC, a non-profit organization %
21% dedicated to making software imaging solutions freely available. %
22% %
23% You may not use this file except in compliance with the License. You may %
24% obtain a copy of the License at %
25% %
26% http://www.imagemagick.org/script/license.php %
27% %
28% Unless required by applicable law or agreed to in writing, software %
29% distributed under the License is distributed on an "AS IS" BASIS, %
30% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
31% See the License for the specific language governing permissions and %
32% limitations under the License. %
33% %
34%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35%
36%
37*/
38
39/*
40 Include declarations.
41*/
42#include "magick/studio.h"
43#include "magick/matrix.h"
44#include "magick/memory_.h"
45#include "magick/utility.h"
46
47/*
48%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
49% %
50% %
51% %
52% A c q u i r e M a g i c k M a t r i x %
53% %
54% %
55% %
56%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
57%
58% AcquireMagickMatrix() allocates and returns a matrix in the form of an
59% array of pointers to an array of doubles, with all values pre-set to zero.
60%
61% This used to generate the two dimentional matrix, and vectors required
62% for the GaussJordanElimination() method below, solving some system of
63% simultanious equations.
64%
65% The format of the AcquireMagickMatrix method is:
66%
67% double **AcquireMagickMatrix(const unsigned long nptrs,
68% const unsigned long size)
69%
70% A description of each parameter follows:
71%
72% o nptrs: the number pointers for the array of pointers
73% (first dimension)
74%
75% o size: the size of the array of doubles each pointer points to.
76% (second dimension)
77%
78*/
79MagickExport double **AcquireMagickMatrix(const unsigned long nptrs,
80 const unsigned long size)
81{
82 double
83 **matrix;
84
85 register unsigned long
86 i,
87 j;
88
89 matrix=(double **) AcquireQuantumMemory(nptrs,sizeof(*matrix));
90 if (matrix == (double **) NULL)
91 return((double **)NULL);
92
93 for (i=0; i < nptrs; i++)
94 {
95 matrix[i]=(double *) AcquireQuantumMemory(size,sizeof(*matrix[i]));
96 if (matrix[i] == (double *) NULL)
97 {
98 for (j=0; j < i; j++)
99 matrix[j]=(double *) RelinquishMagickMemory(matrix[j]);
100 matrix=(double **) RelinquishMagickMemory(matrix);
101 return((double **) NULL);
102 }
103 /*(void) ResetMagickMemory(matrix[i],0,size*sizeof(*matrix[i])); */
104 for (j=0; j < size; j++)
105 matrix[i][j] = 0.0;
106 }
107 return(matrix);
108}
109
110/*
111%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
112% %
113% %
114% %
115% G a u s s J o r d a n E l i m i n a t i o n %
116% %
117% %
118% %
119%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
120%
121% GaussJordanElimination() returns a matrix in reduced row echelon form,
122% while simultaneously reducing and thus solving the augumented results
123% matrix.
124%
125% See also http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
126%
127% The format of the GaussJordanElimination method is:
128%
129% MagickBooleanType GaussJordanElimination(double **matrix,
130% double **vectors, const unsigned long rank, const unsigned long nvecs)
131%
132% A description of each parameter follows:
133%
134% o matrix: the matrix to be reduced, as an 'array of row pointers'.
135%
136% o vectors: the additional matrix argumenting the matrix for row reduction.
137% Producing an 'array of column vectors'.
138%
139% o rank: The size of the matrix (both rows and columns).
140% Also represents the number terms that need to be solved.
141%
142% o nvecs: Number of vectors columns, argumenting the above matrix.
143% Usally 1, but can be more for more complex equation solving.
144%
145% Note that the 'matrix' is given as a 'array of row pointers' of rank size.
146% That is values can be assigned as matrix[row][column] where 'row' is
147% typically the equation, and 'column' is the term of the equation.
148% That is the matrix is in the form of a 'row first array'.
149%
150% However 'vectors' is a 'array of column pointers' which can have any number
151% of columns, with each column array the same 'rank' size as 'matrix'.
152%
153% This allows for simpler handling of the results, especially is only one
154% column 'vector' is all that is required to produce the desired solution.
155%
156% For example, the 'vectors' can consist of a pointer to a simple array of
157% doubles. when only one set of simultanious equations is to be solved from
158% the given set of coefficient weighted terms.
159%
160% double **matrix = AcquireMagickMatrix(8UL,8UL);
161% double coefficents[8];
162% ...
163% GaussJordanElimination(matrix, &coefficents, 8UL, 1UL);
164%
165% However by specifing more 'columns' (as an 'array of vector columns',
166% you can use this function to solve a set of 'separable' equations.
167%
168% For example a distortion function where u = U(x,y) v = V(x,y)
169% And the functions U() and V() have separate coefficents, but are being
170% generated from a common x,y->u,v data set.
171%
172% Another example is generation of a color gradient from a set of colors
173% at specific coordients, such as a list x,y -> r,g,b,a
174% (Reference to be added - Anthony)
175%
176% You can also use the 'vectors' to generate an inverse of the given 'matrix'
177% though as a 'column first array' rather than a 'row first array'. For
178% details see http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
179%
180*/
181MagickExport MagickBooleanType GaussJordanElimination(double **matrix,
182 double **vectors, const unsigned long rank, const unsigned long nvecs)
183{
184#define GaussJordanSwap(x,y) \
185{ \
186 if ((x) != (y)) \
187 { \
188 (x)+=(y); \
189 (y)=(x)-(y); \
190 (x)=(x)-(y); \
191 } \
192}
193
194 double
195 max,
196 scale;
197
198 long
199 column,
200 *columns,
201 *pivots,
202 row,
203 *rows;
204
205 register long
206 i,
207 j,
208 k;
209
210 columns=(long *) AcquireQuantumMemory(rank,sizeof(*columns));
211 rows=(long *) AcquireQuantumMemory(rank,sizeof(*rows));
212 pivots=(long *) AcquireQuantumMemory(rank,sizeof(*pivots));
213 if ((rows == (long *) NULL) || (columns == (long *) NULL) ||
214 (pivots == (long *) NULL))
215 {
216 if (pivots != (long *) NULL)
217 pivots=(long *) RelinquishMagickMemory(pivots);
218 if (columns != (long *) NULL)
219 columns=(long *) RelinquishMagickMemory(columns);
220 if (rows != (long *) NULL)
221 rows=(long *) RelinquishMagickMemory(rows);
222 return(MagickFalse);
223 }
224 (void) ResetMagickMemory(columns,0,rank*sizeof(*columns));
225 (void) ResetMagickMemory(rows,0,rank*sizeof(*rows));
226 (void) ResetMagickMemory(pivots,0,rank*sizeof(*pivots));
227 column=0;
228 row=0;
229 for (i=0; i < (long) rank; i++)
230 {
231 max=0.0;
232 for (j=0; j < (long) rank; j++)
233 if (pivots[j] != 1)
234 {
235 for (k=0; k < (long) rank; k++)
236 if (pivots[k] != 0)
237 {
238 if (pivots[k] > 1)
239 return(MagickFalse);
240 }
241 else
242 if (fabs(matrix[j][k]) >= max)
243 {
244 max=fabs(matrix[j][k]);
245 row=j;
246 column=k;
247 }
248 }
249 pivots[column]++;
250 if (row != column)
251 {
252 for (k=0; k < (long) rank; k++)
253 GaussJordanSwap(matrix[row][k],matrix[column][k]);
254 for (k=0; k < (long) nvecs; k++)
255 GaussJordanSwap(vectors[k][row],vectors[k][column]);
256 }
257 rows[i]=row;
258 columns[i]=column;
259 if (matrix[column][column] == 0.0)
260 return(MagickFalse); /* sigularity */
261 scale=1.0/matrix[column][column];
262 matrix[column][column]=1.0;
263 for (j=0; j < (long) rank; j++)
264 matrix[column][j]*=scale;
265 for (j=0; j < (long) nvecs; j++)
266 vectors[j][column]*=scale;
267 for (j=0; j < (long) rank; j++)
268 if (j != column)
269 {
270 scale=matrix[j][column];
271 matrix[j][column]=0.0;
272 for (k=0; k < (long) rank; k++)
273 matrix[j][k]-=scale*matrix[column][k];
274 for (k=0; k < (long) nvecs; k++)
275 vectors[k][j]-=scale*vectors[k][column];
276 }
277 }
278 for (j=(long) rank-1; j >= 0; j--)
279 if (columns[j] != rows[j])
280 for (i=0; i < (long) rank; i++)
281 GaussJordanSwap(matrix[i][rows[j]],matrix[i][columns[j]]);
282 pivots=(long *) RelinquishMagickMemory(pivots);
283 rows=(long *) RelinquishMagickMemory(rows);
284 columns=(long *) RelinquishMagickMemory(columns);
285 return(MagickTrue);
286}
287
288/*
289%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
290% %
291% %
292% %
293% L e a s t S q u a r e s A d d T e r m s %
294% %
295% %
296% %
297%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
298%
299% LeastSquaresAddTerms() adds one set of terms and associate results to the
300% given matrix and vectors for solving using least-squares function fitting.
301%
302% The format of the AcquireMagickMatrix method is:
303%
304% void LeastSquaresAddTerms(double **matrix,double **vectors,
305% const double *terms, const double *results,
306% const unsigned long rank, const unsigned long nvecs);
307%
308% A description of each parameter follows:
309%
310% o matrix: the square matrix to add given terms/results to.
311%
312% o vectors: the result vectors to add terms/results to.
313%
314% o terms: the pre-calculated terms (without the unknown coefficent
315% weights) that forms the equation being added.
316%
317% o results: the result(s) that should be generated from the given terms
318% weighted by the yet-to-be-solved coefficents.
319%
320% o rank: the rank or size of the dimentions of the square matrix.
321% Also the length of vectors, and number of terms being added.
322%
323% o nvecs: Number of result vectors, and number or results being added.
324% Also represents the number of separable systems of equations
325% that is being solved.
326%
327% Example of use...
328%
329% 2 dimentional Affine Equations (which are separable)
330% c0*x + c2*y + c4*1 => u
331% c1*x + c3*y + c5*1 => v
332%
333% double **matrix = AcquireMagickMatrix(3UL,3UL);
334% double **vectors = AcquireMagickMatrix(2UL,3UL);
335% double terms[3], results[2];
336% ...
337% for each given x,y -> u,v
338% terms[0] = x;
339% terms[1] = y;
340% terms[2] = 1;
341% results[0] = u;
342% results[1] = v;
343% LeastSquaresAddTerms(matrix,vectors,terms,results,3UL,2UL);
344% ...
345% if ( GaussJordanElimination(matrix,vectors,3UL,2UL) ) {
346% c0 = vectors[0][0];
347% c2 = vectors[0][1];
348% c4 = vectors[0][2];
349% c1 = vectors[1][0];
350% c3 = vectors[1][1];
351% c5 = vectors[1][2];
352% }
353% else
354% printf("Matrix unsolvable\n);
355% RelinquishMagickMatrix(matrix,3UL);
356% RelinquishMagickMatrix(vectors,2UL);
357%
358*/
359MagickExport void LeastSquaresAddTerms(double **matrix,double **vectors,
360 const double *terms, const double *results, const unsigned long rank,
361 const unsigned long nvecs)
362{
363 register unsigned long
364 i,
365 j;
366
367 for(j=0; j<rank; j++) {
368 for(i=0; i<rank; i++)
369 matrix[i][j] += terms[i] * terms[j];
370 for(i=0; i<nvecs; i++)
371 vectors[i][j] += results[i] * terms[j];
372 }
373
374 return;
375}
376
377/*
378%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
379% %
380% %
381% %
382% R e l i n q u i s h M a g i c k M a t r i x %
383% %
384% %
385% %
386%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
387%
388% RelinquishMagickMatrix() frees the previously acquired matrix (array of
389% pointers to arrays of doubles).
390%
391% The format of the RelinquishMagickMatrix method is:
392%
393% double **RelinquishMagickMatrix(double **matrix,
394% const unsigned long nptrs)
395%
396% A description of each parameter follows:
397%
398% o matrix: the matrix to relinquish
399%
400% o nptrs: the first dimention of the acquired matrix (number of pointers)
401%
402*/
403MagickExport double **RelinquishMagickMatrix(double **matrix,
404 const unsigned long nptrs)
405{
406 register unsigned long
407 i;
408
409 if (matrix == (double **) NULL )
410 return(matrix);
411
412 for (i=0; i < nptrs; i++)
413 matrix[i]=(double *) RelinquishMagickMemory(matrix[i]);
414 matrix=(double **) RelinquishMagickMemory(matrix);
415
416 return(matrix);
417}
418