blob: 54a4e681610cca617bae29b8f6aab75aa0a7b5ce [file] [log] [blame]
cristy701db312009-11-20 03:14:08 +00001/*
2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3% %
4% %
5% %
6% M M OOO RRRR PPPP H H OOO L OOO GGGG Y Y %
7% MM MM O O R R P P H H O O L O O G Y Y %
8% M M M O O RRRR PPPP HHHHH O O L O O G GGG Y %
9% M M O O R R P H H O O L O O G G Y %
10% M M OOO R R P H H OOO LLLLL OOO GGG Y %
11% %
12% %
13% MagickCore Morphology Methods %
14% %
15% Software Design %
16% Anthony Thyssen %
17% September 2009 %
18% %
19% %
cristy16af1cb2009-12-11 21:38:29 +000020% Copyright 1999-2010 ImageMagick Studio LLC, a non-profit organization %
cristy701db312009-11-20 03:14:08 +000021% dedicated to making software imaging solutions freely available. %
22% %
23% You may not use this file except in compliance with the License. You may %
24% obtain a copy of the License at %
25% %
26% http://www.imagemagick.org/script/license.php %
27% %
28% Unless required by applicable law or agreed to in writing, software %
29% distributed under the License is distributed on an "AS IS" BASIS, %
30% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
31% See the License for the specific language governing permissions and %
32% limitations under the License. %
33% %
34%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35%
anthony602ab9b2010-01-05 08:06:50 +000036% Morpology is the the application of various kernals, of any size and even
37% shape, to a image in various ways (typically binary, but not always).
cristy701db312009-11-20 03:14:08 +000038%
anthony602ab9b2010-01-05 08:06:50 +000039% Convolution (weighted sum or average) is just one specific type of
40% morphology. Just one that is very common for image bluring and sharpening
41% effects. Not only 2D Gaussian blurring, but also 2-pass 1D Blurring.
42%
43% This module provides not only a general morphology function, and the ability
44% to apply more advanced or iterative morphologies, but also functions for the
45% generation of many different types of kernel arrays from user supplied
46% arguments. Prehaps even the generation of a kernel from a small image.
cristy701db312009-11-20 03:14:08 +000047*/
48
49/*
50 Include declarations.
51*/
52#include "magick/studio.h"
anthony602ab9b2010-01-05 08:06:50 +000053#include "magick/artifact.h"
cristy701db312009-11-20 03:14:08 +000054#include "magick/cache-view.h"
55#include "magick/color-private.h"
56#include "magick/enhance.h"
57#include "magick/exception.h"
58#include "magick/exception-private.h"
anthony602ab9b2010-01-05 08:06:50 +000059#include "magick/gem.h"
cristy701db312009-11-20 03:14:08 +000060#include "magick/hashmap.h"
61#include "magick/image.h"
62#include "magick/list.h"
63#include "magick/memory_.h"
64#include "magick/monitor-private.h"
65#include "magick/morphology.h"
anthony602ab9b2010-01-05 08:06:50 +000066#include "magick/option.h"
cristy701db312009-11-20 03:14:08 +000067#include "magick/pixel-private.h"
68#include "magick/prepress.h"
69#include "magick/quantize.h"
70#include "magick/registry.h"
71#include "magick/semaphore.h"
72#include "magick/splay-tree.h"
73#include "magick/statistic.h"
74#include "magick/string_.h"
anthony602ab9b2010-01-05 08:06:50 +000075#include "magick/string-private.h"
76#include "magick/token.h"
77
78/*
79 * The following are assignments and tests for special floating point numbers
80 * of value NaN (not a number), that may be used within a Kernel Definition.
81 * NaN's are defined as part of the IEEE standard for floating point number
82 * representation.
83 *
84 * These are used a Kernel value of NaN means that that kernal position
85 * is not part of the normal convolution or morphology process, and thus
86 * allowing the use of 'shaped' kernels.
87 *
88 * Special Properities
89 * Two NaN's are never equal, even if they are from the same variable
90 * That is the IsNaN() macro is only true if the value is NaN.
91 */
92#define IsNan(a) ((a)!=(a))
93
94
95/*
96%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
97% %
98% %
99% %
100% A c q u i r e K e r n e l F r o m S t r i n g %
101% %
102% %
103% %
104%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
105%
106% AcquireKernelFromString() takes the given string (generally supplied by the
107% user) and converts it into a Morphology/Convolution Kernel. This allows
108% users to specify a kernel from a number of pre-defined kernels, or to fully
109% specify their own kernel for a specific Convolution or Morphology
110% Operation.
111%
112% The kernel so generated can be any rectangular array of floating point
113% values (doubles) with the 'control point' or 'pixel being affected'
114% anywhere within that array of values.
115%
116% ASIDE: Previously IM was restricted to a square of odd size using the exact
117% center.
118%
119% The floating point values in the kernel can also include a special value
120% known as 'NaN' or 'not a number' to indicate that this value is not part
121% of the kernel array. This allows you to specify a non-rectangular shaped
122% kernel, for use in Morphological operators, without the need for some type
123% of kernal mask.
124%
125% The returned kernel should be freed using the DestroyKernel() when you are
126% finished with it.
127%
128% Input kernel defintion strings can consist of any of three types.
129%
130% "num, num, num, num, ..."
131% list of floating point numbers defining an 'old style' odd sized
132% square kernel. At least 9 values should be provided for a 3x3
133% square kernel, 25 for a 5x5 square kernel, 49 for 7x7, etc.
134% Values can be space or comma separated.
135%
136% "WxH[+X+Y]:num, num, num ..."
137% a kernal of size W by H, with W*H floating point numbers following.
138% the 'center' can be optionally be defined at +X+Y (such that +0+0
139% is top left corner). If not defined a pixel closest to the center
140% of the array is automatically defined.
141%
142% "name:args"
143% Select from one of the built in kernels. See AcquireKernelBuiltIn()
144%
145% Note that 'name' kernels will start with an alphabetic character
146% while the new kernel specification has a ':' character in its
147% specification.
148%
149% TODO: bias and auto-scale handling of the kernel
150% The given kernel is assumed to have been pre-scaled appropriatally, usally
151% by the kernel generator.
152%
153% The format of the AcquireKernal method is:
154%
155% MagickKernel *AcquireKernelFromString(const char *kernel_string)
156%
157% A description of each parameter follows:
158%
159% o kernel_string: the Morphology/Convolution kernel wanted.
160%
161*/
162
163MagickExport MagickKernel *AcquireKernelFromString(const char *kernel_string)
164{
165 MagickKernel
166 *kernel;
167
168 char
169 token[MaxTextExtent];
170
171 register unsigned long
172 i;
173
174 const char
175 *p;
176
177 MagickStatusType
178 flags;
179
180 GeometryInfo
181 args;
182
183 assert(kernel_string != (const char *) NULL);
184 SetGeometryInfo(&args);
185
186 /* does it start with an alpha - Return a builtin kernel */
187 GetMagickToken(kernel_string,&p,token);
188 if ( isalpha((int)token[0]) )
189 {
190 long
191 type;
192
193 type=ParseMagickOption(MagickKernelOptions,MagickFalse,token);
194 if ( type < 0 || type == UserDefinedKernel )
195 return((MagickKernel *)NULL);
196
197 while (((isspace((int) ((unsigned char) *p)) != 0) ||
198 (*p == ',') || (*p == ':' )) && (*p != '\0'))
199 p++;
200 flags = ParseGeometry(p, &args);
201
202 /* special handling of missing values in input string */
203 if ( type == RectangleKernel ) {
204 if ( (flags & WidthValue) == 0 ) /* if no width then */
205 args.rho = args.sigma; /* then width = height */
206 if ( args.rho < 1.0 ) /* if width too small */
207 args.rho = 3; /* then width = 3 */
208 if ( args.sigma < 1.0 ) /* if height too small */
209 args.sigma = args.rho; /* then height = width */
210 if ( (flags & XValue) == 0 ) /* center offset if not defined */
211 args.xi = (double)(((long)args.rho-1)/2);
212 if ( (flags & YValue) == 0 )
213 args.psi = (double)(((long)args.sigma-1)/2);
214 }
215
216 return(AcquireKernelBuiltIn((MagickKernelType)type, &args));
217 }
218
219 kernel=(MagickKernel *) AcquireMagickMemory(sizeof(*kernel));
220 if (kernel == (MagickKernel *)NULL)
221 return(kernel);
222 (void) ResetMagickMemory(kernel,0,sizeof(*kernel));
223 kernel->type = UserDefinedKernel;
224
225 /* Has a ':' in argument - New user kernel specification */
226 p = strchr(kernel_string, ':');
227 if ( p != (char *) NULL)
228 {
229#if 1
230 /* ParseGeometry() needs the geometry separated! -- Arrgghh */
231 memcpy(token, kernel_string, p-kernel_string);
232 token[p-kernel_string] = '\0';
233 flags = ParseGeometry(token, &args);
234#else
235 flags = ParseGeometry(kernel_string, &args);
236#endif
237
238 /* Size Handling and Checks */
239 if ( (flags & WidthValue) == 0 ) /* if no width then */
240 args.rho = args.sigma; /* then width = height */
241 if ( args.rho < 1.0 ) /* if width too small */
242 args.rho = 1.0; /* then width = 1 */
243 if ( args.sigma < 1.0 ) /* if height too small */
244 args.sigma = args.rho; /* then height = width */
245 kernel->width = (unsigned long)args.rho;
246 kernel->height = (unsigned long)args.sigma;
247
248 /* Offset Handling and Checks */
249 if ( args.xi < 0.0 || args.psi < 0.0 )
250 return(DestroyKernel(kernel));
251 kernel->offset_x = ((flags & XValue)!=0) ? (unsigned long)args.xi
252 : (kernel->width-1)/2;
253 kernel->offset_y = ((flags & YValue)!=0) ? (unsigned long)args.psi
254 : (kernel->height-1)/2;
255 if ( kernel->offset_x >= kernel->width ||
256 kernel->offset_y >= kernel->height )
257 return(DestroyKernel(kernel));
258
259 p++; /* advance beyond the ':' */
260 }
261 else
262 { /* ELSE - Old old kernel specification, forming odd-square kernel */
263 /* count up number of values given */
264 p=(const char *) kernel_string;
265 for (i=0; *p != '\0'; i++)
266 {
267 GetMagickToken(p,&p,token);
268 if (*token == ',')
269 GetMagickToken(p,&p,token);
270 }
271 /* set the size of the kernel - old sized square */
272 kernel->width = kernel->height= (unsigned long) sqrt((double) i+1.0);
273 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
274 p=(const char *) kernel_string;
275 }
276
277 /* Read in the kernel values from rest of input string argument */
278 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
279 kernel->height*sizeof(double));
280 if (kernel->values == (double *) NULL)
281 return(DestroyKernel(kernel));
282
283 kernel->range_neg = kernel->range_pos = 0.0;
284 for (i=0; (i < kernel->width*kernel->height) && (*p != '\0'); i++)
285 {
286 GetMagickToken(p,&p,token);
287 if (*token == ',')
288 GetMagickToken(p,&p,token);
289 (( kernel->values[i] = StringToDouble(token) ) < 0)
290 ? ( kernel->range_neg += kernel->values[i] )
291 : ( kernel->range_pos += kernel->values[i] );
292 }
293 for ( ; i < kernel->width*kernel->height; i++)
294 kernel->values[i]=0.0;
295
296 return(kernel);
297}
298
299/*
300%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
301% %
302% %
303% %
304% A c q u i r e K e r n e l B u i l t I n %
305% %
306% %
307% %
308%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
309%
310% AcquireKernelBuiltIn() returned one of the 'named' built-in types of
311% kernels used for special purposes such as gaussian blurring, skeleton
312% pruning, and edge distance determination.
313%
314% They take a KernelType, and a set of geometry style arguments, which were
315% typically decoded from a user supplied string, or from a more complex
316% Morphology Method that was requested.
317%
318% The format of the AcquireKernalBuiltIn method is:
319%
320% MagickKernel *AcquireKernelBuiltIn(const MagickKernelType type,
321% const GeometryInfo args)
322%
323% A description of each parameter follows:
324%
325% o type: the pre-defined type of kernel wanted
326%
327% o args: arguments defining or modifying the kernel
328%
329% Convolution Kernels
330%
331% Gaussian "[{radius}]x{sigma}"
332% Generate a two-dimentional gaussian kernel, as used by -gaussian
333% A sigma is required, (with the 'x'), due to historical reasons.
334%
335% NOTE: that the 'radius' is optional, but if provided can limit (clip)
336% the final size of the resulting kernel to a square 2*radius+1 in size.
337% The radius should be at least 2 times that of the sigma value, or
338% sever clipping and aliasing may result. If not given or set to 0 the
339% radius will be determined so as to produce the best minimal error
340% result, which is usally much larger than is normally needed.
341%
342% Blur "[{radius}]x{sigma}[+angle]"
343% As per Gaussian, but generates a 1 dimensional or linear gaussian
344% blur, at the angle given (current restricted to orthogonal angles).
345% If a 'radius' is given the kernel is clipped to a width of 2*radius+1.
346%
347% NOTE that two such blurs perpendicular to each other is equivelent to
348% -blur and the previous gaussian, but is often 10 or more times faster.
349%
350% Comet "[{width}]x{sigma}[+angle]"
351% Blur in one direction only, mush like how a bright object leaves
352% a comet like trail. The Kernel is actually half a gaussian curve,
353% Adding two such blurs in oppiste directions produces a Linear Blur.
354%
355% NOTE: that the first argument is the width of the kernel and not the
356% radius of the kernel.
357%
358% # Still to be implemented...
359% #
360% # Laplacian "{radius}x{sigma}"
361% # Laplacian (a mexican hat like) Function
362% #
363% # LOG "{radius},{sigma1},{sigma2}
364% # Laplacian of Gaussian
365% #
366% # DOG "{radius},{sigma1},{sigma2}
367% # Difference of Gaussians
368%
369% Boolean Kernels
370%
371% Rectangle "{geometry}"
372% Simply generate a rectangle of 1's with the size given. You can also
373% specify the location of the 'control point', otherwise the closest
374% pixel to the center of the rectangle is selected.
375%
376% Properly centered and odd sized rectangles work the best.
377%
378% Diamond "[{radius}]"
379% Generate a diamond shaped kernal with given radius to the points.
380% Kernel size will again be radius*2+1 square and defaults to radius 1,
381% generating a 3x3 kernel that is slightly larger than a square.
382%
383% Square "[{radius}]"
384% Generate a square shaped kernel of size radius*2+1, and defaulting
385% to a 3x3 (radius 1).
386%
387% Note that using a larger radius for the "Square" or the "Diamond"
388% is also equivelent to iterating the basic morphological method
389% that many times. However However iterating with the smaller radius 1
390% default is actually faster than using a larger kernel radius.
391%
392% Disk "[{radius}]
393% Generate a binary disk of the radius given, radius may be a float.
394% Kernel size will be ceil(radius)*2+1 square.
395% NOTE: Here are some disk shapes of specific interest
396% "disk:1" => "diamond" or "cross:1"
397% "disk:1.5" => "square"
398% "disk:2" => "diamond:2"
399% "disk:2.5" => default - radius 2 disk shape
400% "disk:2.9" => "square:2"
401% "disk:3.5" => octagonal/disk shape of radius 3
402% "disk:4.2" => roughly octagonal shape of radius 4
403% "disk:4.3" => disk shape of radius 4
404% After this all the kernel shape becomes more and more circular.
405%
406% Because a "disk" is more circular when using a larger radius, using a
407% larger radius is preferred over iterating the morphological operation.
408%
409% Plus "[{radius}]"
410% Generate a kernel in the shape of a 'plus' sign. The length of each
411% arm is also the radius, which defaults to 2.
412%
413% This kernel is not a good general morphological kernel, but is used
414% more for highlighting and marking any single pixels in an image using,
415% a "Dilate" or "Erode" method as appropriate.
416#
417% NOTE: "plus:1" is equivelent to a "Diamond" kernel.
418%
419% Note that unlike other kernels iterating a plus does not produce the
420% same result as using a larger radius for the cross.
421%
422% Distance Measuring Kernels
423%
424% Chebyshev "[{radius}][x{scale}]" largest x or y distance (default r=1)
425% Manhatten "[{radius}][x{scale}]" square grid distance (default r=1)
426% Knight "[{radius}][x{scale}]" octagonal distance (default r=1)
427% Euclidean "[{radius}][x{scale}]" direct distance (default r=4)
428%
429% Different types of distance measuring methods, which are used with the
430% a 'Distance' morphology method for generating a gradient based on
431% distance from an edge of a binary shape, though there is a technique
432% for handling a anti-aliased shape.
433%
434% The first 3 are simplifications that alow the use of a small kernel
435% which is iterated. The lest is more accurate but requires a larger
436% kernel to produce a accurate distance measure. The larger the better.
437%
438% The actual distance is scaled the size give, which while unnecessary
439% for a "Chebyshev" or "Manhatten" distance, is needed to allow for
440% correct handling of fractional distances in "Knight" and "Euclidean"
441% distance formulas. If no scale is provided it is set to a value of
442% 100, allowing for a maximum distance measurement of 655 pixels from
443% any edge, using a Q16 version of IM.
444%
445% See the 'Distance' Morphological Method, for information of how it
446% is applied.
447%
448*/
449
450static void KernelRotate(MagickKernel *kernel, double angle)
451{
452 /* Rotate a kernel appropriately for the angle given
453 **
454 ** Currently assumes the kernel (rightly) horizontally is symetrical
455 **
456 ** TODO: expand beyond simple 90 degree rotates, flips and flops
457 */
458
459 /* Modulus the angle */
460 angle = fmod(angle, 360.0);
461 if ( angle < 0 )
462 angle += 360.0;
463
464 if ( 315.0 < angle || angle <= 45.0 )
465 return; /* no change! - At least at this time */
466
467 switch (kernel->type) {
468 /* These kernels are cylindrical kernel, rotating is useless */
469 case GaussianKernel:
470 case LaplacianKernel:
471 case LOGKernel:
472 case DOGKernel:
473 case DiskKernel:
474 case ChebyshevKernel:
475 case ManhattenKernel:
476 case KnightKernel:
477 case EuclideanKernel:
478 return;
479
480 /* These may be rotatable at non-90 angles in the future */
481 /* but simply rotating them 90 degrees is useless */
482 case SquareKernel:
483 case DiamondKernel:
484 case PlusKernel:
485 return;
486
487 /* These only allows a +/-90 degree rotation (transpose) */
488 case BlurKernel:
489 case RectangleKernel:
490 if ( 135.0 < angle && angle <= 225.0 )
491 return;
492 if ( 225.0 < angle && angle <= 315.0 )
493 angle -= 180;
494 break;
495
496 /* these are freely rotatable in 90 degree units */
497 case CometKernel:
498 case UndefinedKernel:
499 case UserDefinedKernel:
500 break;
501 }
502
503fprintf(stderr, "angle2 = %lf\n", angle);
504
505 if ( 135.0 < angle && angle <= 315.0 )
506 {
507 /* Do a flop, this assumes kernel is horizontally symetrical. */
508 /* Each kernel data row need to be reversed! */
509 unsigned long
510 y;
511 register unsigned long
512 x,r;
513 register double
514 *k,t;
515 for ( y=0, k=kernel->values; y < kernel->height; y++, k+=kernel->width) {
516 for ( x=0, r=kernel->width-1; x<kernel->width/2; x++, r--)
517 t=k[x], k[x]=k[r], k[r]=t;
518 }
519 kernel->offset_x = kernel->width - kernel->offset_x - 1;
520 angle = fmod(angle+180.0, 360.0);
521 }
522 if ( 45.0 < angle && angle <= 135.0 )
523 {
524 /* Do a transpose, this assumes the kernel is orthoginally symetrical */
525 /* The data is the same, just the size and offsets needs to be swapped. */
526 unsigned long
527 t;
528 t = kernel->width;
529 kernel->width = kernel->height;
530 kernel->height = t;
531 t = kernel->offset_x;
532 kernel->offset_x = kernel->offset_y;
533 kernel->offset_y = t;
534 angle = fmod(450.0 - angle, 360.0);
535 }
536 /* at this point angle should be between +45 and -45 (315) degrees */
537 return;
538}
539
540MagickExport MagickKernel *AcquireKernelBuiltIn(const MagickKernelType type,
541 const GeometryInfo *args)
542{
543 MagickKernel
544 *kernel;
545
546 register unsigned long
547 i;
548
549 register long
550 u,
551 v;
552
553 double
554 nan = sqrt((double)-1.0); /* Special Value : Not A Number */
555
556 kernel=(MagickKernel *) AcquireMagickMemory(sizeof(*kernel));
557 if (kernel == (MagickKernel *) NULL)
558 return(kernel);
559 (void) ResetMagickMemory(kernel,0,sizeof(*kernel));
560 kernel->range_neg = kernel->range_pos = 0.0;
561 kernel->type = type;
562
563 switch(type) {
564 /* Convolution Kernels */
565 case GaussianKernel:
566 { double
567 sigma = fabs(args->sigma);
568
569 sigma = (sigma <= MagickEpsilon) ? 1.0 : sigma;
570
571 kernel->width = kernel->height =
572 GetOptimalKernelWidth2D(args->rho,sigma);
573 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
574 kernel->range_neg = kernel->range_pos = 0.0;
575 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
576 kernel->height*sizeof(double));
577 if (kernel->values == (double *) NULL)
578 return(DestroyKernel(kernel));
579
580 sigma = 2.0*sigma*sigma; /* simplify the expression */
581 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
582 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
583 kernel->range_pos += (
584 kernel->values[i] =
585 exp(-((double)(u*u+v*v))/sigma)
586 /* / (MagickPI*sigma) */ );
587
588 /* Normalize the Kernel - see notes in BlurKernel, below */
589 u=kernel->width*kernel->height;
590 for (i=0; i < (unsigned long)u; i++)
591 kernel->values[i] /= kernel->range_pos;
592 kernel->range_pos=1.0;
593
594 break;
595 }
596 case BlurKernel:
597 { double
598 sigma = fabs(args->sigma);
599
600 sigma = (sigma <= MagickEpsilon) ? 1.0 : sigma;
601
602 kernel->width = GetOptimalKernelWidth1D(args->rho,sigma);
603 kernel->offset_x = (kernel->width-1)/2;
604 kernel->height = 1;
605 kernel->offset_y = 0;
606 kernel->range_neg = kernel->range_pos = 0.0;
607 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
608 kernel->height*sizeof(double));
609 if (kernel->values == (double *) NULL)
610 return(DestroyKernel(kernel));
611
612#if 1
613#define KernelRank 3
614 /* Formula derived from GetBlurKernel() in "effect.c" (plus bug fix).
615 ** It generates a gaussian 3 times the width, and compresses it into
616 ** the expected range. This produces a closer normalization of the
617 ** resulting kernel, especially for very low sigma values.
618 ** As such while wierd it is prefered.
619 **
620 ** I am told this method originally came from Photoshop.
621 */
622 sigma *= KernelRank; /* simplify expanded curve */
623 v = (kernel->width*KernelRank-1)/2; /* start/end points to fit range */
624 (void) ResetMagickMemory(kernel->values,0, (size_t)
625 kernel->width*sizeof(double));
626 for ( u=-v; u <= v; u++) {
627 kernel->values[(u+v)/KernelRank] +=
628 exp(-((double)(u*u))/(2.0*sigma*sigma))
629 /* / (MagickSQ2PI*sigma/KernelRank) */ ;
630 }
631 for (i=0; i < kernel->width; i++)
632 kernel->range_pos += kernel->values[i];
633#else
634 for ( i=0, u=-kernel->offset_x; i < kernel->width; i++, u++)
635 kernel->range_pos += (
636 kernel->values[i] =
637 exp(-((double)(u*u))/(2.0*sigma*sigma))
638 /* / (MagickSQ2PI*sigma) */ );
639#endif
640 /* Note that both the above methods do not generate a normalized
641 ** kernel, though it gets close. The kernel may be 'clipped' by a user
642 ** defined radius, producing a smaller (darker) kernel. Also for very
643 ** small sigma's (> 0.1) the central value becomes larger than one,
644 ** and thus producing a bright kernel.
645 */
646#if 1
647 /* Normalize the 1D Gaussian Kernel
648 **
649 ** Because of this the divisor in the above kernel generator is
650 ** not needed, and is taken care of here.
651 */
652 for (i=0; i < kernel->width; i++)
653 kernel->values[i] /= kernel->range_pos;
654 kernel->range_pos=1.0;
655#endif
656 /* rotate the kernel by given angle */
657 KernelRotate(kernel, args->xi);
658 break;
659 }
660 case CometKernel:
661 { double
662 sigma = fabs(args->sigma);
663
664 sigma = (sigma <= MagickEpsilon) ? 1.0 : sigma;
665
666 if ( args->rho < 1.0 )
667 kernel->width = GetOptimalKernelWidth1D(args->rho,sigma);
668 else
669 kernel->width = (unsigned long)args->rho;
670 kernel->offset_x = kernel->offset_y = 0;
671 kernel->height = 1;
672 kernel->range_neg = kernel->range_pos = 0.0;
673 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
674 kernel->height*sizeof(double));
675 if (kernel->values == (double *) NULL)
676 return(DestroyKernel(kernel));
677
678 /* A comet blur is half a gaussian curve, so that the object is
679 ** blurred in one direction only. This may not be quite the right
680 ** curve so may change in the future. The function must be normalised.
681 */
682#if 1
683#define KernelRank 3
684 sigma *= KernelRank; /* simplify expanded curve */
685 v = kernel->width*KernelRank; /* start/end points to fit range */
686 (void) ResetMagickMemory(kernel->values,0, (size_t)
687 kernel->width*sizeof(double));
688 for ( u=0; u < v; u++) {
689 kernel->values[u/KernelRank] +=
690 exp(-((double)(u*u))/(2.0*sigma*sigma))
691 /* / (MagickSQ2PI*sigma/KernelRank) */ ;
692 }
693 for (i=0; i < kernel->width; i++)
694 kernel->range_pos += kernel->values[i];
695#else
696 for ( i=0; i < kernel->width; i++)
697 kernel->range_pos += (
698 kernel->values[i] =
699 exp(-((double)(i*i))/(2.0*sigma*sigma))
700 /* / (MagickSQ2PI*sigma) */ );
701#endif
702 /* Normalize the Kernel - see notes in BlurKernel */
703 for (i=0; i < kernel->width; i++)
704 kernel->values[i] /= kernel->range_pos;
705 kernel->range_pos=1.0;
706
707 /* rotate the kernel by given angle */
708 KernelRotate(kernel, args->xi);
709 break;
710 }
711 /* Boolean Kernels */
712 case RectangleKernel:
713 case SquareKernel:
714 {
715 if ( type == SquareKernel )
716 {
717 if (args->rho < 1.0)
718 kernel->width = kernel->height = 3; /* radius 1 */
719 else
720 kernel->width = kernel->height = 2*(long)args->rho+1;
721 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
722 }
723 else {
724 if ( args->rho < 1.0 || args->sigma < 1.0 )
725 return(DestroyKernel(kernel));
726 kernel->width = (unsigned long)args->rho;
727 kernel->height = (unsigned long)args->sigma;
728 if ( args->xi < 0.0 || args->xi > (double)kernel->width ||
729 args->psi < 0.0 || args->psi > (double)kernel->height )
730 return(DestroyKernel(kernel));
731 kernel->offset_x = (unsigned long)args->xi;
732 kernel->offset_y = (unsigned long)args->psi;
733 }
734 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
735 kernel->height*sizeof(double));
736 if (kernel->values == (double *) NULL)
737 return(DestroyKernel(kernel));
738
739 u=kernel->width*kernel->height;
740 for ( i=0; i < (unsigned long)u; i++)
741 kernel->values[i] = 1.0;
742 break;
743 }
744 case DiamondKernel:
745 {
746 if (args->rho < 1.0)
747 kernel->width = kernel->height = 3; /* radius 1 */
748 else
749 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
750 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
751
752 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
753 kernel->height*sizeof(double));
754 if (kernel->values == (double *) NULL)
755 return(DestroyKernel(kernel));
756
757 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
758 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
759 if ((labs(u)+labs(v)) <= (long)kernel->offset_x)
760 kernel->range_pos += kernel->values[i] = 1.0;
761 else
762 kernel->values[i] = nan;
763 break;
764 }
765 case DiskKernel:
766 {
767 long
768 limit;
769
770 limit = (long)(args->rho*args->rho);
771 if (args->rho < 1.0) /* default: ~2.5 radius disk */
772 kernel->width = kernel->height = 5L, limit = 5L;
773 else
774 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
775 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
776
777 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
778 kernel->height*sizeof(double));
779 if (kernel->values == (double *) NULL)
780 return(DestroyKernel(kernel));
781
782 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
783 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
784 if ((u*u+v*v) <= limit)
785 kernel->range_pos += kernel->values[i] = 1.0;
786 else
787 kernel->values[i] = nan;
788 break;
789 }
790 case PlusKernel:
791 {
792 if (args->rho < 1.0)
793 kernel->width = kernel->height = 5; /* radius 2 */
794 else
795 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
796 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
797
798 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
799 kernel->height*sizeof(double));
800 if (kernel->values == (double *) NULL)
801 return(DestroyKernel(kernel));
802
803 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
804 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
805 kernel->values[i] = (u == 0 || v == 0) ? 1.0 : nan;
806 kernel->range_pos = kernel->width*2.0 - 1.0;
807 break;
808 }
809 /* Distance Measuring Kernels */
810 case ChebyshevKernel:
811 {
812 double
813 scale;
814
815 if (args->rho < 1.0)
816 kernel->width = kernel->height = 3;
817 else
818 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
819 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
820
821 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
822 kernel->height*sizeof(double));
823 if (kernel->values == (double *) NULL)
824 return(DestroyKernel(kernel));
825
826 scale = (args->sigma < 1.0) ? 100.0 : args->sigma;
827 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
828 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
829 kernel->range_pos += ( kernel->values[i] =
830 scale*((labs(u)>labs(v)) ? labs(u) : labs(v)) );
831 break;
832 }
833 case ManhattenKernel:
834 {
835 double
836 scale;
837
838 if (args->rho < 1.0)
839 kernel->width = kernel->height = 3;
840 else
841 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
842 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
843
844 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
845 kernel->height*sizeof(double));
846 if (kernel->values == (double *) NULL)
847 return(DestroyKernel(kernel));
848
849 scale = (args->sigma < 1.0) ? 100.0 : args->sigma;
850 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
851 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
852 kernel->range_pos += ( kernel->values[i] =
853 scale*(labs(u)+labs(v)) );
854 break;
855 }
856 case KnightKernel:
857 {
858 double
859 scale;
860
861 if (args->rho < 1.0)
862 kernel->width = kernel->height = 3;
863 else
864 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
865 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
866
867 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
868 kernel->height*sizeof(double));
869 if (kernel->values == (double *) NULL)
870 return(DestroyKernel(kernel));
871
872 scale = (args->sigma < 1.0) ? 100.0 : args->sigma;
873 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
874 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
875 kernel->range_pos += ( kernel->values[i] =
876 scale*((labs(u)<labs(v)) ? (MagickSQ2-1.0)*labs(u)+labs(v)
877 : (MagickSQ2-1.0)*labs(v)+labs(u) ) );
878 break;
879 }
880 case EuclideanKernel:
881 {
882 double
883 scale;
884
885 if (args->rho < 1.0)
886 kernel->width = kernel->height = 9;
887 else
888 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
889 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
890
891 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
892 kernel->height*sizeof(double));
893 if (kernel->values == (double *) NULL)
894 return(DestroyKernel(kernel));
895
896 scale = (args->sigma < 1.0) ? 100.0 : args->sigma;
897 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
898 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
899 kernel->range_pos += ( kernel->values[i] =
900 scale*sqrt((double)(u*u+v*v)) );
901 break;
902 }
903 /* Undefined Kernels */
904 case LaplacianKernel:
905 case LOGKernel:
906 case DOGKernel:
907 assert("Kernel Type has not been defined yet");
908 /* FALL THRU */
909 default:
910 /* Generate a No-Op minimal kernel - 1x1 pixel */
911 kernel->values=(double *)AcquireQuantumMemory((size_t)1,sizeof(double));
912 if (kernel->values == (double *) NULL)
913 return(DestroyKernel(kernel));
914 kernel->range_pos = kernel->values[0] = 1.0;
915 kernel->width = kernel->height = 1;
916 kernel->offset_x = kernel->offset_x = 0;
917 kernel->type = UndefinedKernel;
918 break;
919 }
920
921 return(kernel);
922}
923
924/*
925%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
926% %
927% %
928% %
929% D e s t r o y K e r n e l %
930% %
931% %
932% %
933%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
934%
935% DestroyKernel() frees the memory used by a Convolution/Morphology kernel.
936%
937% The format of the DestroyKernel method is:
938%
939% MagickKernel *DestroyKernel(MagickKernel *kernel)
940%
941% A description of each parameter follows:
942%
943% o kernel: the Morphology/Convolution kernel to be destroyed
944%
945*/
946
947MagickExport MagickKernel *DestroyKernel(MagickKernel *kernel)
948{
949 assert(kernel != (MagickKernel *) NULL);
950 kernel->values=(double *)RelinquishMagickMemory(kernel->values);
951 kernel=(MagickKernel *) RelinquishMagickMemory(kernel);
952 return(kernel);
953}
954
955
956/*
957%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
958% %
959% %
960% %
961% M o r p h o l o g y I m a g e %
962% %
963% %
964% %
965%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
966%
967% MorphologyImage() applies a user supplied kernel to the image according to
968% the given mophology method.
969%
970% The given kernel is assumed to have been pre-scaled appropriatally, usally
971% by the kernel generator.
972%
973% The format of the MorphologyImage method is:
974%
975% Image *MorphologyImage(const Image *image, const MorphologyMethod
976% method, const long iterations, const ChannelType channel,
977% const MagickKernel *kernel, ExceptionInfo *exception)
978%
979% A description of each parameter follows:
980%
981% o image: the image.
982%
983% o method: the morphology method to be applied.
984%
985% o iterations: apply the operation this many times (or no change).
986% A value of -1 means loop until no change found.
987% How this is applied may depend on the morphology method.
988% Typically this is a value of 1.
989%
990% o channel: the channel type.
991%
992% o kernel: An array of double representing the morphology kernel.
993% This is assumed to have been pre-scaled (normalized).
994%
995% o exception: return any errors or warnings in this structure.
996%
997%
998% TODO: bias and auto-scale handling of the kernel for convolution
999% The given kernel is assumed to have been pre-scaled appropriatally, usally
1000% by the kernel generator.
1001%
1002*/
1003
1004static inline double MagickMin(const MagickRealType x,const MagickRealType y)
1005{
1006 return( x < y ? x : y);
1007}
1008static inline double MagickMax(const MagickRealType x,const MagickRealType y)
1009{
1010 return( x > y ? x : y);
1011}
1012#define Minimize(assign,value) assign=MagickMin(assign,value)
1013#define Maximize(assign,value) assign=MagickMax(assign,value)
1014
1015/* incr change if the value being assigned changed */
1016#define Assign(channel,value) \
1017 { q->channel = RoundToQuantum(value); \
1018 if ( p[r].channel != q->channel ) changed++; \
1019 }
1020#define AssignIndex(value) \
1021 { q_indexes[x] = RoundToQuantum(value); \
1022 if ( p_indexes[r] != q_indexes[x] ) changed++; \
1023 }
1024
1025/* Internal function
1026 * Apply the Morphology method with the given Kernel
1027 * And return the number of values changed.
1028 */
1029static unsigned long MorphologyApply(const Image *image, Image
1030 *result_image, const MorphologyMethod method, const ChannelType channel,
1031 const MagickKernel *kernel, ExceptionInfo *exception)
1032{
1033 #define MorphologyTag "Morphology/Image"
1034
1035 long
1036 progress,
1037 y;
1038
1039 unsigned long
1040 changed;
1041
1042 MagickBooleanType
1043 status;
1044
1045 MagickPixelPacket
1046 bias;
1047
1048 CacheView
1049 *p_view,
1050 *q_view;
1051
1052 /*
1053 Apply Morphology to Image.
1054 */
1055 status=MagickTrue;
1056 changed=0;
1057 progress=0;
1058
1059 GetMagickPixelPacket(image,&bias);
1060 SetMagickPixelPacketBias(image,&bias);
1061
1062 p_view=AcquireCacheView(image);
1063 q_view=AcquireCacheView(result_image);
1064#if defined(MAGICKCORE_OPENMP_SUPPORT)
1065 #pragma omp parallel for schedule(dynamic,4) shared(progress,status)
1066#endif
1067 for (y=0; y < (long) image->rows; y++)
1068 {
1069 MagickBooleanType
1070 sync;
1071
1072 register const PixelPacket
1073 *restrict p;
1074
1075 register const IndexPacket
1076 *restrict p_indexes;
1077
1078 register PixelPacket
1079 *restrict q;
1080
1081 register IndexPacket
1082 *restrict q_indexes;
1083
1084 register long
1085 x;
1086
1087 long
1088 r;
1089
1090 if (status == MagickFalse)
1091 continue;
1092 p=GetCacheViewVirtualPixels(p_view, -kernel->offset_x, y-kernel->offset_y,
1093 image->columns+kernel->width, kernel->height, exception);
1094 q=GetCacheViewAuthenticPixels(q_view,0,y,result_image->columns,1,
1095 exception);
1096 if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
1097 {
1098 status=MagickFalse;
1099 continue;
1100 }
1101 p_indexes=GetCacheViewVirtualIndexQueue(p_view);
1102 q_indexes=GetCacheViewAuthenticIndexQueue(q_view);
1103 r = (image->columns+kernel->width)*kernel->offset_y+kernel->offset_x;
1104 for (x=0; x < (long) image->columns; x++)
1105 {
1106 long
1107 v;
1108
1109 register long
1110 u;
1111
1112 register const double
1113 *restrict k;
1114
1115 register const PixelPacket
1116 *restrict k_pixels;
1117
1118 register const IndexPacket
1119 *restrict k_indexes;
1120
1121 MagickPixelPacket
1122 result;
1123
1124 /* Copy input to ouput image - removes need for 'cloning' new images */
1125 *q = p[r];
1126 if (image->colorspace == CMYKColorspace)
1127 q_indexes[x] = p_indexes[r];
1128
1129 switch (method) {
1130 case ConvolveMorphology:
1131 result=bias;
1132 break; /* default result is the convolution bias */
1133 case DialateIntensityMorphology:
1134 case ErodeIntensityMorphology:
1135 /* result is the pixel as is */
1136 result.red = p[r].red;
1137 result.green = p[r].green;
1138 result.blue = p[r].blue;
1139 result.opacity = p[r].opacity;
1140 if ( image->colorspace == CMYKColorspace)
1141 result.index = p_indexes[r];
1142 break;
1143 default:
1144 /* most need to handle transparency as alpha */
1145 result.red = p[r].red;
1146 result.green = p[r].green;
1147 result.blue = p[r].blue;
1148 result.opacity = QuantumRange - p[r].opacity;
1149 if ( image->colorspace == CMYKColorspace)
1150 result.index = p_indexes[r];
1151 break;
1152 }
1153
1154 switch ( method ) {
1155 case ConvolveMorphology:
1156 /* Weighted Average of pixels */
1157 if (((channel & OpacityChannel) == 0) ||
1158 (image->matte == MagickFalse))
1159 {
1160 /* Kernel Weighted Convolution (no transparency) */
1161 k = kernel->values;
1162 k_pixels = p;
1163 k_indexes = p_indexes;
1164 for (v=0; v < (long) kernel->height; v++) {
1165 for (u=0; u < (long) kernel->width; u++, k++) {
1166 if ( IsNan(*k) ) continue;
1167 result.red += (*k)*k_pixels[u].red;
1168 result.green += (*k)*k_pixels[u].green;
1169 result.blue += (*k)*k_pixels[u].blue;
1170 /* result.opacity += no involvment */
1171 if ( image->colorspace == CMYKColorspace)
1172 result.index += (*k)*k_indexes[u];
1173 }
1174 k_pixels += image->columns+kernel->width;
1175 k_indexes += image->columns+kernel->width;
1176 }
1177 if ((channel & RedChannel) != 0)
1178 Assign(red,result.red);
1179 if ((channel & GreenChannel) != 0)
1180 Assign(green,result.green);
1181 if ((channel & BlueChannel) != 0)
1182 Assign(blue,result.blue);
1183 /* no transparency involved */
1184 if ((channel & IndexChannel) != 0
1185 && image->colorspace == CMYKColorspace)
1186 AssignIndex(result.index);
1187 }
1188 else
1189 { /* Kernel & Alpha weighted Convolution */
1190 MagickRealType
1191 alpha, /* alpha value * kernel weighting */
1192 gamma; /* weighting divisor */
1193
1194 gamma=0.0;
1195 k = kernel->values;
1196 k_pixels = p;
1197 k_indexes = p_indexes;
1198 for (v=0; v < (long) kernel->height; v++) {
1199 for (u=0; u < (long) kernel->width; u++, k++) {
1200 if ( IsNan(*k) ) continue;
1201 alpha=(*k)*(QuantumScale*(QuantumRange-
1202 k_pixels[u].opacity));
1203 gamma += alpha;
1204 result.red += alpha*k_pixels[u].red;
1205 result.green += alpha*k_pixels[u].green;
1206 result.blue += alpha*k_pixels[u].blue;
1207 result.opacity += (*k)*k_pixels[u].opacity;
1208 if ( image->colorspace == CMYKColorspace)
1209 result.index += alpha*k_indexes[u];
1210 }
1211 k_pixels += image->columns+kernel->width;
1212 k_indexes += image->columns+kernel->width;
1213 }
1214 gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
1215 if ((channel & RedChannel) != 0)
1216 Assign(red,gamma*result.red);
1217 if ((channel & GreenChannel) != 0)
1218 Assign(green,gamma*result.green);
1219 if ((channel & BlueChannel) != 0)
1220 Assign(blue,gamma*result.blue);
1221 if ((channel & OpacityChannel) != 0
1222 && image->matte == MagickTrue )
1223 Assign(opacity,result.opacity);
1224 if ((channel & IndexChannel) != 0
1225 && image->colorspace == CMYKColorspace)
1226 AssignIndex(gamma*result.index);
1227 }
1228 break;
1229
1230 case DialateMorphology:
1231 /* Maximize Value - Kernel should be boolean */
1232 k = kernel->values;
1233 k_pixels = p;
1234 k_indexes = p_indexes;
1235 for (v=0; v < (long) kernel->height; v++) {
1236 for (u=0; u < (long) kernel->width; u++, k++) {
1237 if ( IsNan(*k) || (*k) < 0.5 ) continue;
1238 Maximize(result.red, k_pixels[u].red);
1239 Maximize(result.green, k_pixels[u].green);
1240 Maximize(result.blue, k_pixels[u].blue);
1241 Maximize(result.opacity, QuantumRange-k_pixels[u].opacity);
1242 if ( image->colorspace == CMYKColorspace)
1243 Maximize(result.index, k_indexes[u]);
1244 }
1245 k_pixels += image->columns+kernel->width;
1246 k_indexes += image->columns+kernel->width;
1247 }
1248 if ((channel & RedChannel) != 0)
1249 Assign(red,result.red);
1250 if ((channel & GreenChannel) != 0)
1251 Assign(green,result.green);
1252 if ((channel & BlueChannel) != 0)
1253 Assign(blue,result.blue);
1254 if ((channel & OpacityChannel) != 0
1255 && image->matte == MagickTrue )
1256 Assign(opacity,QuantumRange-result.opacity);
1257 if ((channel & IndexChannel) != 0
1258 && image->colorspace == CMYKColorspace)
1259 AssignIndex(result.index);
1260 break;
1261
1262 case ErodeMorphology:
1263 /* Minimize Value - Kernel should be boolean */
1264 k = kernel->values;
1265 k_pixels = p;
1266 k_indexes = p_indexes;
1267 for (v=0; v < (long) kernel->height; v++) {
1268 for (u=0; u < (long) kernel->width; u++, k++) {
1269 if ( IsNan(*k) || (*k) < 0.5 ) continue;
1270 Minimize(result.red, k_pixels[u].red);
1271 Minimize(result.green, k_pixels[u].green);
1272 Minimize(result.blue, k_pixels[u].blue);
1273 Minimize(result.opacity, QuantumRange-k_pixels[u].opacity);
1274 if ( image->colorspace == CMYKColorspace)
1275 Minimize(result.index, k_indexes[u]);
1276 }
1277 k_pixels += image->columns+kernel->width;
1278 k_indexes += image->columns+kernel->width;
1279 }
1280 if ((channel & RedChannel) != 0)
1281 Assign(red,result.red);
1282 if ((channel & GreenChannel) != 0)
1283 Assign(green,result.green);
1284 if ((channel & BlueChannel) != 0)
1285 Assign(blue,result.blue);
1286 if ((channel & OpacityChannel) != 0
1287 && image->matte == MagickTrue )
1288 Assign(opacity,QuantumRange-result.opacity);
1289 if ((channel & IndexChannel) != 0
1290 && image->colorspace == CMYKColorspace)
1291 AssignIndex(result.index);
1292 break;
1293
1294 case DialateIntensityMorphology:
1295 /* Maximum Intensity Pixel - Kernel should be boolean */
1296 k = kernel->values;
1297 k_pixels = p;
1298 k_indexes = p_indexes;
1299 for (v=0; v < (long) kernel->height; v++) {
1300 for (u=0; u < (long) kernel->width; u++, k++) {
1301 if ( IsNan(*k) || (*k) < 0.5 ) continue;
1302 if ( PixelIntensity(&p[r]) >
1303 PixelIntensity(&(k_pixels[u])) ) continue;
1304 result.red = k_pixels[u].red;
1305 result.green = k_pixels[u].green;
1306 result.blue = k_pixels[u].blue;
1307 result.opacity = k_pixels[u].opacity;
1308 if ( image->colorspace == CMYKColorspace)
1309 result.index = k_indexes[u];
1310 }
1311 k_pixels += image->columns+kernel->width;
1312 k_indexes += image->columns+kernel->width;
1313 }
1314 if ((channel & RedChannel) != 0)
1315 Assign(red,result.red);
1316 if ((channel & GreenChannel) != 0)
1317 Assign(green,result.green);
1318 if ((channel & BlueChannel) != 0)
1319 Assign(blue,result.blue);
1320 if ((channel & OpacityChannel) != 0
1321 && image->matte == MagickTrue )
1322 Assign(opacity,result.opacity);
1323 if ((channel & IndexChannel) != 0
1324 && image->colorspace == CMYKColorspace)
1325 AssignIndex(result.index);
1326 break;
1327
1328 case ErodeIntensityMorphology:
1329 /* Minimum Intensity Pixel - Kernel should be boolean */
1330 k = kernel->values;
1331 k_pixels = p;
1332 k_indexes = p_indexes;
1333 for (v=0; v < (long) kernel->height; v++) {
1334 for (u=0; u < (long) kernel->width; u++, k++) {
1335 if ( IsNan(*k) || (*k) < 0.5 ) continue;
1336 if ( PixelIntensity(&p[r]) <
1337 PixelIntensity(&(k_pixels[u])) ) continue;
1338 result.red = k_pixels[u].red;
1339 result.green = k_pixels[u].green;
1340 result.blue = k_pixels[u].blue;
1341 result.opacity = k_pixels[u].opacity;
1342 if ( image->colorspace == CMYKColorspace)
1343 result.index = k_indexes[u];
1344 }
1345 k_pixels += image->columns+kernel->width;
1346 k_indexes += image->columns+kernel->width;
1347 }
1348 if ((channel & RedChannel) != 0)
1349 Assign(red,result.red);
1350 if ((channel & GreenChannel) != 0)
1351 Assign(green,result.green);
1352 if ((channel & BlueChannel) != 0)
1353 Assign(blue,result.blue);
1354 if ((channel & OpacityChannel) != 0
1355 && image->matte == MagickTrue )
1356 Assign(opacity,result.opacity);
1357 if ((channel & IndexChannel) != 0
1358 && image->colorspace == CMYKColorspace)
1359 AssignIndex(result.index);
1360 break;
1361
1362 case DistanceMorphology:
1363#if 0
1364 /* No need to do distance morphology if all values are zero */
1365 /* Unfortunatally I have not been able to get this right! */
1366 if ( ((channel & RedChannel) == 0 && p[r].red == 0)
1367 || ((channel & GreenChannel) == 0 && p[r].green == 0)
1368 || ((channel & BlueChannel) == 0 && p[r].blue == 0)
1369 || ((channel & OpacityChannel) == 0 && p[r].opacity == 0)
1370 || (( (channel & IndexChannel) == 0
1371 || image->colorspace != CMYKColorspace
1372 ) && p_indexes[x] ==0 )
1373 )
1374 break;
1375#endif
1376 k = kernel->values;
1377 k_pixels = p;
1378 k_indexes = p_indexes;
1379 for (v=0; v < (long) kernel->height; v++) {
1380 for (u=0; u < (long) kernel->width; u++, k++) {
1381 if ( IsNan(*k) ) continue;
1382 Minimize(result.red, (*k)+k_pixels[u].red);
1383 Minimize(result.green, (*k)+k_pixels[u].green);
1384 Minimize(result.blue, (*k)+k_pixels[u].blue);
1385 Minimize(result.opacity, (*k)+QuantumRange-k_pixels[u].opacity);
1386 if ( image->colorspace == CMYKColorspace)
1387 Minimize(result.index, (*k)+k_indexes[u]);
1388 }
1389 k_pixels += image->columns+kernel->width;
1390 k_indexes += image->columns+kernel->width;
1391 }
1392#if 1
1393 if ((channel & RedChannel) != 0)
1394 Assign(red,result.red);
1395 if ((channel & GreenChannel) != 0)
1396 Assign(green,result.green);
1397 if ((channel & BlueChannel) != 0)
1398 Assign(blue,result.blue);
1399 if ((channel & OpacityChannel) != 0
1400 && image->matte == MagickTrue )
1401 Assign(opacity,QuantumRange-result.opacity);
1402 if ((channel & IndexChannel) != 0
1403 && image->colorspace == CMYKColorspace)
1404 AssignIndex(result.index);
1405#else
1406 /* By returning the number of 'maximum' values still to process
1407 ** we can get the Distance iteration to finish faster.
1408 ** BUT this may cause an infinite loop on very large shapes,
1409 ** which may have a distance that reachs a maximum gradient.
1410 */
1411 if ((channel & RedChannel) != 0)
1412 { q->red = RoundToQuantum(result.red);
1413 if ( q->red == QuantumRange ) changed++; /* more to do */
1414 }
1415 if ((channel & GreenChannel) != 0)
1416 { q->green = RoundToQuantum(result.green);
1417 if ( q->green == QuantumRange ) changed++; /* more to do */
1418 }
1419 if ((channel & BlueChannel) != 0)
1420 { q->blue = RoundToQuantum(result.blue);
1421 if ( q->blue == QuantumRange ) changed++; /* more to do */
1422 }
1423 if ((channel & OpacityChannel) != 0)
1424 { q->opacity = RoundToQuantum(QuantumRange-result.opacity);
1425 if ( q->opacity == 0 ) changed++; /* more to do */
1426 }
1427 if (((channel & IndexChannel) != 0) &&
1428 (image->colorspace == CMYKColorspace))
1429 { q_indexes[x] = RoundToQuantum(result.index);
1430 if ( q_indexes[x] == QuantumRange ) changed++;
1431 }
1432#endif
1433 break;
1434
1435 case UndefinedMorphology:
1436 default:
1437 break; /* Do nothing */
1438 }
1439 p++;
1440 q++;
1441 }
1442 sync=SyncCacheViewAuthenticPixels(q_view,exception);
1443 if (sync == MagickFalse)
1444 status=MagickFalse;
1445 if (image->progress_monitor != (MagickProgressMonitor) NULL)
1446 {
1447 MagickBooleanType
1448 proceed;
1449
1450#if defined(MAGICKCORE_OPENMP_SUPPORT)
1451 #pragma omp critical (MagickCore_MorphologyImage)
1452#endif
1453 proceed=SetImageProgress(image,MorphologyTag,progress++,image->rows);
1454 if (proceed == MagickFalse)
1455 status=MagickFalse;
1456 }
1457 }
1458 result_image->type=image->type;
1459 q_view=DestroyCacheView(q_view);
1460 p_view=DestroyCacheView(p_view);
1461 return(status ? changed : 0);
1462}
1463
1464
1465MagickExport Image *MorphologyImage(const Image *image, MorphologyMethod
1466 method, const long iterations, const ChannelType channel,
1467 const MagickKernel *kernel, ExceptionInfo *exception)
1468{
1469 unsigned long
1470 count,
1471 limit,
1472 changed;
1473
1474 Image
1475 *new_image,
1476 *old_image;
1477
1478 assert(image != (Image *) NULL);
1479 assert(image->signature == MagickSignature);
1480 assert(exception != (ExceptionInfo *) NULL);
1481 assert(exception->signature == MagickSignature);
1482
1483 if ( GetImageArtifact(image,"showkernel") != (const char *) NULL)
1484 {
1485 /* Show the Kernel that was input by the user */
1486 unsigned long
1487 i, u, v;
1488
1489 fprintf(stderr, "Kernel \"%s\" size %lux%lu%+ld%+ld scaling %+lg to %+lg\n",
1490 MagickOptionToMnemonic(MagickKernelOptions, kernel->type),
1491 kernel->width, kernel->height,
1492 kernel->offset_x, kernel->offset_y,
1493 kernel->range_neg, kernel->range_pos);
1494 for (i=v=0; v < kernel->height; v++) {
1495 fprintf(stderr,"%2ld: ",v);
1496 for (u=0; u < kernel->width; u++, i++)
1497 fprintf(stderr,"%5.3lf ",kernel->values[i]);
1498 fprintf(stderr,"\n");
1499 }
1500 }
1501
1502 if ( iterations == 0 )
1503 return((Image *)NULL); /* null operation - nothing to do! */
1504
1505 /* kernel must be valid at this point
1506 * (except maybe for posible future morphology methods like "Prune"
1507 */
1508 assert(kernel != (MagickKernel *)NULL);
1509
1510 count = 0;
1511 limit = iterations;
1512 if ( iterations < 0 )
1513 limit = image->columns > image->rows ? image->columns : image->rows;
1514
1515 /* Special morphology cases */
1516 switch( method ) {
1517 case CloseMorphology:
1518 new_image = MorphologyImage(image, DialateMorphology, iterations, channel,
1519 kernel, exception);
1520 if (new_image == (Image *) NULL)
1521 return((Image *) NULL);
1522 method = ErodeMorphology;
1523 break;
1524 case OpenMorphology:
1525 new_image = MorphologyImage(image, ErodeMorphology, iterations, channel,
1526 kernel, exception);
1527 if (new_image == (Image *) NULL)
1528 return((Image *) NULL);
1529 method = DialateMorphology;
1530 break;
1531 case CloseIntensityMorphology:
1532 new_image = MorphologyImage(image, DialateIntensityMorphology,
1533 iterations, channel, kernel, exception);
1534 if (new_image == (Image *) NULL)
1535 return((Image *) NULL);
1536 method = ErodeIntensityMorphology;
1537 break;
1538 case OpenIntensityMorphology:
1539 new_image = MorphologyImage(image, ErodeIntensityMorphology,
1540 iterations, channel, kernel, exception);
1541 if (new_image == (Image *) NULL)
1542 return((Image *) NULL);
1543 method = DialateIntensityMorphology;
1544 break;
1545
1546 default:
1547 /* Do a morphology once!
1548 This ensures a new_image has been generated, but allows us
1549 to skip the creation of 'old_image' if it wasn't needed.
1550 */
1551 new_image=CloneImage(image,0,0,MagickTrue,exception);
1552 if (new_image == (Image *) NULL)
1553 return((Image *) NULL);
1554 if (SetImageStorageClass(new_image,DirectClass) == MagickFalse)
1555 {
1556 InheritException(exception,&new_image->exception);
1557 new_image=DestroyImage(new_image);
1558 return((Image *) NULL);
1559 }
1560 changed = MorphologyApply(image,new_image,method,channel,kernel,
1561 exception);
1562 count++;
1563 if ( GetImageArtifact(image,"verbose") != (const char *) NULL )
1564 fprintf(stderr, "Morphology %s:%lu => Changed %lu\n",
1565 MagickOptionToMnemonic(MagickMorphologyOptions, method),
1566 count, changed);
1567 }
1568
1569 /* Repeat the interative morphology until count or no change */
1570 if ( count < limit && changed > 0 ) {
1571 old_image = CloneImage(new_image,0,0,MagickTrue,exception);
1572 if (old_image == (Image *) NULL)
1573 return(DestroyImage(new_image));
1574 if (SetImageStorageClass(old_image,DirectClass) == MagickFalse)
1575 {
1576 InheritException(exception,&old_image->exception);
1577 old_image=DestroyImage(old_image);
1578 return(DestroyImage(new_image));
1579 }
1580 while( count < limit && changed != 0 )
1581 {
1582 Image *tmp = old_image;
1583 old_image = new_image;
1584 new_image = tmp;
1585 changed = MorphologyApply(old_image,new_image,method,channel,kernel,
1586 exception);
1587 count++;
1588 if ( GetImageArtifact(image,"verbose") != (const char *) NULL )
1589 fprintf(stderr, "Morphology %s:%lu => Changed %lu\n",
1590 MagickOptionToMnemonic(MagickMorphologyOptions, method),
1591 count, changed);
1592 }
1593 DestroyImage(old_image);
1594 }
1595
1596 return(new_image);
1597}
1598