cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1 | /* |
| 2 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 3 | % % |
| 4 | % % |
| 5 | % % |
| 6 | % GGGG EEEEE M M % |
| 7 | % G E MM MM % |
| 8 | % G GG EEE M M M % |
| 9 | % G G E M M % |
| 10 | % GGGG EEEEE M M % |
| 11 | % % |
| 12 | % % |
| 13 | % Graphic Gems - Graphic Support Methods % |
| 14 | % % |
| 15 | % Software Design % |
| 16 | % John Cristy % |
| 17 | % August 1996 % |
| 18 | % % |
| 19 | % % |
| 20 | % Copyright 1999-2009 ImageMagick Studio LLC, a non-profit organization % |
| 21 | % dedicated to making software imaging solutions freely available. % |
| 22 | % % |
| 23 | % You may not use this file except in compliance with the License. You may % |
| 24 | % obtain a copy of the License at % |
| 25 | % % |
| 26 | % http://www.imagemagick.org/script/license.php % |
| 27 | % % |
| 28 | % Unless required by applicable law or agreed to in writing, software % |
| 29 | % distributed under the License is distributed on an "AS IS" BASIS, % |
| 30 | % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % |
| 31 | % See the License for the specific language governing permissions and % |
| 32 | % limitations under the License. % |
| 33 | % % |
| 34 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 35 | % |
| 36 | % |
| 37 | % |
| 38 | */ |
| 39 | |
| 40 | /* |
| 41 | Include declarations. |
| 42 | */ |
| 43 | #include "magick/studio.h" |
| 44 | #include "magick/color-private.h" |
| 45 | #include "magick/draw.h" |
| 46 | #include "magick/gem.h" |
| 47 | #include "magick/image.h" |
| 48 | #include "magick/image-private.h" |
| 49 | #include "magick/log.h" |
| 50 | #include "magick/memory_.h" |
| 51 | #include "magick/pixel-private.h" |
| 52 | #include "magick/quantum.h" |
| 53 | #include "magick/random_.h" |
| 54 | #include "magick/resize.h" |
| 55 | #include "magick/transform.h" |
| 56 | #include "magick/signature-private.h" |
| 57 | |
| 58 | /* |
| 59 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 60 | % % |
| 61 | % % |
| 62 | % % |
| 63 | % C o n v e r t H S B T o R G B % |
| 64 | % % |
| 65 | % % |
| 66 | % % |
| 67 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 68 | % |
| 69 | % ConvertHSBToRGB() transforms a (hue, saturation, brightness) to a (red, |
| 70 | % green, blue) triple. |
| 71 | % |
| 72 | % The format of the ConvertHSBToRGBImage method is: |
| 73 | % |
| 74 | % void ConvertHSBToRGB(const double hue,const double saturation, |
| 75 | % const double brightness,Quantum *red,Quantum *green,Quantum *blue) |
| 76 | % |
| 77 | % A description of each parameter follows: |
| 78 | % |
| 79 | % o hue, saturation, brightness: A double value representing a |
| 80 | % component of the HSB color space. |
| 81 | % |
| 82 | % o red, green, blue: A pointer to a pixel component of type Quantum. |
| 83 | % |
| 84 | */ |
| 85 | MagickExport void ConvertHSBToRGB(const double hue,const double saturation, |
| 86 | const double brightness,Quantum *red,Quantum *green,Quantum *blue) |
| 87 | { |
| 88 | MagickRealType |
| 89 | f, |
| 90 | h, |
| 91 | p, |
| 92 | q, |
| 93 | t; |
| 94 | |
| 95 | /* |
| 96 | Convert HSB to RGB colorspace. |
| 97 | */ |
| 98 | assert(red != (Quantum *) NULL); |
| 99 | assert(green != (Quantum *) NULL); |
| 100 | assert(blue != (Quantum *) NULL); |
| 101 | if (saturation == 0.0) |
| 102 | { |
| 103 | *red=RoundToQuantum((MagickRealType) QuantumRange*brightness); |
| 104 | *green=(*red); |
| 105 | *blue=(*red); |
| 106 | return; |
| 107 | } |
| 108 | h=6.0*(hue-floor(hue)); |
| 109 | f=h-floor((double) h); |
| 110 | p=brightness*(1.0-saturation); |
| 111 | q=brightness*(1.0-saturation*f); |
| 112 | t=brightness*(1.0-(saturation*(1.0-f))); |
| 113 | switch ((int) h) |
| 114 | { |
| 115 | case 0: |
| 116 | default: |
| 117 | { |
| 118 | *red=RoundToQuantum((MagickRealType) QuantumRange*brightness); |
| 119 | *green=RoundToQuantum((MagickRealType) QuantumRange*t); |
| 120 | *blue=RoundToQuantum((MagickRealType) QuantumRange*p); |
| 121 | break; |
| 122 | } |
| 123 | case 1: |
| 124 | { |
| 125 | *red=RoundToQuantum((MagickRealType) QuantumRange*q); |
| 126 | *green=RoundToQuantum((MagickRealType) QuantumRange*brightness); |
| 127 | *blue=RoundToQuantum((MagickRealType) QuantumRange*p); |
| 128 | break; |
| 129 | } |
| 130 | case 2: |
| 131 | { |
| 132 | *red=RoundToQuantum((MagickRealType) QuantumRange*p); |
| 133 | *green=RoundToQuantum((MagickRealType) QuantumRange*brightness); |
| 134 | *blue=RoundToQuantum((MagickRealType) QuantumRange*t); |
| 135 | break; |
| 136 | } |
| 137 | case 3: |
| 138 | { |
| 139 | *red=RoundToQuantum((MagickRealType) QuantumRange*p); |
| 140 | *green=RoundToQuantum((MagickRealType) QuantumRange*q); |
| 141 | *blue=RoundToQuantum((MagickRealType) QuantumRange*brightness); |
| 142 | break; |
| 143 | } |
| 144 | case 4: |
| 145 | { |
| 146 | *red=RoundToQuantum((MagickRealType) QuantumRange*t); |
| 147 | *green=RoundToQuantum((MagickRealType) QuantumRange*p); |
| 148 | *blue=RoundToQuantum((MagickRealType) QuantumRange*brightness); |
| 149 | break; |
| 150 | } |
| 151 | case 5: |
| 152 | { |
| 153 | *red=RoundToQuantum((MagickRealType) QuantumRange*brightness); |
| 154 | *green=RoundToQuantum((MagickRealType) QuantumRange*p); |
| 155 | *blue=RoundToQuantum((MagickRealType) QuantumRange*q); |
| 156 | break; |
| 157 | } |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | /* |
| 162 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 163 | % % |
| 164 | % % |
| 165 | % % |
| 166 | % C o n v e r t H S L T o R G B % |
| 167 | % % |
| 168 | % % |
| 169 | % % |
| 170 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 171 | % |
| 172 | % ConvertHSLToRGB() transforms a (hue, saturation, lightness) to a (red, |
| 173 | % green, blue) triple. |
| 174 | % |
| 175 | % The format of the ConvertHSLToRGBImage method is: |
| 176 | % |
| 177 | % void ConvertHSLToRGB(const double hue,const double saturation, |
| 178 | % const double lightness,Quantum *red,Quantum *green,Quantum *blue) |
| 179 | % |
| 180 | % A description of each parameter follows: |
| 181 | % |
| 182 | % o hue, saturation, lightness: A double value representing a |
| 183 | % component of the HSL color space. |
| 184 | % |
| 185 | % o red, green, blue: A pointer to a pixel component of type Quantum. |
| 186 | % |
| 187 | */ |
| 188 | |
| 189 | static inline MagickRealType ConvertHueToRGB(MagickRealType m1, |
| 190 | MagickRealType m2,MagickRealType hue) |
| 191 | { |
| 192 | if (hue < 0.0) |
| 193 | hue+=1.0; |
| 194 | if (hue > 1.0) |
| 195 | hue-=1.0; |
| 196 | if ((6.0*hue) < 1.0) |
| 197 | return(m1+6.0*(m2-m1)*hue); |
| 198 | if ((2.0*hue) < 1.0) |
| 199 | return(m2); |
| 200 | if ((3.0*hue) < 2.0) |
| 201 | return(m1+6.0*(m2-m1)*(2.0/3.0-hue)); |
| 202 | return(m1); |
| 203 | } |
| 204 | |
| 205 | MagickExport void ConvertHSLToRGB(const double hue,const double saturation, |
| 206 | const double lightness,Quantum *red,Quantum *green,Quantum *blue) |
| 207 | { |
| 208 | MagickRealType |
| 209 | b, |
| 210 | g, |
| 211 | r, |
| 212 | m1, |
| 213 | m2; |
| 214 | |
| 215 | /* |
| 216 | Convert HSL to RGB colorspace. |
| 217 | */ |
| 218 | assert(red != (Quantum *) NULL); |
| 219 | assert(green != (Quantum *) NULL); |
| 220 | assert(blue != (Quantum *) NULL); |
| 221 | if (saturation == 0) |
| 222 | { |
| 223 | *red=RoundToQuantum((MagickRealType) QuantumRange*lightness); |
| 224 | *green=(*red); |
| 225 | *blue=(*red); |
| 226 | return; |
| 227 | } |
| 228 | if (lightness <= 0.5) |
| 229 | m2=lightness*(saturation+1.0); |
| 230 | else |
| 231 | m2=(lightness+saturation)-(lightness*saturation); |
| 232 | m1=2.0*lightness-m2; |
| 233 | r=ConvertHueToRGB(m1,m2,hue+1.0/3.0); |
| 234 | g=ConvertHueToRGB(m1,m2,hue); |
| 235 | b=ConvertHueToRGB(m1,m2,hue-1.0/3.0); |
| 236 | *red=RoundToQuantum((MagickRealType) QuantumRange*r); |
| 237 | *green=RoundToQuantum((MagickRealType) QuantumRange*g); |
| 238 | *blue=RoundToQuantum((MagickRealType) QuantumRange*b); |
| 239 | } |
| 240 | |
| 241 | /* |
| 242 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 243 | % % |
| 244 | % % |
| 245 | % % |
| 246 | % C o n v e r t H W B T o R G B % |
| 247 | % % |
| 248 | % % |
| 249 | % % |
| 250 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 251 | % |
| 252 | % ConvertHWBToRGB() transforms a (hue, whiteness, blackness) to a (red, green, |
| 253 | % blue) triple. |
| 254 | % |
| 255 | % The format of the ConvertHWBToRGBImage method is: |
| 256 | % |
| 257 | % void ConvertHWBToRGB(const double hue,const double whiteness, |
| 258 | % const double blackness,Quantum *red,Quantum *green,Quantum *blue) |
| 259 | % |
| 260 | % A description of each parameter follows: |
| 261 | % |
| 262 | % o hue, whiteness, blackness: A double value representing a |
| 263 | % component of the HWB color space. |
| 264 | % |
| 265 | % o red, green, blue: A pointer to a pixel component of type Quantum. |
| 266 | % |
| 267 | */ |
| 268 | MagickExport void ConvertHWBToRGB(const double hue,const double whiteness, |
| 269 | const double blackness,Quantum *red,Quantum *green,Quantum *blue) |
| 270 | { |
| 271 | MagickRealType |
| 272 | b, |
| 273 | f, |
| 274 | g, |
| 275 | n, |
| 276 | r, |
| 277 | v; |
| 278 | |
| 279 | register long |
| 280 | i; |
| 281 | |
| 282 | /* |
| 283 | Convert HWB to RGB colorspace. |
| 284 | */ |
| 285 | assert(red != (Quantum *) NULL); |
| 286 | assert(green != (Quantum *) NULL); |
| 287 | assert(blue != (Quantum *) NULL); |
| 288 | v=1.0-blackness; |
| 289 | if (hue == 0.0) |
| 290 | { |
| 291 | *red=RoundToQuantum((MagickRealType) QuantumRange*v); |
| 292 | *green=RoundToQuantum((MagickRealType) QuantumRange*v); |
| 293 | *blue=RoundToQuantum((MagickRealType) QuantumRange*v); |
| 294 | return; |
| 295 | } |
| 296 | i=(long) floor(6.0*hue); |
| 297 | f=6.0*hue-i; |
| 298 | if ((i & 0x01) != 0) |
| 299 | f=1.0-f; |
| 300 | n=whiteness+f*(v-whiteness); /* linear interpolation */ |
| 301 | switch (i) |
| 302 | { |
| 303 | default: |
| 304 | case 6: |
| 305 | case 0: r=v; g=n; b=whiteness; break; |
| 306 | case 1: r=n; g=v; b=whiteness; break; |
| 307 | case 2: r=whiteness; g=v; b=n; break; |
| 308 | case 3: r=whiteness; g=n; b=v; break; |
| 309 | case 4: r=n; g=whiteness; b=v; break; |
| 310 | case 5: r=v; g=whiteness; b=n; break; |
| 311 | } |
| 312 | *red=RoundToQuantum((MagickRealType) QuantumRange*r); |
| 313 | *green=RoundToQuantum((MagickRealType) QuantumRange*g); |
| 314 | *blue=RoundToQuantum((MagickRealType) QuantumRange*b); |
| 315 | } |
| 316 | |
| 317 | /* |
| 318 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 319 | % % |
| 320 | % % |
| 321 | % % |
| 322 | % C o n v e r t R G B T o H S B % |
| 323 | % % |
| 324 | % % |
| 325 | % % |
| 326 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 327 | % |
| 328 | % ConvertRGBToHSB() transforms a (red, green, blue) to a (hue, saturation, |
| 329 | % brightness) triple. |
| 330 | % |
| 331 | % The format of the ConvertRGBToHSB method is: |
| 332 | % |
| 333 | % void ConvertRGBToHSB(const Quantum red,const Quantum green, |
| 334 | % const Quantum blue,double *hue,double *saturation,double *brightness) |
| 335 | % |
| 336 | % A description of each parameter follows: |
| 337 | % |
| 338 | % o red, green, blue: A Quantum value representing the red, green, and |
| 339 | % blue component of a pixel.. |
| 340 | % |
| 341 | % o hue, saturation, brightness: A pointer to a double value representing a |
| 342 | % component of the HSB color space. |
| 343 | % |
| 344 | */ |
| 345 | MagickExport void ConvertRGBToHSB(const Quantum red,const Quantum green, |
| 346 | const Quantum blue,double *hue,double *saturation,double *brightness) |
| 347 | { |
| 348 | MagickRealType |
| 349 | delta, |
| 350 | max, |
| 351 | min; |
| 352 | |
| 353 | /* |
| 354 | Convert RGB to HSB colorspace. |
| 355 | */ |
| 356 | assert(hue != (double *) NULL); |
| 357 | assert(saturation != (double *) NULL); |
| 358 | assert(brightness != (double *) NULL); |
| 359 | *hue=0.0; |
| 360 | *saturation=0.0; |
| 361 | *brightness=0.0; |
| 362 | min=(MagickRealType) (red < green ? red : green); |
| 363 | if ((MagickRealType) blue < min) |
| 364 | min=(MagickRealType) blue; |
| 365 | max=(MagickRealType) (red > green ? red : green); |
| 366 | if ((MagickRealType) blue > max) |
| 367 | max=(MagickRealType) blue; |
| 368 | if (max == 0.0) |
| 369 | return; |
| 370 | delta=max-min; |
| 371 | *saturation=(double) (delta/max); |
| 372 | *brightness=(double) (QuantumScale*max); |
| 373 | if (delta == 0.0) |
| 374 | return; |
| 375 | if ((MagickRealType) red == max) |
| 376 | *hue=(double) ((green-(MagickRealType) blue)/delta); |
| 377 | else |
| 378 | if ((MagickRealType) green == max) |
| 379 | *hue=(double) (2.0+(blue-(MagickRealType) red)/delta); |
| 380 | else |
| 381 | *hue=(double) (4.0+(red-(MagickRealType) green)/delta); |
| 382 | *hue/=6.0; |
| 383 | if (*hue < 0.0) |
| 384 | *hue+=1.0; |
| 385 | } |
| 386 | |
| 387 | /* |
| 388 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 389 | % % |
| 390 | % % |
| 391 | % % |
| 392 | % C o n v e r t R G B T o H S L % |
| 393 | % % |
| 394 | % % |
| 395 | % % |
| 396 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 397 | % |
| 398 | % ConvertRGBToHSL() transforms a (red, green, blue) to a (hue, saturation, |
| 399 | % lightness) triple. |
| 400 | % |
| 401 | % The format of the ConvertRGBToHSL method is: |
| 402 | % |
| 403 | % void ConvertRGBToHSL(const Quantum red,const Quantum green, |
| 404 | % const Quantum blue,double *hue,double *saturation,double *lightness) |
| 405 | % |
| 406 | % A description of each parameter follows: |
| 407 | % |
| 408 | % o red, green, blue: A Quantum value representing the red, green, and |
| 409 | % blue component of a pixel.. |
| 410 | % |
| 411 | % o hue, saturation, lightness: A pointer to a double value representing a |
| 412 | % component of the HSL color space. |
| 413 | % |
| 414 | */ |
| 415 | |
| 416 | static inline double MagickMax(const double x,const double y) |
| 417 | { |
| 418 | if (x > y) |
| 419 | return(x); |
| 420 | return(y); |
| 421 | } |
| 422 | |
| 423 | static inline double MagickMin(const double x,const double y) |
| 424 | { |
| 425 | if (x < y) |
| 426 | return(x); |
| 427 | return(y); |
| 428 | } |
| 429 | |
| 430 | MagickExport void ConvertRGBToHSL(const Quantum red,const Quantum green, |
| 431 | const Quantum blue,double *hue,double *saturation,double *lightness) |
| 432 | { |
| 433 | MagickRealType |
| 434 | b, |
| 435 | delta, |
| 436 | g, |
| 437 | max, |
| 438 | min, |
| 439 | r; |
| 440 | |
| 441 | /* |
| 442 | Convert RGB to HSL colorspace. |
| 443 | */ |
| 444 | assert(hue != (double *) NULL); |
| 445 | assert(saturation != (double *) NULL); |
| 446 | assert(lightness != (double *) NULL); |
| 447 | r=QuantumScale*red; |
| 448 | g=QuantumScale*green; |
| 449 | b=QuantumScale*blue; |
| 450 | max=MagickMax(r,MagickMax(g,b)); |
| 451 | min=MagickMin(r,MagickMin(g,b)); |
| 452 | *lightness=(double) ((min+max)/2.0); |
| 453 | delta=max-min; |
| 454 | if (delta == 0.0) |
| 455 | { |
| 456 | *hue=0.0; |
| 457 | *saturation=0.0; |
| 458 | return; |
| 459 | } |
| 460 | if (*lightness < 0.5) |
| 461 | *saturation=(double) (delta/(min+max)); |
| 462 | else |
| 463 | *saturation=(double) (delta/(2.0-max-min)); |
| 464 | if (r == max) |
| 465 | *hue=((((max-b)/6.0)+(delta/2.0))-(((max-g)/6.0)+(delta/2.0)))/delta; |
| 466 | else |
| 467 | if (g == max) |
| 468 | *hue=(1.0/3.0)+((((max-r)/6.0)+(delta/2.0))-(((max-b)/6.0)+(delta/2.0)))/ |
| 469 | delta; |
| 470 | else |
| 471 | if (b == max) |
| 472 | *hue=(2.0/3.0)+((((max-g)/6.0)+(delta/2.0))-(((max-r)/6.0)+ |
| 473 | (delta/2.0)))/delta; |
| 474 | if (*hue < 0.0) |
| 475 | *hue+=1.0; |
| 476 | if (*hue > 1.0) |
| 477 | *hue-=1.0; |
| 478 | } |
| 479 | |
| 480 | /* |
| 481 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 482 | % % |
| 483 | % % |
| 484 | % % |
| 485 | % C o n v e r t R G B T o H W B % |
| 486 | % % |
| 487 | % % |
| 488 | % % |
| 489 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 490 | % |
| 491 | % ConvertRGBToHWB() transforms a (red, green, blue) to a (hue, whiteness, |
| 492 | % blackness) triple. |
| 493 | % |
| 494 | % The format of the ConvertRGBToHWB method is: |
| 495 | % |
| 496 | % void ConvertRGBToHWB(const Quantum red,const Quantum green, |
| 497 | % const Quantum blue,double *hue,double *whiteness,double *blackness) |
| 498 | % |
| 499 | % A description of each parameter follows: |
| 500 | % |
| 501 | % o red, green, blue: A Quantum value representing the red, green, and |
| 502 | % blue component of a pixel. |
| 503 | % |
| 504 | % o hue, whiteness, blackness: A pointer to a double value representing a |
| 505 | % component of the HWB color space. |
| 506 | % |
| 507 | */ |
| 508 | MagickExport void ConvertRGBToHWB(const Quantum red,const Quantum green, |
| 509 | const Quantum blue,double *hue,double *whiteness,double *blackness) |
| 510 | { |
| 511 | MagickRealType |
| 512 | f, |
| 513 | v, |
| 514 | w; |
| 515 | |
| 516 | register long |
| 517 | i; |
| 518 | |
| 519 | /* |
| 520 | Convert RGB to HWB colorspace. |
| 521 | */ |
| 522 | assert(hue != (double *) NULL); |
| 523 | assert(whiteness != (double *) NULL); |
| 524 | assert(blackness != (double *) NULL); |
| 525 | w=(MagickRealType) MagickMin((double) red,MagickMin((double) green,(double) |
| 526 | blue)); |
| 527 | v=(MagickRealType) MagickMax((double) red,MagickMax((double) green,(double) |
| 528 | blue)); |
| 529 | *blackness=1.0-QuantumScale*v; |
| 530 | *whiteness=QuantumScale*w; |
| 531 | if (v == w) |
| 532 | { |
| 533 | *hue=0.0; |
| 534 | return; |
| 535 | } |
| 536 | f=((MagickRealType) red == w) ? green-(MagickRealType) blue : |
| 537 | (((MagickRealType) green == w) ? blue-(MagickRealType) red : red- |
| 538 | (MagickRealType) green); |
| 539 | i=((MagickRealType) red == w) ? 3 : (((MagickRealType) green == w) ? 5 : 1); |
| 540 | *hue=((double) i-f/(v-1.0*w))/6.0; |
| 541 | } |
| 542 | |
| 543 | /* |
| 544 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 545 | % % |
| 546 | % % |
| 547 | % % |
| 548 | % E x p a n d A f f i n e % |
| 549 | % % |
| 550 | % % |
| 551 | % % |
| 552 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 553 | % |
| 554 | % ExpandAffine() computes the affine's expansion factor, i.e. the square root |
| 555 | % of the factor by which the affine transform affects area. In an affine |
| 556 | % transform composed of scaling, rotation, shearing, and translation, returns |
| 557 | % the amount of scaling. |
| 558 | % |
| 559 | % The format of the ExpandAffine method is: |
| 560 | % |
| 561 | % double ExpandAffine(const AffineMatrix *affine) |
| 562 | % |
| 563 | % A description of each parameter follows: |
| 564 | % |
| 565 | % o expansion: Method ExpandAffine returns the affine's expansion factor. |
| 566 | % |
| 567 | % o affine: A pointer the affine transform of type AffineMatrix. |
| 568 | % |
| 569 | */ |
| 570 | MagickExport double ExpandAffine(const AffineMatrix *affine) |
| 571 | { |
| 572 | assert(affine != (const AffineMatrix *) NULL); |
| 573 | return(sqrt(fabs(affine->sx*affine->sy-affine->rx*affine->ry))); |
| 574 | } |
| 575 | |
| 576 | /* |
| 577 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 578 | % % |
| 579 | % % |
| 580 | % % |
| 581 | % G e n e r a t e D i f f e r e n t i a l N o i s e % |
| 582 | % % |
| 583 | % % |
| 584 | % % |
| 585 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 586 | % |
cristy | 82b1583 | 2009-10-06 19:17:37 +0000 | [diff] [blame^] | 587 | % GenerateDifferentialNoise() generates differentual noise. |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 588 | % |
| 589 | % The format of the GenerateDifferentialNoise method is: |
| 590 | % |
| 591 | % double GenerateDifferentialNoise(RandomInfo *random_info, |
| 592 | % const Quantum pixel,const NoiseType noise_type, |
| 593 | % const MagickRealType attenuate) |
| 594 | % |
| 595 | % A description of each parameter follows: |
| 596 | % |
| 597 | % o random_info: the random info. |
| 598 | % |
| 599 | % o pixel: noise is relative to this pixel value. |
| 600 | % |
| 601 | % o noise_type: the type of noise. |
| 602 | % |
| 603 | % o attenuate: attenuate the noise. |
| 604 | % |
| 605 | */ |
| 606 | MagickExport double GenerateDifferentialNoise(RandomInfo *random_info, |
| 607 | const Quantum pixel,const NoiseType noise_type,const MagickRealType attenuate) |
| 608 | { |
| 609 | #define NoiseEpsilon (attenuate*1.0e-5) |
| 610 | #define SigmaUniform ScaleCharToQuantum((unsigned char) (attenuate*4.0+0.5)) |
| 611 | #define SigmaGaussian ScaleCharToQuantum((unsigned char) (attenuate*4.0+0.5)) |
| 612 | #define SigmaImpulse (attenuate*0.10) |
| 613 | #define SigmaLaplacian ScaleCharToQuantum((unsigned char) (attenuate*10.0+0.5)) |
| 614 | #define SigmaMultiplicativeGaussian \ |
| 615 | ScaleCharToQuantum((unsigned char) (attenuate*1.0+0.5)) |
| 616 | #define SigmaPoisson (attenuate*0.05) |
| 617 | #define TauGaussian ScaleCharToQuantum((unsigned char) (attenuate*20.0+0.5)) |
| 618 | |
| 619 | MagickRealType |
| 620 | alpha, |
| 621 | beta, |
| 622 | noise, |
| 623 | sigma; |
| 624 | |
| 625 | alpha=GetPseudoRandomValue(random_info); |
| 626 | if (alpha == 0.0) |
| 627 | alpha=1.0; |
| 628 | switch (noise_type) |
| 629 | { |
| 630 | case UniformNoise: |
| 631 | default: |
| 632 | { |
| 633 | noise=(MagickRealType) pixel+SigmaUniform*(alpha-0.5); |
| 634 | break; |
| 635 | } |
| 636 | case GaussianNoise: |
| 637 | { |
| 638 | MagickRealType |
| 639 | tau; |
| 640 | |
| 641 | beta=GetPseudoRandomValue(random_info); |
| 642 | sigma=sqrt(-2.0*log((double) alpha))*cos((double) (2.0*MagickPI*beta)); |
| 643 | tau=sqrt(-2.0*log((double) alpha))*sin((double) (2.0*MagickPI*beta)); |
| 644 | noise=(MagickRealType) pixel+sqrt((double) pixel)*SigmaGaussian*sigma+ |
| 645 | TauGaussian*tau; |
| 646 | break; |
| 647 | } |
| 648 | case MultiplicativeGaussianNoise: |
| 649 | { |
| 650 | if (alpha <= NoiseEpsilon) |
| 651 | sigma=(MagickRealType) QuantumRange; |
| 652 | else |
| 653 | sigma=sqrt(-2.0*log((double) alpha)); |
| 654 | beta=GetPseudoRandomValue(random_info); |
| 655 | noise=(MagickRealType) pixel+pixel*SigmaMultiplicativeGaussian*sigma/2.0* |
| 656 | cos((double) (2.0*MagickPI*beta)); |
| 657 | break; |
| 658 | } |
| 659 | case ImpulseNoise: |
| 660 | { |
| 661 | if (alpha < (SigmaImpulse/2.0)) |
| 662 | noise=0.0; |
| 663 | else |
| 664 | if (alpha >= (1.0-(SigmaImpulse/2.0))) |
| 665 | noise=(MagickRealType) QuantumRange; |
| 666 | else |
| 667 | noise=(MagickRealType) pixel; |
| 668 | break; |
| 669 | } |
| 670 | case LaplacianNoise: |
| 671 | { |
| 672 | if (alpha <= 0.5) |
| 673 | { |
| 674 | if (alpha <= NoiseEpsilon) |
| 675 | noise=(MagickRealType) pixel-(MagickRealType) QuantumRange; |
| 676 | else |
| 677 | noise=(MagickRealType) pixel+ScaleCharToQuantum((unsigned char) |
| 678 | (SigmaLaplacian*log((double) (2.0*alpha))+0.5)); |
| 679 | break; |
| 680 | } |
| 681 | beta=1.0-alpha; |
| 682 | if (beta <= (0.5*NoiseEpsilon)) |
| 683 | noise=(MagickRealType) (pixel+QuantumRange); |
| 684 | else |
| 685 | noise=(MagickRealType) pixel-ScaleCharToQuantum((unsigned char) |
| 686 | (SigmaLaplacian*log((double) (2.0*beta))+0.5)); |
| 687 | break; |
| 688 | } |
| 689 | case PoissonNoise: |
| 690 | { |
| 691 | MagickRealType |
| 692 | poisson; |
| 693 | |
| 694 | register long |
| 695 | i; |
| 696 | |
| 697 | poisson=exp(-SigmaPoisson*(double) ScaleQuantumToChar(pixel)); |
| 698 | for (i=0; alpha > poisson; i++) |
| 699 | { |
| 700 | beta=GetPseudoRandomValue(random_info); |
| 701 | alpha*=beta; |
| 702 | } |
| 703 | noise=(MagickRealType) ScaleCharToQuantum((unsigned char) |
| 704 | (i/SigmaPoisson)); |
| 705 | break; |
| 706 | } |
| 707 | case RandomNoise: |
| 708 | { |
| 709 | noise=(MagickRealType) QuantumRange*GetPseudoRandomValue(random_info); |
| 710 | break; |
| 711 | } |
| 712 | } |
| 713 | return(noise); |
| 714 | } |
| 715 | |
| 716 | /* |
| 717 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 718 | % % |
| 719 | % % |
| 720 | % % |
| 721 | % G e t O p t i m a l K e r n e l W i d t h % |
| 722 | % % |
| 723 | % % |
| 724 | % % |
| 725 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 726 | % |
| 727 | % GetOptimalKernelWidth() computes the optimal kernel radius for a convolution |
| 728 | % filter. Start with the minimum value of 3 pixels and walk out until we drop |
| 729 | % below the threshold of one pixel numerical accuracy. |
| 730 | % |
| 731 | % The format of the GetOptimalKernelWidth method is: |
| 732 | % |
| 733 | % unsigned long GetOptimalKernelWidth(const double radius, |
| 734 | % const double sigma) |
| 735 | % |
| 736 | % A description of each parameter follows: |
| 737 | % |
| 738 | % o width: Method GetOptimalKernelWidth returns the optimal width of |
| 739 | % a convolution kernel. |
| 740 | % |
| 741 | % o radius: the radius of the Gaussian, in pixels, not counting the center |
| 742 | % pixel. |
| 743 | % |
| 744 | % o sigma: the standard deviation of the Gaussian, in pixels. |
| 745 | % |
| 746 | */ |
| 747 | MagickExport unsigned long GetOptimalKernelWidth1D(const double radius, |
| 748 | const double sigma) |
| 749 | { |
| 750 | long |
| 751 | width; |
| 752 | |
| 753 | MagickRealType |
| 754 | normalize, |
| 755 | value; |
| 756 | |
| 757 | register long |
| 758 | u; |
| 759 | |
| 760 | (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); |
| 761 | if (radius > 0.0) |
| 762 | return((unsigned long) (2.0*ceil(radius)+1.0)); |
| 763 | if (fabs(sigma) <= MagickEpsilon) |
| 764 | return(1); |
| 765 | for (width=5; ; ) |
| 766 | { |
| 767 | normalize=0.0; |
| 768 | for (u=(-width/2); u <= (width/2); u++) |
| 769 | normalize+=exp(-((double) u*u)/(2.0*sigma*sigma))/(MagickSQ2PI*sigma); |
| 770 | u=width/2; |
| 771 | value=exp(-((double) u*u)/(2.0*sigma*sigma))/(MagickSQ2PI*sigma)/normalize; |
| 772 | if ((long) (QuantumRange*value) <= 0L) |
| 773 | break; |
| 774 | width+=2; |
| 775 | } |
| 776 | return((unsigned long) (width-2)); |
| 777 | } |
| 778 | |
| 779 | MagickExport unsigned long GetOptimalKernelWidth2D(const double radius, |
| 780 | const double sigma) |
| 781 | { |
| 782 | |
| 783 | long |
| 784 | width; |
| 785 | |
| 786 | MagickRealType |
| 787 | alpha, |
| 788 | normalize, |
| 789 | value; |
| 790 | |
| 791 | register long |
| 792 | u, |
| 793 | v; |
| 794 | |
| 795 | (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); |
| 796 | if (radius > 0.0) |
| 797 | return((unsigned long) (2.0*ceil(radius)+1.0)); |
| 798 | if (fabs(sigma) <= MagickEpsilon) |
| 799 | return(1); |
| 800 | for (width=5; ; ) |
| 801 | { |
| 802 | normalize=0.0; |
| 803 | for (v=(-width/2); v <= (width/2); v++) |
| 804 | { |
| 805 | for (u=(-width/2); u <= (width/2); u++) |
| 806 | { |
| 807 | alpha=exp(-((double) u*u+v*v)/(2.0*sigma*sigma)); |
| 808 | normalize+=alpha/(2.0*MagickPI*sigma*sigma); |
| 809 | } |
| 810 | } |
| 811 | v=width/2; |
| 812 | value=exp(-((double) v*v)/(2.0*sigma*sigma))/normalize; |
| 813 | if ((long) (QuantumRange*value) <= 0L) |
| 814 | break; |
| 815 | width+=2; |
| 816 | } |
| 817 | return((unsigned long) (width-2)); |
| 818 | } |
| 819 | |
| 820 | MagickExport unsigned long GetOptimalKernelWidth(const double radius, |
| 821 | const double sigma) |
| 822 | { |
| 823 | return(GetOptimalKernelWidth1D(radius,sigma)); |
| 824 | } |