| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <fp16.h> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/AlignedAllocator.h> |
| #include <xnnpack/params-init.h> |
| #include <xnnpack/params.h> |
| |
| |
| static inline bool is_fp16_zero(uint16_t x) { |
| const uint16_t two_x = x + x; |
| return two_x == 0; |
| } |
| |
| class SpMMMicrokernelTester { |
| public: |
| enum class Variant { |
| Native, |
| Scalar, |
| }; |
| |
| inline SpMMMicrokernelTester& mr(size_t mr) { |
| this->mr_ = mr; |
| return *this; |
| } |
| |
| inline size_t mr() const { |
| return this->mr_; |
| } |
| |
| inline SpMMMicrokernelTester& nr(size_t nr) { |
| this->nr_ = nr; |
| return *this; |
| } |
| |
| inline size_t nr() const { |
| return this->nr_; |
| } |
| |
| inline SpMMMicrokernelTester& m(size_t m) { |
| this->m_ = m; |
| return *this; |
| } |
| |
| inline size_t m() const { |
| return this->m_; |
| } |
| |
| inline SpMMMicrokernelTester& n(size_t n) { |
| this->n_ = n; |
| return *this; |
| } |
| |
| inline size_t n() const { |
| return this->n_; |
| } |
| |
| inline SpMMMicrokernelTester& k(size_t k) { |
| this->k_ = k; |
| return *this; |
| } |
| |
| inline size_t k() const { |
| return this->k_; |
| } |
| |
| inline SpMMMicrokernelTester& output_stride(size_t output_stride) { |
| assert(output_stride != 0); |
| this->output_stride_ = output_stride; |
| return *this; |
| } |
| |
| inline size_t output_stride() const { |
| if (this->output_stride_ == 0) { |
| return m(); |
| } else { |
| assert(this->output_stride_ >= m()); |
| return this->output_stride_; |
| } |
| } |
| |
| inline SpMMMicrokernelTester& sparsity(float sparsity) { |
| this->sparsity_ = sparsity; |
| return *this; |
| } |
| |
| inline float sparsity() const { |
| return this->sparsity_; |
| } |
| |
| inline SpMMMicrokernelTester& qmin(uint8_t qmin) { |
| this->qmin_ = qmin; |
| return *this; |
| } |
| |
| inline uint8_t qmin() const { |
| return this->qmin_; |
| } |
| |
| inline SpMMMicrokernelTester& qmax(uint8_t qmax) { |
| this->qmax_ = qmax; |
| return *this; |
| } |
| |
| inline uint8_t qmax() const { |
| return this->qmax_; |
| } |
| |
| inline SpMMMicrokernelTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void Test(xnn_f32_spmm_minmax_ukernel_function spmm, Variant variant = Variant::Native) const { |
| ASSERT_GE(m(), 1); |
| ASSERT_GE(n(), 1); |
| ASSERT_GE(k(), 1); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng); |
| auto prng = std::bind(std::uniform_real_distribution<float>(), rng); |
| |
| std::vector<float, AlignedAllocator<float, 64>> input(k() * m()); |
| // Think of b as (n/nr + n % nr) x k, expansion happens later. |
| const size_t ncols = n() / nr() + n() % nr(); |
| std::vector<float> b(ncols * k()); |
| std::vector<float> bias(n()); |
| // Number of non-zero weights per N (output channel). |
| std::vector<uint32_t> nmap(n()); |
| // Mapping from index of non-zero weight to increment of K (input channel) following this index. |
| std::vector<int32_t> dmap(n() * k()); |
| std::vector<float> w(n() * k() + n()); |
| std::vector<float> output((n() - 1) * output_stride() + m()); |
| std::vector<float> output_ref(n() * m()); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::generate(b.begin(), b.end(), std::ref(f32rng)); |
| std::generate(bias.begin(), bias.end(), std::ref(f32rng)); |
| std::fill(output.begin(), output.end(), nanf("")); |
| std::fill(output_ref.begin(), output_ref.end(), 0.0f); |
| std::fill(nmap.begin(), nmap.end(), 0); |
| std::fill(dmap.begin(), dmap.end(), 0); |
| std::fill(w.begin(), w.end(), 0.0f); |
| |
| for (float& b_value : b) { |
| if (prng() <= sparsity()) { |
| b_value = 0.0f; |
| } |
| } |
| |
| uint32_t nnz = 0; |
| uint32_t wcnt = 0; |
| size_t last_kk = 0; |
| bool first_nzz = true; |
| size_t first_kk = 0; |
| for (size_t nn = 0; nn < n() / nr(); nn++) { |
| for (size_t i = 0; i < nr(); ++i) |
| w[wcnt++] = bias[nr() * nn + i]; |
| for (size_t kk = 0; kk < k(); kk++) { |
| if (b[nn * k() + kk] != 0.0f) { |
| // Every non-zero actually corresponds to nr adjacent non-zeros. |
| for (size_t i = 0; i < nr(); ++i) |
| w[wcnt++] = b[nn * k() + kk] + static_cast<float>(i); |
| // Skip the very first non-zero weight as we record only the difference. |
| if (first_nzz) { |
| first_kk = kk; |
| } else { |
| const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(float)); |
| dmap[nnz++] = increment; |
| } |
| last_kk = kk; |
| first_nzz = false; |
| nmap[nn] += 1; |
| } |
| } |
| } |
| |
| // now we've constructed the matrix for the blocked part and switch to the |
| // leftovers, which we do as nr=1 always. |
| for (size_t nn = n() / nr(); nn < ncols; nn++) { |
| w[wcnt++] = bias[(n() / nr()) * nr() + (nn - n() / nr())]; |
| for (size_t kk = 0; kk < k(); kk++) { |
| if (b[nn * k() + kk] != 0.0f) { |
| // Every non-zero actually corresponds to nr adjacent non-zeros. |
| w[wcnt++] = b[nn * k() + kk]; |
| // Skip the very first non-zero weight as we record only the difference. |
| if (first_nzz) { |
| first_kk = kk; |
| } else { |
| const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(float)); |
| dmap[nnz++] = increment; |
| } |
| last_kk = kk; |
| first_nzz = false; |
| nmap[nn] += 1; |
| } |
| } |
| } |
| // In the end, we must return input pointer to the initial value. |
| const int64_t increment = int32_t(first_kk - last_kk) * int32_t(m() * sizeof(float)); |
| dmap[nnz++] = increment; |
| |
| // Generate expanded b which will be used in reference calculation. |
| // Everywhere there is input non-zero in the original we copy it and add an |
| // adjacent non-zero with incremented weight value. |
| std::vector<float> b_full(n() * k()); |
| if (nr() == 1) { |
| b_full = b; |
| } |
| else { |
| for (size_t nn = 0; nn < n() / nr(); nn++) { |
| for (size_t kk = 0; kk < k(); kk++) { |
| if (b[nn * k() + kk] != 0.0f) { |
| for (size_t i = 0; i < nr(); ++i) |
| b_full[nr() * nn * k() + i * k() + kk] = b[nn * k() + kk] + static_cast<float>(i); |
| } |
| } |
| } |
| for (size_t nn = n() / nr(); nn < ncols; nn++) { |
| for (size_t kk = 0; kk < k(); kk++) { |
| if (b[nn * k() + kk] != 0.0f) { |
| b_full[nr() * (n() / nr()) * k() + (nn - n() / nr()) * k() + kk] = b[nn * k() + kk]; |
| } |
| } |
| } |
| } |
| |
| for (size_t oc = 0; oc < n(); oc++) { |
| for (size_t pxb = 0; pxb < m(); pxb++) { |
| output_ref[oc * m() + pxb] = bias[oc]; |
| for (size_t ic = 0; ic < k(); ic++) { |
| output_ref[oc * m() + pxb] += input[ic * m() + pxb] * b_full[oc * k() + ic]; |
| } |
| } |
| } |
| |
| // Micro-kernel can access one element beyond w and dmap for software pipelining. |
| w.resize(wcnt + 1); |
| dmap.resize(nnz + 1); |
| |
| // Compute clamping parameters. |
| const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin()); |
| const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax()); |
| |
| // Clamp reference results. |
| for (float& output_value : output_ref) { |
| output_value = std::min(std::max(output_value, output_min), output_max); |
| } |
| |
| // Prepare parameters. |
| xnn_f32_minmax_params params = { }; |
| switch (variant) { |
| case Variant::Native: |
| params = xnn_init_f32_minmax_params(output_min, output_max); |
| break; |
| case Variant::Scalar: |
| params = xnn_init_scalar_f32_minmax_params(output_min, output_max); |
| break; |
| } |
| |
| spmm(m() * sizeof(float), n(), |
| input.data() + first_kk * m(), |
| w.data(), dmap.data(), nmap.data(), |
| output.data(), output_stride() * sizeof(float), |
| ¶ms); |
| |
| // Validate micro-kernel outputs. |
| for (size_t i = 0; i < m(); i++) { |
| for (size_t j = 0; j < n(); j++) { |
| ASSERT_NEAR( |
| output[j * output_stride() + i], |
| output_ref[j * m() + i], |
| std::abs(output_ref[j * m() + i]) * 1.0e-6f) |
| << "at M index " << i << " / " << m() << " (tile " << mr() << ")" |
| << ", N index " << j << " / " << n() << " (tile " << nr() << ")" |
| << ", K = " << k(); |
| } |
| } |
| } |
| } |
| |
| void Test(xnn_f16_spmm_minmax_ukernel_function spmm) const { |
| ASSERT_GE(m(), 1); |
| ASSERT_GE(n(), 1); |
| ASSERT_GE(k(), 1); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng); |
| auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
| auto prng = std::bind(std::uniform_real_distribution<float>(), rng); |
| |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> input(k() * m()); |
| // Think of b as (n/nr + n % nr) x k, expansion happens later. |
| const size_t ncols = n() / nr() + n() % nr(); |
| std::vector<uint16_t> b(ncols * k()); |
| std::vector<uint16_t> bias(n()); |
| // Number of non-zero weights per N (output channel). |
| std::vector<uint32_t> nmap(n()); |
| // Mapping from index of non-zero weight to increment of K (input channel) following this index. |
| std::vector<int32_t> dmap(n() * k()); |
| std::vector<uint16_t> w(n() * k() + n()); |
| std::vector<uint16_t> output((n() - 1) * output_stride() + m()); |
| std::vector<float> output_ref(n() * m()); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(input.begin(), input.end(), std::ref(f16rng)); |
| std::generate(b.begin(), b.end(), std::ref(f16rng)); |
| std::generate(bias.begin(), bias.end(), std::ref(f16rng)); |
| std::fill(output.begin(), output.end(), 0xC000); |
| std::fill(output_ref.begin(), output_ref.end(), 0.0f); |
| std::fill(nmap.begin(), nmap.end(), 0); |
| std::fill(dmap.begin(), dmap.end(), 0); |
| std::fill(w.begin(), w.end(), 0); |
| |
| for (uint16_t& b_value : b) { |
| if (prng() <= sparsity()) { |
| b_value = 0; |
| } |
| } |
| |
| uint32_t nnz = 0; |
| uint32_t wcnt = 0; |
| size_t last_kk = 0; |
| bool first_nzz = true; |
| size_t first_kk = 0; |
| for (size_t nn = 0; nn < n() / nr(); nn++) { |
| for (size_t i = 0; i < nr(); ++i) |
| w[wcnt++] = bias[nr() * nn + i]; |
| for (size_t kk = 0; kk < k(); kk++) { |
| if (!is_fp16_zero(b[nn * k() + kk])) { |
| // Every non-zero actually corresponds to nr adjacent non-zeros. |
| for (size_t i = 0; i < nr(); ++i) |
| w[wcnt++] = fp16_ieee_from_fp32_value(fp16_ieee_to_fp32_value(b[nn * k() + kk]) + static_cast<float>(i)); |
| // Skip the very first non-zero weight as we record only the difference. |
| if (first_nzz) { |
| first_kk = kk; |
| } else { |
| const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(uint16_t)); |
| dmap[nnz++] = increment; |
| } |
| last_kk = kk; |
| first_nzz = false; |
| nmap[nn] += 1; |
| } |
| } |
| } |
| |
| // now we've constructed the matrix for the blocked part and switch to the |
| // leftovers, which we do as nr=1 always. |
| for (size_t nn = n() / nr(); nn < ncols; nn++) { |
| w[wcnt++] = bias[(n() / nr()) * nr() + (nn - n() / nr())]; |
| for (size_t kk = 0; kk < k(); kk++) { |
| if (!is_fp16_zero(b[nn * k() + kk])) { |
| // Every non-zero actually corresponds to nr adjacent non-zeros. |
| w[wcnt++] = b[nn * k() + kk]; |
| // Skip the very first non-zero weight as we record only the difference. |
| if (first_nzz) { |
| first_kk = kk; |
| } else { |
| const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(uint16_t)); |
| dmap[nnz++] = increment; |
| } |
| last_kk = kk; |
| first_nzz = false; |
| nmap[nn] += 1; |
| } |
| } |
| } |
| // In the end, we must return input pointer to the initial value. |
| const int64_t increment = int32_t(first_kk - last_kk) * int32_t(m() * sizeof(uint16_t)); |
| dmap[nnz++] = increment; |
| |
| // Generate expanded b which will be used in reference calculation. |
| // Everywhere there is input non-zero in the original we copy it and add an |
| // adjacent non-zero with incremented weight value. |
| std::vector<uint16_t> b_full(n() * k()); |
| if (nr() == 1) { |
| b_full = b; |
| } |
| else { |
| for (size_t nn = 0; nn < n() / nr(); nn++) { |
| for (size_t kk = 0; kk < k(); kk++) { |
| if (b[nn * k() + kk] != 0.0f) { |
| for (size_t i = 0; i < nr(); ++i) |
| b_full[nr() * nn * k() + i * k() + kk] = fp16_ieee_from_fp32_value( |
| fp16_ieee_to_fp32_value(b[nn * k() + kk]) + static_cast<float>(i)); |
| } |
| } |
| } |
| for (size_t nn = n() / nr(); nn < ncols; nn++) { |
| for (size_t kk = 0; kk < k(); kk++) { |
| if (b[nn * k() + kk] != 0.0f) { |
| b_full[nr() * (n() / nr()) * k() + (nn - n() / nr()) * k() + kk] = b[nn * k() + kk]; |
| } |
| } |
| } |
| } |
| |
| for (size_t oc = 0; oc < n(); oc++) { |
| for (size_t pxb = 0; pxb < m(); pxb++) { |
| output_ref[oc * m() + pxb] = fp16_ieee_to_fp32_value(bias[oc]); |
| for (size_t ic = 0; ic < k(); ic++) { |
| output_ref[oc * m() + pxb] += fp16_ieee_to_fp32_value(input[ic * m() + pxb]) * fp16_ieee_to_fp32_value(b_full[oc * k() + ic]); |
| } |
| } |
| } |
| |
| // Micro-kernel can access one element beyond w and dmap for software pipelining. |
| w.resize(wcnt + 1); |
| dmap.resize(nnz + 1); |
| |
| // Compute clamping parameters. |
| const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
| const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
| const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin()); |
| const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax()); |
| |
| // Clamp reference results. |
| for (float& output_value : output_ref) { |
| output_value = std::min(std::max(output_value, output_min), output_max); |
| } |
| |
| // Prepare parameters. |
| xnn_f16_scaleminmax_params params; |
| params.scale = UINT16_C(0x3C00) /* 1.0 */; |
| params.max = fp16_ieee_from_fp32_value(output_max); |
| params.min = fp16_ieee_from_fp32_value(output_min); |
| |
| spmm(m() * sizeof(uint16_t), n(), |
| input.data() + first_kk * m(), |
| w.data(), dmap.data(), nmap.data(), |
| output.data(), output_stride() * sizeof(uint16_t), |
| ¶ms); |
| |
| // Validate micro-kernel outputs. |
| for (size_t i = 0; i < m(); i++) { |
| for (size_t j = 0; j < n(); j++) { |
| ASSERT_NEAR( |
| fp16_ieee_to_fp32_value(output[j * output_stride() + i]), |
| output_ref[j * m() + i], |
| std::max(1.0e-4f, std::abs(output_ref[j * m() + i]) * 1.0e-2f)) |
| << "at M index " << i << " / " << m() << " (tile " << mr() << ")" |
| << ", N index " << j << " / " << n() << " (tile " << nr() << ")" |
| << ", K = " << k(); |
| } |
| } |
| } |
| } |
| |
| private: |
| size_t mr_{1}; |
| size_t nr_{1}; |
| size_t m_{1}; |
| size_t n_{1}; |
| size_t k_{1}; |
| size_t output_stride_{0}; |
| float sparsity_{0.5f}; |
| uint8_t qmin_{0}; |
| uint8_t qmax_{255}; |
| size_t iterations_{1}; |
| }; |