| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <fp16.h> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/AlignedAllocator.h> |
| #include <xnnpack/pack.h> |
| #include <xnnpack/params-init.h> |
| #include <xnnpack/params.h> |
| |
| |
| class VMulCAddCMicrokernelTester { |
| public: |
| enum class Variant { |
| Native, |
| Scalar, |
| }; |
| |
| inline VMulCAddCMicrokernelTester& channel_tile(size_t channel_tile) { |
| this->channel_tile_ = channel_tile; |
| return *this; |
| } |
| |
| inline size_t channel_tile() const { |
| return this->channel_tile_; |
| } |
| |
| inline VMulCAddCMicrokernelTester& channels(size_t channels) { |
| assert(channels != 0); |
| this->channels_ = channels; |
| return *this; |
| } |
| |
| inline size_t channels() const { |
| return this->channels_; |
| } |
| |
| inline size_t packed_channels() const { |
| return channels() % channel_tile() == 0 ? channels() : (channels() / channel_tile() + 1) * channel_tile(); |
| } |
| |
| inline VMulCAddCMicrokernelTester& rows(size_t rows) { |
| assert(rows != 0); |
| this->rows_ = rows; |
| return *this; |
| } |
| |
| inline size_t rows() const { |
| return this->rows_; |
| } |
| |
| inline VMulCAddCMicrokernelTester& input_stride(size_t input_stride) { |
| this->input_stride_ = input_stride; |
| return *this; |
| } |
| |
| inline size_t input_stride() const { |
| return this->input_stride_ == 0 ? channels() : this->input_stride_; |
| } |
| |
| inline VMulCAddCMicrokernelTester& output_stride(size_t output_stride) { |
| this->output_stride_ = output_stride; |
| return *this; |
| } |
| |
| inline size_t output_stride() const { |
| return this->output_stride_ == 0 ? channels() : this->output_stride_; |
| } |
| |
| inline VMulCAddCMicrokernelTester& inplace(bool inplace) { |
| this->inplace_ = inplace; |
| return *this; |
| } |
| |
| inline bool inplace() const { |
| return this->inplace_; |
| } |
| |
| inline VMulCAddCMicrokernelTester& qmin(uint8_t qmin) { |
| this->qmin_ = qmin; |
| return *this; |
| } |
| |
| inline uint8_t qmin() const { |
| return this->qmin_; |
| } |
| |
| inline VMulCAddCMicrokernelTester& qmax(uint8_t qmax) { |
| this->qmax_ = qmax; |
| return *this; |
| } |
| |
| inline uint8_t qmax() const { |
| return this->qmax_; |
| } |
| |
| inline VMulCAddCMicrokernelTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void Test(xnn_f16_vmulcaddc_ukernel_function vmulcaddc, Variant variant = Variant::Native) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng); |
| auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
| |
| if (inplace()) { |
| ASSERT_EQ(input_stride(), output_stride()); |
| } |
| |
| std::vector<uint16_t> x((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t)); |
| std::vector<uint16_t> scale(channels()); |
| std::vector<uint16_t> bias(channels()); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> packed_w(packed_channels() * 2); |
| std::vector<uint16_t> y((rows() - 1) * output_stride() + channels() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0)); |
| std::vector<float> y_ref(rows() * channels()); |
| |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(scale.begin(), scale.end(), std::ref(f16rng)); |
| std::generate(bias.begin(), bias.end(), std::ref(f16rng)); |
| std::generate(x.begin(), x.end(), std::ref(f16rng)); |
| if (inplace()) { |
| std::copy(x.cbegin(), x.cend(), y.begin()); |
| } else { |
| std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */); |
| } |
| const uint16_t* x_data = inplace() ? y.data() : x.data(); |
| |
| std::fill(packed_w.begin(), packed_w.end(), UINT16_C(0x7E00) /* NaN */); |
| xnn_pack_f16_vmulcaddc_w(channels(), channel_tile(), |
| scale.data(), bias.data(), packed_w.data(), nullptr); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < rows(); i++) { |
| for (size_t j = 0; j < channels(); j++) { |
| y_ref[i * channels() + j] = fp16_ieee_to_fp32_value(x_data[i * input_stride() + j]) * fp16_ieee_to_fp32_value(scale[j]) + fp16_ieee_to_fp32_value(bias[j]); |
| } |
| } |
| const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend()); |
| const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float y_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax()))); |
| const float y_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin()))); |
| |
| for (float& y_value : y_ref) { |
| y_value = std::max(std::min(y_value, y_max), y_min); |
| } |
| |
| // Prepare parameters. |
| xnn_f16_minmax_params params = xnn_init_f16_minmax_params( |
| fp16_ieee_from_fp32_value(y_min), |
| fp16_ieee_from_fp32_value(y_max)); |
| |
| // Call optimized micro-kernel. |
| vmulcaddc(rows(), channels() * sizeof(uint16_t), |
| x_data, input_stride() * sizeof(uint16_t), |
| packed_w.data(), |
| y.data(), output_stride() * sizeof(uint16_t), |
| ¶ms); |
| |
| // Verify results. |
| for (size_t i = 0; i < rows(); i++) { |
| for (size_t j = 0; j < channels(); j++) { |
| ASSERT_NEAR(fp16_ieee_to_fp32_value(y[i * output_stride() + j]), y_ref[i * channels() + j], std::max(1.0e-4f, std::abs(y_ref[i * channels() + j]) * 1.0e-2f)) |
| << "at pixel " << i << " / " << rows() |
| << ", channel = " << j << " / " << channels(); |
| } |
| } |
| } |
| } |
| |
| void Test(xnn_f32_vmulcaddc_ukernel_function vmulcaddc, Variant variant = Variant::Native) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng); |
| |
| if (inplace()) { |
| ASSERT_EQ(input_stride(), output_stride()); |
| } |
| |
| std::vector<float> x((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float)); |
| std::vector<float> scale(channels()); |
| std::vector<float> bias(channels()); |
| std::vector<float, AlignedAllocator<float, 64>> packed_w(packed_channels() * 2); |
| std::vector<float> y((rows() - 1) * output_stride() + channels() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); |
| std::vector<float> y_ref(rows() * channels()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(scale.begin(), scale.end(), std::ref(f32rng)); |
| std::generate(bias.begin(), bias.end(), std::ref(f32rng)); |
| std::generate(x.begin(), x.end(), std::ref(f32rng)); |
| if (inplace()) { |
| std::copy(x.cbegin(), x.cend(), y.begin()); |
| } else { |
| std::fill(y.begin(), y.end(), nanf("")); |
| } |
| const float* x_data = inplace() ? y.data() : x.data(); |
| |
| std::fill(packed_w.begin(), packed_w.end(), nanf("")); |
| xnn_pack_f32_vmulcaddc_w(channels(), channel_tile(), |
| scale.data(), bias.data(), packed_w.data(), nullptr); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < rows(); i++) { |
| for (size_t j = 0; j < channels(); j++) { |
| y_ref[i * channels() + j] = x_data[i * input_stride() + j] * scale[j] + bias[j]; |
| } |
| } |
| const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend()); |
| const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend()); |
| const float accumulated_range = accumulated_max - accumulated_min; |
| const float y_max = accumulated_max - accumulated_range / 255.0f * float(255 - qmax()); |
| const float y_min = accumulated_min + accumulated_range / 255.0f * float(qmin()); |
| for (float& y_value : y_ref) { |
| y_value = std::max<float>(std::min<float>(y_value, y_max), y_min); |
| } |
| |
| // Prepare parameters. |
| xnn_f32_minmax_params params = { }; |
| switch (variant) { |
| case Variant::Native: |
| params = xnn_init_f32_minmax_params(y_min, y_max); |
| break; |
| case Variant::Scalar: |
| params = xnn_init_scalar_f32_minmax_params(y_min, y_max); |
| break; |
| } |
| |
| // Call optimized micro-kernel. |
| vmulcaddc(rows(), channels() * sizeof(float), |
| x_data, input_stride() * sizeof(float), |
| packed_w.data(), |
| y.data(), output_stride() * sizeof(float), |
| ¶ms); |
| |
| // Verify results. |
| for (size_t i = 0; i < rows(); i++) { |
| for (size_t j = 0; j < channels(); j++) { |
| ASSERT_NEAR(y[i * output_stride() + j], y_ref[i * channels() + j], std::abs(y_ref[i * channels() + j]) * 1.0e-6f) |
| << "at pixel " << i << " / " << rows() |
| << ", channel = " << j << " / " << channels(); |
| } |
| } |
| } |
| } |
| |
| private: |
| size_t channel_tile_{1}; |
| size_t channels_{1}; |
| size_t rows_{1}; |
| size_t input_stride_{0}; |
| size_t output_stride_{0}; |
| bool inplace_{false}; |
| uint8_t qmin_{0}; |
| uint8_t qmax_{255}; |
| size_t iterations_{15}; |
| }; |