blob: f8ff60465cde9eacf58208fdf6af7b68cb1522f4 [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <xnnpack.h>
#include <xnnpack/allocator.h>
#include <xnnpack/operator.h>
#include <xnnpack/log.h>
#include <xnnpack/common.h>
#include <xnnpack/math.h>
#include <xnnpack/params.h>
#include <xnnpack/indirection.h>
enum xnn_status xnn_create_resize_bilinear2d_nhwc_f32(
size_t channels,
size_t input_pixel_stride,
size_t output_pixel_stride,
uint32_t flags,
xnn_operator_t* resize_op_out)
{
xnn_operator_t resize_op = NULL;
enum xnn_status status = xnn_status_uninitialized;
if (!xnn_params.initialized) {
xnn_log_error("failed to create Resize Bilinear operator: XNNPACK is not initialized");
goto error;
}
status = xnn_status_invalid_parameter;
if (channels == 0) {
xnn_log_error(
"failed to create Resize Bilinear operator with %zu channels: number of channels must be non-zero",
channels);
goto error;
}
if (input_pixel_stride < channels) {
xnn_log_error(
"failed to create Resize Bilinear operator with input pixel stride of %zu: "
"stride must be at least as large as the number of channels (%zu)",
input_pixel_stride, channels);
goto error;
}
if (output_pixel_stride < channels) {
xnn_log_error(
"failed to create Resize Bilinear operator with output pixel stride of %zu: "
"stride must be at least as large as the number of channels (%zu)",
output_pixel_stride, channels);
goto error;
}
status = xnn_status_out_of_memory;
resize_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
if (resize_op == NULL) {
xnn_log_error("failed to allocate %zu bytes for Resize Bilinear operator descriptor", sizeof(struct xnn_operator));
goto error;
}
resize_op->channels = channels;
resize_op->input_pixel_stride = input_pixel_stride;
resize_op->output_pixel_stride = output_pixel_stride;
resize_op->type = xnn_operator_type_resize_bilinear_nhwc_f32;
resize_op->ukernel.type = xnn_ukernel_type_unpooling;
resize_op->flags = flags;
resize_op->state = xnn_run_state_invalid;
*resize_op_out = resize_op;
return xnn_status_success;
error:
xnn_delete_operator(resize_op);
return status;
}
enum xnn_status xnn_setup_resize_bilinear2d_nhwc_f32(
xnn_operator_t resize_op,
size_t batch_size,
size_t input_height,
size_t input_width,
size_t output_height,
size_t output_width,
const float* input,
float* output,
pthreadpool_t threadpool)
{
if (resize_op->type != xnn_operator_type_resize_bilinear_nhwc_f32) {
xnn_log_error("failed to setup Resize Bilinear (NHWC, F32) operator: operator type mismatch");
return xnn_status_invalid_parameter;
}
resize_op->state = xnn_run_state_invalid;
if (!xnn_params.initialized) {
xnn_log_error("failed to setup Resize Bilinear operator: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (input_width == 0 || input_height == 0) {
xnn_log_error(
"failed to setup Resize Bilinear operator with %zux%zu input: input dimensions must be non-zero",
input_width, input_height);
return xnn_status_invalid_parameter;
}
if (max(input_width, input_height) >= 16777216) {
xnn_log_error(
"failed to setup Resize Bilinear operator with %zux%zu input: "
"input dimensions must be below 2**24",
input_width, input_height);
return xnn_status_unsupported_parameter;
}
if (output_width == 0 || output_height == 0) {
xnn_log_error(
"failed to setup Resize Bilinear operator with %zux%zu output: output dimensions must be non-zero",
output_width, output_height);
return xnn_status_invalid_parameter;
}
if (max(output_width, output_height) >= 16777216) {
xnn_log_error(
"failed to setup Resize Bilinear operator with %zux%zu output: "
"output dimensions must be below 2**24",
output_width, output_height);
return xnn_status_unsupported_parameter;
}
if (batch_size == 0) {
resize_op->state = xnn_run_state_skip;
return xnn_status_success;
}
if (output_height * output_width != resize_op->last_output_height * resize_op->last_output_width) {
const size_t indirection_buffer_size = sizeof(void*) * (output_height * output_width * 4);
const size_t packed_weights_size = sizeof(float) * (output_height * output_width * 2);
const void** indirection_buffer = (const void**) xnn_reallocate_memory(resize_op->indirection_buffer, indirection_buffer_size);
if (indirection_buffer == NULL) {
xnn_log_error("failed to allocate %zu bytes for indirection buffer", indirection_buffer_size);
return xnn_status_out_of_memory;
}
resize_op->indirection_buffer = indirection_buffer;
float* packed_weights = (float*) xnn_reallocate_memory(resize_op->packed_weights, packed_weights_size);
if (packed_weights == NULL) {
xnn_log_error("failed to allocate %zu bytes for packed weights", packed_weights_size);
return xnn_status_out_of_memory;
}
resize_op->packed_weights = packed_weights;
}
const size_t input_pixel_stride_in_bytes = resize_op->input_pixel_stride * sizeof(float);
if (input_height != resize_op->last_input_height ||
input_width != resize_op->last_input_width ||
output_height != resize_op->last_output_height ||
output_width != resize_op->last_output_width)
{
const uint32_t flags = resize_op->flags;
xnn_indirection_init_resize_bilinear2d_f32(
input_pixel_stride_in_bytes,
input_height, input_width,
output_height, output_width,
input, resize_op->indirection_buffer, resize_op->packed_weights,
!!(flags & XNN_FLAG_ALIGN_CORNERS),
!!(flags & XNN_FLAG_TENSORFLOW_LEGACY_MODE));
resize_op->last_input = input;
resize_op->last_input_height = input_height;
resize_op->last_input_width = input_width;
resize_op->last_output_height = output_height;
resize_op->last_output_width = output_width;
}
const size_t output_pixel_stride_in_bytes = resize_op->output_pixel_stride * sizeof(float);
resize_op->context.resize_bilinear = (struct resize_bilinear_context) {
.scaled_channels = resize_op->channels * sizeof(float),
.indirect_input = resize_op->indirection_buffer,
.input_offset = (size_t) ((uintptr_t) input - (uintptr_t) resize_op->last_input),
.input_batch_stride = input_pixel_stride_in_bytes * input_height * input_width,
.packed_weights = resize_op->packed_weights,
.output = output,
.output_pixel_stride = output_pixel_stride_in_bytes,
.output_batch_stride = output_pixel_stride_in_bytes * output_height * output_width,
.log2_wsize = 3 /* log2(2 * sizeof(float)) */,
.ukernel = xnn_params.f32.bilinear.ukernel,
};
const size_t output_size = output_height * output_width;
size_t output_size_tile = output_size;
const size_t num_threads = pthreadpool_get_threads_count(threadpool);
if (num_threads > 1) {
const size_t target_tiles_per_thread = 5;
const size_t max_output_size_tile = divide_round_up(output_size, num_threads * target_tiles_per_thread);
if (max_output_size_tile < output_size_tile) {
const uint32_t output_size_subtile = xnn_params.f32.bilinear.pixel_tile;
output_size_tile =
min(output_size_tile,
divide_round_up(output_size_tile, max_output_size_tile * output_size_subtile) * output_size_subtile);
}
}
resize_op->compute.type = xnn_parallelization_type_2d_tile_1d;
resize_op->compute.task_2d_tile_1d = (pthreadpool_task_2d_tile_1d_t) xnn_compute_resize_bilinear;
resize_op->compute.range[0] = batch_size;
resize_op->compute.range[1] = output_size;
resize_op->compute.tile[0] = output_size_tile;
resize_op->state = xnn_run_state_ready;
return xnn_status_success;
}