blob: b12d949570e042d54f3ce513e91eebf23dc8d10c [file] [log] [blame]
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cfloat>
#include <cmath>
#include <functional>
#include <random>
#include <vector>
#include <cpuinfo.h>
#include <benchmark/benchmark.h>
#include <fp16/fp16.h>
#include "bench/gemm.h"
#include "bench/utils.h"
#include <xnnpack/AlignedAllocator.h>
#include <xnnpack/common.h>
#include <xnnpack/gemm.h>
#include <xnnpack/pack.h>
#include <xnnpack/params-init.h>
#include <xnnpack/params.h>
static void GEMMBenchmark(benchmark::State& state,
xnn_f16_gemm_minmax_ukernel_function gemm,
size_t mr, size_t nr, size_t kr, size_t sr)
{
if (!cpuinfo_initialize()) {
state.SkipWithError("cpuinfo initialization failed");
return;
}
if (!benchmark::utils::CheckNEONFP16ARITH(state)) {
return;
}
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
const size_t nc_stride = benchmark::utils::RoundUp(nc, nr);
const size_t kc_stride = benchmark::utils::RoundUp(kc, kr);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
std::vector<uint16_t> a(mc * kc);
std::generate(a.begin(), a.end(), std::ref(f16rng));
std::vector<uint16_t> k(nc * kc);
std::generate(k.begin(), k.end(), std::ref(f16rng));
std::vector<uint16_t> b(nc);
std::generate(b.begin(), b.end(), std::ref(f16rng));
const size_t w_elements = nc_stride * kc_stride + nc_stride;
const size_t c_elements = mc * nc;
const size_t num_buffers = 1 +
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
sizeof(uint16_t) * (w_elements + c_elements));
std::vector<uint16_t, AlignedAllocator<uint16_t, 32>> w(w_elements * num_buffers);
std::fill(w.begin(), w.end(), 0);
xnn_pack_f16_gemm_goi_w(1 /* groups */, nc, kc, nr, kr, sr, k.data(), b.data(), w.data());
std::vector<uint16_t> c(c_elements * num_buffers);
std::fill(c.begin(), c.end(), UINT16_C(0x7E00) /* NaN */);
// Prepare minmax parameters.
xnn_f16_scaleminmax_params params;
params = xnn_init_f16_scaleminmax_params(
UINT16_C(0x3C00), /* 1.0 */
UINT16_C(0x7C00), /* inf */
UINT16_C(0xFC00)); /* -inf */
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - W is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(uint16_t));
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
for (uint32_t n = 0; n < nc; n += nr) {
const uint32_t nb = min(nc - n, nr);
gemm(
mb, nb, kc * sizeof(uint16_t),
a.data() + m * kc, kc * sizeof(uint16_t),
w.data() + (nc_stride * buffer_index + n) * (kc_stride + 1),
c.data() + (mc * buffer_index + m) * nc + n, nc * sizeof(uint16_t), nr * sizeof(uint16_t),
&params);
}
}
}
state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
state.counters["FLOPS"] = benchmark::Counter(
uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate);
}
#if XNN_ARCH_ARM64
static void f16_gemm_1x8__neonfp16arith_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f16_gemm_minmax_ukernel_1x8__neonfp16arith_ld64, 1, 8, 1, 1);
}
static void f16_gemm_4x8__neonfp16arith_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f16_gemm_minmax_ukernel_4x8__neonfp16arith_ld64, 4, 8, 1, 1);
}
static void f16_gemm_6x8__neonfp16arith_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f16_gemm_minmax_ukernel_6x8__neonfp16arith_ld64, 6, 8, 1, 1);
}
static void f16_gemm_8x8__neonfp16arith_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f16_gemm_minmax_ukernel_8x8__neonfp16arith_ld64, 8, 8, 1, 1);
}
static void f16_gemm_1x16__neonfp16arith_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f16_gemm_minmax_ukernel_1x16__neonfp16arith_ld64, 1, 16, 1, 1);
}
static void f16_gemm_4x16__neonfp16arith_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f16_gemm_minmax_ukernel_4x16__neonfp16arith_ld64, 4, 16, 1, 1);
}
static void f16_gemm_6x16__neonfp16arith_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f16_gemm_minmax_ukernel_6x16__neonfp16arith_ld64, 6, 16, 1, 1);
}
static void f16_gemm_8x16__neonfp16arith_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f16_gemm_minmax_ukernel_8x16__neonfp16arith_ld64, 8, 16, 1, 1);
}
BENCHMARK_GEMM(f16_gemm_1x8__neonfp16arith_ld64)
BENCHMARK_GEMM(f16_gemm_4x8__neonfp16arith_ld64)
BENCHMARK_GEMM(f16_gemm_6x8__neonfp16arith_ld64)
BENCHMARK_GEMM(f16_gemm_8x8__neonfp16arith_ld64)
BENCHMARK_GEMM(f16_gemm_1x16__neonfp16arith_ld64)
BENCHMARK_GEMM(f16_gemm_4x16__neonfp16arith_ld64)
BENCHMARK_GEMM(f16_gemm_6x16__neonfp16arith_ld64)
BENCHMARK_GEMM(f16_gemm_8x16__neonfp16arith_ld64)
#endif
#if XNN_ARCH_ARM64 && XNN_ENABLE_ASSEMBLY
static void f16_gemm_1x16__aarch64_neonfp16arith_ld32(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f16_gemm_minmax_ukernel_1x16__aarch64_neonfp16arith_ld32, 1, 16, 1, 1);
}
static void f16_gemm_4x16__aarch64_neonfp16arith_ld32(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f16_gemm_minmax_ukernel_4x16__aarch64_neonfp16arith_ld32, 4, 16, 1, 1);
}
static void f16_gemm_6x16__aarch64_neonfp16arith_ld32(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f16_gemm_minmax_ukernel_6x16__aarch64_neonfp16arith_ld32, 6, 16, 1, 1);
}
static void f16_gemm_1x8__aarch64_neonfp16arith_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f16_gemm_minmax_ukernel_1x8__aarch64_neonfp16arith_ld64, 1, 8, 1, 1);
}
static void f16_gemm_4x8__aarch64_neonfp16arith_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f16_gemm_minmax_ukernel_4x8__aarch64_neonfp16arith_ld64, 4, 8, 1, 1);
}
static void f16_gemm_6x8__aarch64_neonfp16arith_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f16_gemm_minmax_ukernel_6x8__aarch64_neonfp16arith_ld64, 6, 8, 1, 1);
}
static void f16_gemm_8x8__aarch64_neonfp16arith_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f16_gemm_minmax_ukernel_8x8__aarch64_neonfp16arith_ld64, 8, 8, 1, 1);
}
BENCHMARK_GEMM(f16_gemm_1x16__aarch64_neonfp16arith_ld32)
BENCHMARK_GEMM(f16_gemm_4x16__aarch64_neonfp16arith_ld32)
BENCHMARK_GEMM(f16_gemm_6x16__aarch64_neonfp16arith_ld32)
BENCHMARK_GEMM(f16_gemm_1x8__aarch64_neonfp16arith_ld64)
BENCHMARK_GEMM(f16_gemm_4x8__aarch64_neonfp16arith_ld64)
BENCHMARK_GEMM(f16_gemm_6x8__aarch64_neonfp16arith_ld64)
BENCHMARK_GEMM(f16_gemm_8x8__aarch64_neonfp16arith_ld64)
#endif // XNN_ARCH_ARM64
#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif