blob: 8760b7dc20cb744c3f04c43babafcb1fe8905448 [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert PIXEL_TILE >= 1
$assert PIXEL_TILE % 4 == 0
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$VMULADDQ_F32 = "vfmaq_f32" if FMA else "vmlaq_f32"
$VMULADD_F32 = "vfma_f32" if FMA else "vmla_f32"
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/ibilinear.h>
void xnn_f32_ibilinear_chw_ukernel__${"neonfma" if FMA else "neon"}_p${PIXEL_TILE}(
size_t output_pixels,
size_t channels,
const float**restrict input,
size_t input_offset,
const float*restrict weights,
float*restrict output,
size_t input_increment) XNN_DISABLE_TSAN
{
assert(output_pixels != 0);
assert(channels != 0);
assert(input_increment % sizeof(float) == 0);
do {
const float** i = input;
const float* w = weights;
size_t p = output_pixels;
$if PIXEL_TILE > 4:
for (; p >= ${PIXEL_TILE}; p -= ${PIXEL_TILE}) {
$for P in range(PIXEL_TILE):
const float* itl${ABC[P]} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset);
const float* ibl${ABC[P]} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset);
i += 2 * ${PIXEL_TILE};
$for P in range(0, PIXEL_TILE, 4):
const float32x4x2_t vw${ABC[P:P+4]} = vld2q_f32(w + ${2 * P});
w += 2 * ${PIXEL_TILE};
$for P in range(0, PIXEL_TILE):
const float32x2_t vtltr${ABC[P]} = vld1_f32(itl${P});
const float32x2_t vblbr${ABC[P]} = vld1_f32(ibl${P});
$for P in range(0, PIXEL_TILE, 4):
const float32x4_t valphah${ABC[P:P+4]} = vw${ABC[P:P+4]}.val[0];
const float32x4_t valphav${ABC[P:P+4]} = vw${ABC[P:P+4]}.val[1];
$for P in range(0, PIXEL_TILE, 2):
const float32x4_t vtltr${ABC[P:P+2]} = vcombine_f32(vtltr${ABC[P]}, vtltr${ABC[P+1]});
const float32x4_t vblbr${ABC[P:P+2]} = vcombine_f32(vblbr${ABC[P]}, vblbr${ABC[P+1]});
$for P in range(0, PIXEL_TILE, 2):
const float32x4_t vldrd${ABC[P:P+2]} = vsubq_f32(vblbr${ABC[P:P+2]}, vtltr${ABC[P:P+2]});
$for P in range(0, PIXEL_TILE, 4):
const float32x4x2_t vld_t${ABC[P:P+4]} = vuzpq_f32(vldrd${ABC[P:P+2]}, vldrd${ABC[P+2:P+4]});
const float32x4_t vld${ABC[P:P+4]} = vld_t${ABC[P:P+4]}.val[0];
const float32x4_t vrd${ABC[P:P+4]} = vld_t${ABC[P:P+4]}.val[1];
$for P in range(0, PIXEL_TILE, 4):
const float32x4x2_t vtl_t${ABC[P:P+4]} = vuzpq_f32(vtltr${ABC[P:P+2]}, vtltr${ABC[P+2:P+4]});
const float32x4_t vtl${ABC[P:P+4]} = vtl_t${ABC[P:P+4]}.val[0];
const float32x4_t vtr${ABC[P:P+4]} = vtl_t${ABC[P:P+4]}.val[1];
$for P in range(0, PIXEL_TILE, 4):
const float32x4_t vl${ABC[P:P+4]} = ${VMULADDQ_F32}(vtl${ABC[P:P+4]}, vld${ABC[P:P+4]}, valphav${ABC[P:P+4]});
const float32x4_t vr${ABC[P:P+4]} = ${VMULADDQ_F32}(vtr${ABC[P:P+4]}, vrd${ABC[P:P+4]}, valphav${ABC[P:P+4]});
$for P in range(0, PIXEL_TILE, 4):
const float32x4_t vd${ABC[P:P+4]} = vsubq_f32(vr${ABC[P:P+4]}, vl${ABC[P:P+4]});
$for P in range(0, PIXEL_TILE, 4):
const float32x4_t vo${ABC[P:P+4]} = ${VMULADDQ_F32}(vl${ABC[P:P+4]}, vd${ABC[P:P+4]}, valphah${ABC[P:P+4]});
$for P in range(0, PIXEL_TILE, 4):
vst1q_f32(output + ${P}, vo${ABC[P:P+4]});
output += ${PIXEL_TILE};
}
for (; p >= 4; p -= 4) {
$for P in range(4):
const float* itl${P} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset);
const float* ibl${P} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset);
i += 8;
const float32x4x2_t vw = vld2q_f32(w);
w += 8;
$for P in range(0, 4):
const float32x2_t vtltr${ABC[P]} = vld1_f32(itl${P});
const float32x2_t vblbr${ABC[P]} = vld1_f32(ibl${P});
const float32x4_t valphah = vw.val[0];
const float32x4_t valphav = vw.val[1];
$for P in range(0, 4, 2):
const float32x4_t vtltr${ABC[P:P+2]} = vcombine_f32(vtltr${ABC[P]}, vtltr${ABC[P+1]});
const float32x4_t vblbr${ABC[P:P+2]} = vcombine_f32(vblbr${ABC[P]}, vblbr${ABC[P+1]});
$for P in range(0, 4, 2):
const float32x4_t vldrd${ABC[P:P+2]} = vsubq_f32(vblbr${ABC[P:P+2]}, vtltr${ABC[P:P+2]});
const float32x4x2_t vld_t = vuzpq_f32(vldrd01, vldrd23);
const float32x4_t vld = vld_t.val[0];
const float32x4_t vrd = vld_t.val[1];
const float32x4x2_t vtl_t = vuzpq_f32(vtltr01, vtltr23);
const float32x4_t vtl = vtl_t.val[0];
const float32x4_t vtr = vtl_t.val[1];
const float32x4_t vl = ${VMULADDQ_F32}(vtl, vld, valphav);
const float32x4_t vr = ${VMULADDQ_F32}(vtr, vrd, valphav);
const float32x4_t vd = vsubq_f32(vr, vl);
const float32x4_t vo = ${VMULADDQ_F32}(vl, vd, valphah);
vst1q_f32(output, vo);
output += 4;
}
if XNN_UNLIKELY(p != 0) {
if (p & 2) {
const float32x2x2_t vw = vld2_f32(w);
w += 4;
const float32x2_t valphah = vw.val[0];
const float32x2_t valphav = vw.val[1];
$for P in range(2):
const float* itl${P} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset);
const float* ibl${P} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset);
i += 4;
$for P in range(0, 2):
const float32x2_t vtltr${ABC[P]} = vld1_f32(itl${P});
const float32x2_t vblbr${ABC[P]} = vld1_f32(ibl${P});
$for P in range(0, 2):
const float32x2_t vldrd${ABC[P]} = vsub_f32(vblbr${ABC[P]}, vtltr${ABC[P]});
const float32x2x2_t vld_t = vuzp_f32(vldrd0, vldrd1);
const float32x2_t vld = vld_t.val[0];
const float32x2_t vrd = vld_t.val[1];
const float32x2x2_t vtl_t = vuzp_f32(vtltr0, vtltr1);
const float32x2_t vtl = vtl_t.val[0];
const float32x2_t vtr = vtl_t.val[1];
const float32x2_t vl = ${VMULADD_F32}(vtl, vld, valphav);
const float32x2_t vr = ${VMULADD_F32}(vtr, vrd, valphav);
const float32x2_t vd = vsub_f32(vr, vl);
const float32x2_t vo = ${VMULADD_F32}(vl, vd, valphah);
vst1_f32(output, vo);
output += 2;
}
if (p & 1) {
// We are computing the following formula:
// result = (1 - alpha_h) * (1 - alpha_v) * top_left +
// alpha_h * (1 - alpha_v) * top_right +
// (1 - alpha_h) * alpha_v * bottom_left +
// alpha_h * alpha_v * bottom_right.
//
// Rearranging gives
// result = left + alpha_h * (right - left),
// where
// left = top_left + alpha_v * (bottom_left - top_left),
// right = top_right + alpha_v * (bottom_right - top_right).
const float alphah = *w;
const float32x2_t valphav = vld1_dup_f32(w + 1);
w += 2;
const float* itl = (const float*) ((uintptr_t) i[0] + input_offset);
const float* ibl = (const float*) ((uintptr_t) i[1] + input_offset);
i += 2;
const float32x2_t vtltr = vld1_f32(itl);
const float32x2_t vblbr = vld1_f32(ibl);
// Compute at once
// left_diff = bottom_left - top_left
// right_diff = bottom_right - top_right
const float32x2_t vldrd = vsub_f32(vblbr, vtltr);
const float32x2_t vlr = ${VMULADD_F32}(vtltr, vldrd, valphav);
// Extract them and compute the result.
const float l = vget_lane_f32(vlr, 0);
const float r = vget_lane_f32(vlr, 1);
*output++ = l + alphah * (r - l);
}
}
input_offset += input_increment;
} while (--channels != 0);
}