blob: 69957a44432f693ad678623363b8e857d31daf1e [file] [log] [blame]
// Auto-generated file. Do not edit!
// Template: src/f32-sigmoid/sse-p5-div.c.in
// Generator: tools/xngen
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <smmintrin.h>
#include <xnnpack/common.h>
#include <xnnpack/vunop.h>
void xnn_f32_sigmoid_ukernel__sse41_p5_div_x8(
size_t n,
const float* x,
float* y,
const void* params)
{
assert(n % sizeof(float) == 0);
const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f);
// The smallest x for which sigmoidf(x) is normalized.
// This number is also the smallest x for which expf(x) is normalized.
const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep+6f);
// The largest x for which sigmoidf(x) is not equal 1.0.
const __m128 vone_cutoff = _mm_set1_ps(0x1.154244p+4f);
const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f);
// Last 8 bits are zeroes
const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f);
const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f);
const __m128 vone = _mm_set1_ps(1.0f);
const __m128 vsign_mask = _mm_set1_ps(-0.0f);
const __m128 vc1 = _mm_set1_ps(0x1.FFFFF6p-1f);
const __m128 vc2 = _mm_set1_ps(0x1.FFFDC6p-2f);
const __m128 vc3 = _mm_set1_ps(0x1.555A80p-3f);
const __m128 vc4 = _mm_set1_ps(0x1.573A1Ap-5f);
const __m128 vc5 = _mm_set1_ps(0x1.0F9F9Cp-7f);
for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
const __m128 vx0123 = _mm_loadu_ps(x);
const __m128 vx4567 = _mm_loadu_ps(x + 4);
// General structure of the algorithm:
// / exp(x) / (1 + exp(x)) if x <= 0
// f[x] :=
// \ 1 - f[-x] if x >= 0
//
// First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
// then replace result with 1 - f[z] if x >= 0.
const __m128 vz0123 = _mm_or_ps(vx0123, vsign_mask);
const __m128 vz4567 = _mm_or_ps(vx4567, vsign_mask);
// Compute reduced argument n := round(z / log(2)).
// We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
// to an integer, then subtracing the large number back. The trick with adding large number is valid only within
// certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
// [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
// the algorithm.
__m128 vn0123 = _mm_add_ps(_mm_mul_ps(vz0123, vlog2e), vmagic_bias);
__m128 vn4567 = _mm_add_ps(_mm_mul_ps(vz4567, vlog2e), vmagic_bias);
// Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
// -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
const __m128 vs4567 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn4567), 23));
// Subtract the large number back to get final n := round(z / log(2)).
vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
vn4567 = _mm_sub_ps(vn4567, vmagic_bias);
// Compute reduced argument t := z - n * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vz0123);
__m128 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_hi), vz4567);
vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_lo), vt4567);
// Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
__m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
__m128 vp4567 = _mm_add_ps(_mm_mul_ps(vc5, vt4567), vc4);
vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc3);
vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc2);
vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc1);
// Reconstruct the exp(z) value:
// e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
vt0123 = _mm_mul_ps(vt0123, vs0123);
vt4567 = _mm_mul_ps(vt4567, vs4567);
__m128 ve0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
__m128 ve4567 = _mm_add_ps(_mm_mul_ps(vt4567, vp4567), vs4567);
// Denominator of the sigmoid fraction: 1.0 + exp(z)
__m128 vd0123 = _mm_add_ps(ve0123, vone);
__m128 vd4567 = _mm_add_ps(ve4567, vone);
// Reconstruct sigmoid(-z) = exp(z) / (1.0 + exp(z))
__m128 vf0123 = _mm_div_ps(ve0123, vd0123);
__m128 vf4567 = _mm_div_ps(ve4567, vd4567);
// Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
vf0123 = _mm_blendv_ps(_mm_sub_ps(vone, vf0123), vf0123, vx0123);
vf4567 = _mm_blendv_ps(_mm_sub_ps(vone, vf4567), vf4567, vx4567);
// For inputs above 1.0 cutoff, replace output with 1.0.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf0123 = _mm_blendv_ps(vf0123, vone, _mm_cmpgt_ps(vx0123, vone_cutoff));
vf4567 = _mm_blendv_ps(vf4567, vone, _mm_cmpgt_ps(vx4567, vone_cutoff));
// For inputs below denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vx0123, vdenorm_cutoff), vf0123);
vf4567 = _mm_andnot_ps(_mm_cmplt_ps(vx4567, vdenorm_cutoff), vf4567);
_mm_storeu_ps(y, vf0123);
_mm_storeu_ps(y + 4, vf4567);
x += 8;
y += 8;
}
for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
const __m128 vx0123 = _mm_loadu_ps(x);
// General structure of the algorithm:
// / exp(x) / (1 + exp(x)) if x <= 0
// f[x] :=
// \ 1 - f[-x] if x >= 0
//
// First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
// then replace result with 1 - f[z] if x >= 0.
const __m128 vz0123 = _mm_or_ps(vx0123, vsign_mask);
// Compute reduced argument n := round(z / log(2)).
// We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
// to an integer, then subtracing the large number back. The trick with adding large number is valid only within
// certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
// [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
// the algorithm.
__m128 vn0123 = _mm_add_ps(_mm_mul_ps(vz0123, vlog2e), vmagic_bias);
// Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
// -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
// Subtract the large number back to get final n := round(z / log(2)).
vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
// Compute reduced argument t := z - n * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vz0123);
vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
// Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
__m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
// Reconstruct the exp(z) value:
// e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
vt0123 = _mm_mul_ps(vt0123, vs0123);
__m128 ve0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
// Denominator of the sigmoid fraction: 1.0 + exp(z)
__m128 vd0123 = _mm_add_ps(ve0123, vone);
// Reconstruct sigmoid(-z) = exp(z) / (1.0 + exp(z))
__m128 vf0123 = _mm_div_ps(ve0123, vd0123);
// Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
vf0123 = _mm_blendv_ps(_mm_sub_ps(vone, vf0123), vf0123, vx0123);
// For inputs above 1.0 cutoff, replace output with 1.0.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf0123 = _mm_blendv_ps(vf0123, vone, _mm_cmpgt_ps(vx0123, vone_cutoff));
// For inputs below denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vx0123, vdenorm_cutoff), vf0123);
_mm_storeu_ps(y, vf0123);
x += 4;
y += 4;
}
if XNN_UNLIKELY(n != 0) {
const __m128 vx0123 = _mm_loadu_ps(x);
// General structure of the algorithm:
// / exp(x) / (1 + exp(x)) if x <= 0
// f[x] :=
// \ 1 - f[-x] if x >= 0
//
// First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
// then replace result with 1 - f[z] if x >= 0.
const __m128 vz0123 = _mm_or_ps(vx0123, vsign_mask);
// Compute reduced argument n := round(z / log(2)).
// We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
// to an integer, then subtracing the large number back. The trick with adding large number is valid only within
// certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
// [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
// the algorithm.
__m128 vn0123 = _mm_add_ps(_mm_mul_ps(vz0123, vlog2e), vmagic_bias);
// Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
// -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
// Subtract the large number back to get final n := round(z / log(2)).
vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
// Compute reduced argument t := z - n * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vz0123);
vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
// Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
__m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
// Reconstruct the exp(z) value:
// e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
vt0123 = _mm_mul_ps(vt0123, vs0123);
__m128 ve0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
// Denominator of the sigmoid fraction: 1.0 + exp(z)
__m128 vd0123 = _mm_add_ps(ve0123, vone);
// Reconstruct sigmoid(-z) = exp(z) / (1.0 + exp(z))
__m128 vf0123 = _mm_div_ps(ve0123, vd0123);
// Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
vf0123 = _mm_blendv_ps(_mm_sub_ps(vone, vf0123), vf0123, vx0123);
// For inputs above 1.0 cutoff, replace output with 1.0.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf0123 = _mm_blendv_ps(vf0123, vone, _mm_cmpgt_ps(vx0123, vone_cutoff));
// For inputs below denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vx0123, vdenorm_cutoff), vf0123);
if (n & (2 * sizeof(float))) {
_mm_storel_pi((__m64*) y, vf0123);
vf0123 = _mm_movehl_ps(vf0123, vf0123);
y += 2;
}
if (n & (1 * sizeof(float))) {
_mm_store_ss(y, vf0123);
}
}
}