blob: a474c39cfac37cd11c2d6c1ca379c3f811b3f97d [file] [log] [blame]
// Auto-generated file. Do not edit!
// Template: src/f32-raddstoreexpminusmax/avx512f-p5-scalef.c.in
// Generator: tools/xngen
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/raddstoreexpminusmax.h>
void xnn_f32_raddstoreexpminusmax_ukernel__avx512f_p5_scalef_x192_acc3(
size_t elements,
const float* input,
float* output,
float* sum,
float max)
{
assert(elements % sizeof(float) == 0);
const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f);
const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f);
const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f);
const __m512 vc0 = _mm512_set1_ps(1.0f);
const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f);
const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f);
const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f);
const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f);
const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f);
const __m512 vi_max = _mm512_set1_ps(max);
__m512 vacc0 = _mm512_setzero_ps();
__m512 vacc1 = _mm512_setzero_ps();
__m512 vacc2 = _mm512_setzero_ps();
for (; elements >= 192 * sizeof(float); elements -= 192 * sizeof(float)) {
// Load 192 (12x16) inputs at a time.
const __m512 vi0 = _mm512_loadu_ps(input);
const __m512 vi1 = _mm512_loadu_ps(input + 16);
const __m512 vi2 = _mm512_loadu_ps(input + 32);
const __m512 vi3 = _mm512_loadu_ps(input + 48);
const __m512 vi4 = _mm512_loadu_ps(input + 64);
const __m512 vi5 = _mm512_loadu_ps(input + 80);
const __m512 vi6 = _mm512_loadu_ps(input + 96);
const __m512 vi7 = _mm512_loadu_ps(input + 112);
const __m512 vi8 = _mm512_loadu_ps(input + 128);
const __m512 vi9 = _mm512_loadu_ps(input + 144);
const __m512 vi10 = _mm512_loadu_ps(input + 160);
const __m512 vi11 = _mm512_loadu_ps(input + 176);
input += 192;
// Subtract maximum input x := i - i_max.
const __m512 vx0 = _mm512_sub_ps(vi0, vi_max);
const __m512 vx1 = _mm512_sub_ps(vi1, vi_max);
const __m512 vx2 = _mm512_sub_ps(vi2, vi_max);
const __m512 vx3 = _mm512_sub_ps(vi3, vi_max);
const __m512 vx4 = _mm512_sub_ps(vi4, vi_max);
const __m512 vx5 = _mm512_sub_ps(vi5, vi_max);
const __m512 vx6 = _mm512_sub_ps(vi6, vi_max);
const __m512 vx7 = _mm512_sub_ps(vi7, vi_max);
const __m512 vx8 = _mm512_sub_ps(vi8, vi_max);
const __m512 vx9 = _mm512_sub_ps(vi9, vi_max);
const __m512 vx10 = _mm512_sub_ps(vi10, vi_max);
const __m512 vx11 = _mm512_sub_ps(vi11, vi_max);
// Compute reduced argument elements := round(x / log(2)).
const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0);
const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0);
const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0);
const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0);
const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0);
const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0);
const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0);
const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0);
const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0);
const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0);
const __m512 vn10 = _mm512_roundscale_ps(_mm512_mul_ps(vx10, vlog2e), 0);
const __m512 vn11 = _mm512_roundscale_ps(_mm512_mul_ps(vx11, vlog2e), 0);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0);
__m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1);
__m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2);
__m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3);
__m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4);
__m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5);
__m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6);
__m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7);
__m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8);
__m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9);
__m512 vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_hi, vx10);
__m512 vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_hi, vx11);
vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0);
vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1);
vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2);
vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3);
vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4);
vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5);
vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6);
vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7);
vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8);
vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9);
vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_lo, vt10);
vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_lo, vt11);
// Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
__m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4);
__m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4);
__m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4);
__m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4);
__m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4);
__m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4);
__m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4);
__m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4);
__m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4);
__m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4);
__m512 vp10 = _mm512_fmadd_ps(vc5, vt10, vc4);
__m512 vp11 = _mm512_fmadd_ps(vc5, vt11, vc4);
vp0 = _mm512_fmadd_ps(vp0, vt0, vc3);
vp1 = _mm512_fmadd_ps(vp1, vt1, vc3);
vp2 = _mm512_fmadd_ps(vp2, vt2, vc3);
vp3 = _mm512_fmadd_ps(vp3, vt3, vc3);
vp4 = _mm512_fmadd_ps(vp4, vt4, vc3);
vp5 = _mm512_fmadd_ps(vp5, vt5, vc3);
vp6 = _mm512_fmadd_ps(vp6, vt6, vc3);
vp7 = _mm512_fmadd_ps(vp7, vt7, vc3);
vp8 = _mm512_fmadd_ps(vp8, vt8, vc3);
vp9 = _mm512_fmadd_ps(vp9, vt9, vc3);
vp10 = _mm512_fmadd_ps(vp10, vt10, vc3);
vp11 = _mm512_fmadd_ps(vp11, vt11, vc3);
vp0 = _mm512_fmadd_ps(vp0, vt0, vc2);
vp1 = _mm512_fmadd_ps(vp1, vt1, vc2);
vp2 = _mm512_fmadd_ps(vp2, vt2, vc2);
vp3 = _mm512_fmadd_ps(vp3, vt3, vc2);
vp4 = _mm512_fmadd_ps(vp4, vt4, vc2);
vp5 = _mm512_fmadd_ps(vp5, vt5, vc2);
vp6 = _mm512_fmadd_ps(vp6, vt6, vc2);
vp7 = _mm512_fmadd_ps(vp7, vt7, vc2);
vp8 = _mm512_fmadd_ps(vp8, vt8, vc2);
vp9 = _mm512_fmadd_ps(vp9, vt9, vc2);
vp10 = _mm512_fmadd_ps(vp10, vt10, vc2);
vp11 = _mm512_fmadd_ps(vp11, vt11, vc2);
vp0 = _mm512_fmadd_ps(vp0, vt0, vc1);
vp1 = _mm512_fmadd_ps(vp1, vt1, vc1);
vp2 = _mm512_fmadd_ps(vp2, vt2, vc1);
vp3 = _mm512_fmadd_ps(vp3, vt3, vc1);
vp4 = _mm512_fmadd_ps(vp4, vt4, vc1);
vp5 = _mm512_fmadd_ps(vp5, vt5, vc1);
vp6 = _mm512_fmadd_ps(vp6, vt6, vc1);
vp7 = _mm512_fmadd_ps(vp7, vt7, vc1);
vp8 = _mm512_fmadd_ps(vp8, vt8, vc1);
vp9 = _mm512_fmadd_ps(vp9, vt9, vc1);
vp10 = _mm512_fmadd_ps(vp10, vt10, vc1);
vp11 = _mm512_fmadd_ps(vp11, vt11, vc1);
vp0 = _mm512_fmadd_ps(vp0, vt0, vc0);
vp1 = _mm512_fmadd_ps(vp1, vt1, vc0);
vp2 = _mm512_fmadd_ps(vp2, vt2, vc0);
vp3 = _mm512_fmadd_ps(vp3, vt3, vc0);
vp4 = _mm512_fmadd_ps(vp4, vt4, vc0);
vp5 = _mm512_fmadd_ps(vp5, vt5, vc0);
vp6 = _mm512_fmadd_ps(vp6, vt6, vc0);
vp7 = _mm512_fmadd_ps(vp7, vt7, vc0);
vp8 = _mm512_fmadd_ps(vp8, vt8, vc0);
vp9 = _mm512_fmadd_ps(vp9, vt9, vc0);
vp10 = _mm512_fmadd_ps(vp10, vt10, vc0);
vp11 = _mm512_fmadd_ps(vp11, vt11, vc0);
// Reconstruct the final f value:
// f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = 2**elements * p
const __m512 vf0 = _mm512_scalef_ps(vp0, vn0);
const __m512 vf1 = _mm512_scalef_ps(vp1, vn1);
const __m512 vf2 = _mm512_scalef_ps(vp2, vn2);
const __m512 vf3 = _mm512_scalef_ps(vp3, vn3);
const __m512 vf4 = _mm512_scalef_ps(vp4, vn4);
const __m512 vf5 = _mm512_scalef_ps(vp5, vn5);
const __m512 vf6 = _mm512_scalef_ps(vp6, vn6);
const __m512 vf7 = _mm512_scalef_ps(vp7, vn7);
const __m512 vf8 = _mm512_scalef_ps(vp8, vn8);
const __m512 vf9 = _mm512_scalef_ps(vp9, vn9);
const __m512 vf10 = _mm512_scalef_ps(vp10, vn10);
const __m512 vf11 = _mm512_scalef_ps(vp11, vn11);
// Store 192 (12x16) outputs at a time.
_mm512_storeu_ps(output, vf0);
_mm512_storeu_ps(output + 16, vf1);
_mm512_storeu_ps(output + 32, vf2);
_mm512_storeu_ps(output + 48, vf3);
_mm512_storeu_ps(output + 64, vf4);
_mm512_storeu_ps(output + 80, vf5);
_mm512_storeu_ps(output + 96, vf6);
_mm512_storeu_ps(output + 112, vf7);
_mm512_storeu_ps(output + 128, vf8);
_mm512_storeu_ps(output + 144, vf9);
_mm512_storeu_ps(output + 160, vf10);
_mm512_storeu_ps(output + 176, vf11);
output += 192;
// Accumulate computed exponents.
vacc0 = _mm512_add_ps(vacc0, vf0);
vacc1 = _mm512_add_ps(vacc1, vf1);
vacc2 = _mm512_add_ps(vacc2, vf2);
vacc0 = _mm512_add_ps(vacc0, vf3);
vacc1 = _mm512_add_ps(vacc1, vf4);
vacc2 = _mm512_add_ps(vacc2, vf5);
vacc0 = _mm512_add_ps(vacc0, vf6);
vacc1 = _mm512_add_ps(vacc1, vf7);
vacc2 = _mm512_add_ps(vacc2, vf8);
vacc0 = _mm512_add_ps(vacc0, vf9);
vacc1 = _mm512_add_ps(vacc1, vf10);
vacc2 = _mm512_add_ps(vacc2, vf11);
}
// Add up all accumulators to vacc0
vacc0 = _mm512_add_ps(vacc0, vacc1);
vacc0 = _mm512_add_ps(vacc0, vacc2);
__m512 vacc = vacc0;
for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
// Load 16 inputs at a time.
const __m512 vi = _mm512_loadu_ps(input);
input += 16;
// Subtract maximum input x := i - i_max.
const __m512 vx = _mm512_sub_ps(vi, vi_max);
// Compute reduced argument elements := round(x / log(2)).
const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
// Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
__m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
vp = _mm512_fmadd_ps(vp, vt, vc3);
vp = _mm512_fmadd_ps(vp, vt, vc2);
vp = _mm512_fmadd_ps(vp, vt, vc1);
vp = _mm512_fmadd_ps(vp, vt, vc0);
// Reconstruct the final f value:
// f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = 2**elements * p
const __m512 vf = _mm512_scalef_ps(vp, vn);
// Store 16 outputs at a time.
_mm512_storeu_ps(output, vf);
output += 16;
// Accumulate computed exponents.
vacc = _mm512_add_ps(vacc, vf);
}
if (elements != 0) {
// Prepare mask for valid 32-bit elements (depends on elements).
elements >>= 2 /* log2(sizeof(float)) */;
const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1)));
// Load up to 15 inputs at a time.
const __m512 vi = _mm512_maskz_loadu_ps(vmask, input);
// Subtract maximum input x := i - i_max.
const __m512 vx = _mm512_sub_ps(vi, vi_max);
// Compute reduced argument elements := round(x / log(2)).
const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
// Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
__m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
vp = _mm512_fmadd_ps(vp, vt, vc3);
vp = _mm512_fmadd_ps(vp, vt, vc2);
vp = _mm512_fmadd_ps(vp, vt, vc1);
vp = _mm512_fmadd_ps(vp, vt, vc0);
// Reconstruct the final f value:
// f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = 2**elements * p
const __m512 vf = _mm512_scalef_ps(vp, vn);
// Store up to 15 outputs at a time.
_mm512_mask_storeu_ps(output, vmask, vf);
// Accumulate computed exponents.
vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf);
}
*sum = _mm512_reduce_add_ps(vacc);
}