blob: dbde255f339cb1545404c9adccdf1b4ffe04b7ad [file] [log] [blame]
// Auto-generated file. Do not edit!
// Template: src/f32-raddstoreexpminusmax/scalar-p5.c.in
// Generator: tools/xngen
//
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <xnnpack/common.h>
#include <xnnpack/raddstoreexpminusmax.h>
#include <fp16/bitcasts.h>
void xnn_f32_raddstoreexpminusmax_ukernel__scalar_p5_x4(
size_t elements,
const float* input,
float* output,
float* sum,
float vi_max)
{
assert(elements % sizeof(float) == 0);
const float vmagic_bias = 0x1.8000FEp23f;
// The smallest x for which expf(x) is normalized.
const float vdenorm_cutoff = -0x1.5D589Ep6f;
const float vlog2e = 0x1.715476p+0f;
// Last 7 bits are zeroes
const float vminus_ln2_hi = -0x1.62E400p-1f;
const float vminus_ln2_lo = -0x1.7F7D1Cp-20f;
const float vc1 = 0x1.FFFFF6p-1f;
const float vc2 = 0x1.FFFDC6p-2f;
const float vc3 = 0x1.555A80p-3f;
const float vc4 = 0x1.573A1Ap-5f;
const float vc5 = 0x1.0F9F9Cp-7f;
float vacc0 = 0.0f;
for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
// Load 4 inputs at a time.
const float vi0 = input[0];
const float vi1 = input[1];
const float vi2 = input[2];
const float vi3 = input[3];
input += 4;
// Subtract maximum input x := i - i_max. This implies x <= 0.
const float vx0 = vi0 - vi_max;
const float vx1 = vi1 - vi_max;
const float vx2 = vi2 - vi_max;
const float vx3 = vi3 - vi_max;
// Compute reduced argument n := round(x / log(2)).
// We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
// to an integer, then subtracing the large number back. The trick with adding large number is valid only within
// certain bounds (|x| <= 2**22), but thats ok, because inputs outside of [-87.336540, 0.0] underflow expf(x)
// anyway. We fixup the result for such inputs at the very end of the algorithm.
float vn0 = vx0 * vlog2e + vmagic_bias;
float vn1 = vx1 * vlog2e + vmagic_bias;
float vn2 = vx2 * vlog2e + vmagic_bias;
float vn3 = vx3 * vlog2e + vmagic_bias;
// Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
// -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
const float vs0 = fp32_from_bits(fp32_to_bits(vn0) << 23);
const float vs1 = fp32_from_bits(fp32_to_bits(vn1) << 23);
const float vs2 = fp32_from_bits(fp32_to_bits(vn2) << 23);
const float vs3 = fp32_from_bits(fp32_to_bits(vn3) << 23);
// Subtract the large number back to get final n := round(x / log(2)).
vn0 -= vmagic_bias;
vn1 -= vmagic_bias;
vn2 -= vmagic_bias;
vn3 -= vmagic_bias;
// Compute reduced argument t := x - n * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
float vt0 = vn0 * vminus_ln2_hi + vx0;
float vt1 = vn1 * vminus_ln2_hi + vx1;
float vt2 = vn2 * vminus_ln2_hi + vx2;
float vt3 = vn3 * vminus_ln2_hi + vx3;
vt0 = vn0 * vminus_ln2_lo + vt0;
vt1 = vn1 * vminus_ln2_lo + vt1;
vt2 = vn2 * vminus_ln2_lo + vt2;
vt3 = vn3 * vminus_ln2_lo + vt3;
// Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
float vp0 = vc5 * vt0 + vc4;
float vp1 = vc5 * vt1 + vc4;
float vp2 = vc5 * vt2 + vc4;
float vp3 = vc5 * vt3 + vc4;
vp0 = vp0 * vt0 + vc3;
vp1 = vp1 * vt1 + vc3;
vp2 = vp2 * vt2 + vc3;
vp3 = vp3 * vt3 + vc3;
vp0 = vp0 * vt0 + vc2;
vp1 = vp1 * vt1 + vc2;
vp2 = vp2 * vt2 + vc2;
vp3 = vp3 * vt3 + vc2;
vp0 = vp0 * vt0 + vc1;
vp1 = vp1 * vt1 + vc1;
vp2 = vp2 * vt2 + vc1;
vp3 = vp3 * vt3 + vc1;
// Reconstruct the final f value:
// f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
vt0 *= vs0;
vt1 *= vs1;
vt2 *= vs2;
vt3 *= vs3;
float vf0 = vt0 * vp0 + vs0;
float vf1 = vt1 * vp1 + vs1;
float vf2 = vt2 * vp2 + vs2;
float vf3 = vt3 * vp3 + vs3;
// For inputs below denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
if XNN_UNPREDICTABLE(vx0 < vdenorm_cutoff) {
vf0 = 0.0f;
}
if XNN_UNPREDICTABLE(vx1 < vdenorm_cutoff) {
vf1 = 0.0f;
}
if XNN_UNPREDICTABLE(vx2 < vdenorm_cutoff) {
vf2 = 0.0f;
}
if XNN_UNPREDICTABLE(vx3 < vdenorm_cutoff) {
vf3 = 0.0f;
}
// Store 4 outputs at a time.
output[0] = vf0;
output[1] = vf1;
output[2] = vf2;
output[3] = vf3;
output += 4;
// Accumulate computed exponents.
vacc0 += vf0;
vacc0 += vf1;
vacc0 += vf2;
vacc0 += vf3;
}
float vacc = vacc0;
for (; elements >= sizeof(float); elements -= sizeof(float)) {
// Load 1 input at a time.
const float vi = *input++;
// Subtract maximum input x := i - i_max. This implies x <= 0.
const float vx = vi - vi_max;
// Compute reduced argument n := round(x / log(2)).
// We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
// to an integer, then subtracing the large number back. The trick with adding large number is valid only within
// certain bounds (|x| <= 2**22), but thats ok, because inputs outside of [-87.336540, 0.0] underflow expf(x)
// anyway. We fixup the result for such inputs at the very end of the algorithm.
float vn = vx * vlog2e + vmagic_bias;
// Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
// -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
const float vs = fp32_from_bits(fp32_to_bits(vn) << 23);
// Subtract the large number back to get final n := round(x / log(2)).
vn -= vmagic_bias;
// Compute reduced argument t := x - n * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
float vt = vn * vminus_ln2_hi + vx;
vt = vn * vminus_ln2_lo + vt;
// Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
float vp = vc5 * vt + vc4;
vp = vp * vt + vc3;
vp = vp * vt + vc2;
vp = vp * vt + vc1;
// Reconstruct the final f value:
// f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
vt *= vs;
float vf = vt * vp + vs;
// For inputs below denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) {
vf = 0.0f;
}
// Store 1 output at a time.
*output++ = vf;
// Accumulate computed exponents.
vacc += vf;
}
*sum = vacc;
}