| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stddef.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/allocator.h> |
| #include <xnnpack/operator.h> |
| #include <xnnpack/log.h> |
| |
| |
| enum xnn_status xnn_create_leaky_relu_nc_q8( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| float negative_slope, |
| uint8_t input_zero_point, |
| float input_scale, |
| uint8_t output_zero_point, |
| float output_scale, |
| uint8_t output_min, |
| uint8_t output_max, |
| uint32_t flags, |
| xnn_operator_t* leaky_relu_op_out) |
| { |
| xnn_operator_t leaky_relu_op = NULL; |
| enum xnn_status status = xnn_status_uninitialized; |
| |
| if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) { |
| xnn_log_error("failed to create %s operator: XNNPACK is not initialized", |
| xnn_operator_type_to_string(xnn_operator_type_leaky_relu_nc_q8)); |
| goto error; |
| } |
| |
| status = xnn_status_invalid_parameter; |
| |
| if (channels == 0) { |
| xnn_log_error( |
| "failed to create %s operator with %zu channels: number of channels must be non-zero", |
| xnn_operator_type_to_string(xnn_operator_type_leaky_relu_nc_q8), channels); |
| goto error; |
| } |
| |
| if (input_stride < channels) { |
| xnn_log_error( |
| "failed to create %s operator with input element stride of %zu: " |
| "stride must be at least as large as the number of channels (%zu)", |
| xnn_operator_type_to_string(xnn_operator_type_leaky_relu_nc_q8), input_stride, channels); |
| goto error; |
| } |
| |
| if (output_stride < channels) { |
| xnn_log_error( |
| "failed to create %s operator with output element stride of %zu: " |
| "stride must be at least as large as the number of channels (%zu)", |
| xnn_operator_type_to_string(xnn_operator_type_leaky_relu_nc_q8), output_stride, channels); |
| goto error; |
| } |
| |
| if (negative_slope <= 0.0f || !isnormal(negative_slope)) { |
| xnn_log_error( |
| "failed to create %s operator with %.7g negative slope: slope must be finite, normalized, and positive", |
| xnn_operator_type_to_string(xnn_operator_type_leaky_relu_nc_q8), negative_slope); |
| goto error; |
| } |
| |
| if (negative_slope > 1.0f) { |
| xnn_log_error( |
| "failed to create %s operator with %.7g negative slope: slope must not exceed 1.0", |
| xnn_operator_type_to_string(xnn_operator_type_leaky_relu_nc_q8), negative_slope); |
| goto error; |
| } |
| |
| if (input_scale <= 0.0f || !isnormal(input_scale)) { |
| xnn_log_error( |
| "failed to create %s operator with %.7g input scale: scale must be finite, normalized, and positive", |
| xnn_operator_type_to_string(xnn_operator_type_leaky_relu_nc_q8), input_scale); |
| goto error; |
| } |
| |
| if (output_scale <= 0.0f || !isnormal(output_scale)) { |
| xnn_log_error( |
| "failed to create %s operator with %.7g output scale: scale must be finite, normalized, and positive", |
| xnn_operator_type_to_string(xnn_operator_type_leaky_relu_nc_q8), output_scale); |
| goto error; |
| } |
| |
| if (output_min >= output_max) { |
| xnn_log_error( |
| "failed to create %s operator with [%" PRIu8 ", %" PRIu8 "] output range: range min must be below range max", |
| xnn_operator_type_to_string(xnn_operator_type_leaky_relu_nc_q8), output_min, output_max); |
| goto error; |
| } |
| |
| status = xnn_status_unsupported_parameter; |
| |
| const float input_output_scale = input_scale / output_scale; |
| if (input_output_scale < 0x1.0p-8f || input_output_scale >= 0x1.0p+8f) { |
| xnn_log_error( |
| "failed to create %s operator with %.7g input-to-output scale ratio: " |
| "scale ratio must be in [2**-8, 2**8) range", |
| xnn_operator_type_to_string(xnn_operator_type_leaky_relu_nc_q8), input_output_scale); |
| goto error; |
| } |
| |
| status = xnn_status_out_of_memory; |
| |
| leaky_relu_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator)); |
| if (leaky_relu_op == NULL) { |
| xnn_log_error( |
| "failed to allocate %zu bytes for %s operator descriptor", |
| sizeof(struct xnn_operator), xnn_operator_type_to_string(xnn_operator_type_leaky_relu_nc_q8)); |
| goto error; |
| } |
| |
| leaky_relu_op->lookup_table = xnn_allocate_simd_memory(256 * sizeof(uint8_t)); |
| if (leaky_relu_op->lookup_table == NULL) { |
| xnn_log_error( |
| "failed to allocate 256 bytes for %s operator lookup table", |
| xnn_operator_type_to_string(xnn_operator_type_leaky_relu_nc_q8)); |
| goto error; |
| } |
| |
| uint8_t* lookup_table = leaky_relu_op->lookup_table; |
| const float scaled_min_less_zero_point = (float) ((int32_t) output_min - (int32_t) output_zero_point); |
| const float scaled_max_less_zero_point = (float) ((int32_t) output_max - (int32_t) output_zero_point); |
| for (int32_t i = 0; i < 256; i++) { |
| const float x = input_output_scale * (float) (i - (int32_t) (uint32_t) input_zero_point); |
| float y = x < 0.0f ? x * negative_slope : x; |
| if (y < scaled_min_less_zero_point) { |
| y = scaled_min_less_zero_point; |
| } |
| if (y > scaled_max_less_zero_point) { |
| y = scaled_max_less_zero_point; |
| } |
| lookup_table[(uint32_t) i] = (uint8_t) (lrintf(y) + (long) output_zero_point); |
| } |
| |
| leaky_relu_op->channels = channels; |
| leaky_relu_op->input_pixel_stride = input_stride; |
| leaky_relu_op->output_pixel_stride = output_stride; |
| |
| leaky_relu_op->type = xnn_operator_type_leaky_relu_nc_q8; |
| leaky_relu_op->ukernel.type = xnn_ukernel_type_lut; |
| |
| leaky_relu_op->state = xnn_run_state_invalid; |
| |
| *leaky_relu_op_out = leaky_relu_op; |
| return xnn_status_success; |
| |
| error: |
| xnn_delete_operator(leaky_relu_op); |
| return status; |
| } |
| |
| enum xnn_status xnn_setup_leaky_relu_nc_q8( |
| xnn_operator_t leaky_relu_op, |
| size_t batch_size, |
| const uint8_t* input, |
| uint8_t* output, |
| pthreadpool_t threadpool) |
| { |
| if (leaky_relu_op->type != xnn_operator_type_leaky_relu_nc_q8) { |
| xnn_log_error("failed to setup operator: operator type mismatch (expected %s, got %s)", |
| xnn_operator_type_to_string(xnn_operator_type_leaky_relu_nc_q8), |
| xnn_operator_type_to_string(leaky_relu_op->type)); |
| return xnn_status_invalid_parameter; |
| } |
| leaky_relu_op->state = xnn_run_state_invalid; |
| |
| if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) { |
| xnn_log_error( |
| "failed to setup %s operator: XNNPACK is not initialized", |
| xnn_operator_type_to_string(xnn_operator_type_leaky_relu_nc_q8)); |
| return xnn_status_uninitialized; |
| } |
| |
| if (batch_size == 0) { |
| leaky_relu_op->state = xnn_run_state_skip; |
| return xnn_status_success; |
| } |
| |
| const size_t channels = leaky_relu_op->channels; |
| const size_t input_stride = leaky_relu_op->input_pixel_stride; |
| const size_t output_stride = leaky_relu_op->output_pixel_stride; |
| if ((((input_stride ^ channels) | (output_stride ^ channels)) == 0) || batch_size == 1) { |
| const size_t block_size = 1024; |
| leaky_relu_op->context.lut_contiguous = (struct lut_contiguous_context) { |
| .x = input, |
| .x_stride = input_stride * sizeof(uint8_t), |
| .t = leaky_relu_op->lookup_table, |
| .y = output, |
| .y_stride = output_stride * sizeof(uint8_t), |
| .ukernel = xnn_params.x8.lut, |
| }; |
| leaky_relu_op->compute.type = xnn_parallelization_type_1d_tile_1d; |
| leaky_relu_op->compute.task_1d_tile_1d = (pthreadpool_task_1d_tile_1d_t) xnn_compute_lut_contiguous; |
| leaky_relu_op->compute.range[0] = batch_size * channels * sizeof(uint8_t); |
| leaky_relu_op->compute.tile[0] = block_size; |
| } else { |
| leaky_relu_op->context.lut_strided = (struct lut_strided_context) { |
| .n = channels, |
| .x = input, |
| .x_stride = input_stride * sizeof(uint8_t), |
| .t = leaky_relu_op->lookup_table, |
| .y = output, |
| .y_stride = output_stride * sizeof(uint8_t), |
| .ukernel = xnn_params.x8.lut, |
| }; |
| leaky_relu_op->compute.type = xnn_parallelization_type_1d; |
| leaky_relu_op->compute.task_1d = (pthreadpool_task_1d_t) xnn_compute_lut_strided; |
| leaky_relu_op->compute.range[0] = batch_size; |
| leaky_relu_op->compute.tile[0] = 0; |
| } |
| leaky_relu_op->state = xnn_run_state_ready; |
| |
| return xnn_status_success; |
| } |