| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| |
| #include <immintrin.h> |
| |
| #include <xnnpack/common.h> |
| #include <xnnpack/vscaleextexp.h> |
| |
| |
| static const uint64_t mask_table[7] = { |
| UINT64_C(0x00000000000000FF), |
| UINT64_C(0x000000000000FFFF), |
| UINT64_C(0x0000000000FFFFFF), |
| UINT64_C(0x00000000FFFFFFFF), |
| UINT64_C(0x000000FFFFFFFFFF), |
| UINT64_C(0x0000FFFFFFFFFFFF), |
| UINT64_C(0x00FFFFFFFFFFFFFF), |
| }; |
| |
| |
| void xnn_f32_vscaleextexp_ukernel__avx2_p5_unroll64( |
| size_t n, |
| const float* x, |
| float* y, |
| float scale_value, |
| float scale_exp) |
| { |
| assert(n % sizeof(float) == 0); |
| |
| const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); |
| const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); |
| const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); |
| |
| // The smallest n such that 2**n is considered non-negligible. |
| // For smaller n, 2**n is replaced with zero. |
| const __m256 vmin_exponent = _mm256_set1_ps(-127.0f); |
| const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); |
| |
| const __m256 vc0 = _mm256_set1_ps(1.0f); |
| const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); |
| const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); |
| const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); |
| const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); |
| const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); |
| |
| const __m256 vscalev = _mm256_set1_ps(scale_value); |
| const __m256 vscalee = _mm256_set1_ps(scale_exp); |
| |
| for (; n >= 64 * sizeof(float); n -= 64 * sizeof(float)) { |
| // Load 64 (8x8) inputs at a time. |
| const __m256 vx0 = _mm256_loadu_ps(x); |
| const __m256 vx1 = _mm256_loadu_ps(x + 8); |
| const __m256 vx2 = _mm256_loadu_ps(x + 16); |
| const __m256 vx3 = _mm256_loadu_ps(x + 24); |
| const __m256 vx4 = _mm256_loadu_ps(x + 32); |
| const __m256 vx5 = _mm256_loadu_ps(x + 40); |
| const __m256 vx6 = _mm256_loadu_ps(x + 48); |
| const __m256 vx7 = _mm256_loadu_ps(x + 56); |
| x += 64; |
| |
| // Compute reduced argument n := round(x / log(2)). |
| const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| |
| // Compute reduced argument t := x - n * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0); |
| __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1); |
| __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2); |
| __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3); |
| __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4); |
| __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5); |
| __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6); |
| __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7); |
| |
| vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0); |
| vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1); |
| vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2); |
| vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3); |
| vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4); |
| vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5); |
| vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6); |
| vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7); |
| |
| // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2]. |
| __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4); |
| __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4); |
| __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4); |
| __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4); |
| __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4); |
| __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4); |
| __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4); |
| __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4); |
| |
| vp0 = _mm256_fmadd_ps(vp0, vt0, vc3); |
| vp1 = _mm256_fmadd_ps(vp1, vt1, vc3); |
| vp2 = _mm256_fmadd_ps(vp2, vt2, vc3); |
| vp3 = _mm256_fmadd_ps(vp3, vt3, vc3); |
| vp4 = _mm256_fmadd_ps(vp4, vt4, vc3); |
| vp5 = _mm256_fmadd_ps(vp5, vt5, vc3); |
| vp6 = _mm256_fmadd_ps(vp6, vt6, vc3); |
| vp7 = _mm256_fmadd_ps(vp7, vt7, vc3); |
| |
| vp0 = _mm256_fmadd_ps(vp0, vt0, vc2); |
| vp1 = _mm256_fmadd_ps(vp1, vt1, vc2); |
| vp2 = _mm256_fmadd_ps(vp2, vt2, vc2); |
| vp3 = _mm256_fmadd_ps(vp3, vt3, vc2); |
| vp4 = _mm256_fmadd_ps(vp4, vt4, vc2); |
| vp5 = _mm256_fmadd_ps(vp5, vt5, vc2); |
| vp6 = _mm256_fmadd_ps(vp6, vt6, vc2); |
| vp7 = _mm256_fmadd_ps(vp7, vt7, vc2); |
| |
| vp0 = _mm256_fmadd_ps(vp0, vt0, vc1); |
| vp1 = _mm256_fmadd_ps(vp1, vt1, vc1); |
| vp2 = _mm256_fmadd_ps(vp2, vt2, vc1); |
| vp3 = _mm256_fmadd_ps(vp3, vt3, vc1); |
| vp4 = _mm256_fmadd_ps(vp4, vt4, vc1); |
| vp5 = _mm256_fmadd_ps(vp5, vt5, vc1); |
| vp6 = _mm256_fmadd_ps(vp6, vt6, vc1); |
| vp7 = _mm256_fmadd_ps(vp7, vt7, vc1); |
| |
| vp0 = _mm256_fmadd_ps(vp0, vt0, vc0); |
| vp1 = _mm256_fmadd_ps(vp1, vt1, vc0); |
| vp2 = _mm256_fmadd_ps(vp2, vt2, vc0); |
| vp3 = _mm256_fmadd_ps(vp3, vt3, vc0); |
| vp4 = _mm256_fmadd_ps(vp4, vt4, vc0); |
| vp5 = _mm256_fmadd_ps(vp5, vt5, vc0); |
| vp6 = _mm256_fmadd_ps(vp6, vt6, vc0); |
| vp7 = _mm256_fmadd_ps(vp7, vt7, vc0); |
| |
| // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where |
| // - vnX is "exponent" |
| // - vpX is "mantissa" |
| // |
| // exp2(ae) * av * exp2(be) * bv = |
| // = exp2(ae + be) * (av * bv) |
| __m256 vf0 = _mm256_mul_ps(vp0, vscalev); |
| __m256 vf1 = _mm256_mul_ps(vp1, vscalev); |
| __m256 vf2 = _mm256_mul_ps(vp2, vscalev); |
| __m256 vf3 = _mm256_mul_ps(vp3, vscalev); |
| __m256 vf4 = _mm256_mul_ps(vp4, vscalev); |
| __m256 vf5 = _mm256_mul_ps(vp5, vscalev); |
| __m256 vf6 = _mm256_mul_ps(vp6, vscalev); |
| __m256 vf7 = _mm256_mul_ps(vp7, vscalev); |
| |
| __m256 ve0 = _mm256_add_ps(vn0, vscalee); |
| __m256 ve1 = _mm256_add_ps(vn1, vscalee); |
| __m256 ve2 = _mm256_add_ps(vn2, vscalee); |
| __m256 ve3 = _mm256_add_ps(vn3, vscalee); |
| __m256 ve4 = _mm256_add_ps(vn4, vscalee); |
| __m256 ve5 = _mm256_add_ps(vn5, vscalee); |
| __m256 ve6 = _mm256_add_ps(vn6, vscalee); |
| __m256 ve7 = _mm256_add_ps(vn7, vscalee); |
| |
| // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. |
| // This replacement is done in two steps: |
| // 1. Clamp minimum e at -127.0. |
| // 2. Map e to scale factor 0.0 when e == -127.0 |
| ve0 = _mm256_max_ps(ve0, vmin_exponent); |
| ve1 = _mm256_max_ps(ve1, vmin_exponent); |
| ve2 = _mm256_max_ps(ve2, vmin_exponent); |
| ve3 = _mm256_max_ps(ve3, vmin_exponent); |
| ve4 = _mm256_max_ps(ve4, vmin_exponent); |
| ve5 = _mm256_max_ps(ve5, vmin_exponent); |
| ve6 = _mm256_max_ps(ve6, vmin_exponent); |
| ve7 = _mm256_max_ps(ve7, vmin_exponent); |
| |
| // Convert exponents into scale factors: |
| // - s = exp2(e) when e > -127.0 |
| // - s = 0.0 when e <= -127.0 |
| const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve0, vmagic_bias)), 23)); |
| const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve1, vmagic_bias)), 23)); |
| const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve2, vmagic_bias)), 23)); |
| const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve3, vmagic_bias)), 23)); |
| const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve4, vmagic_bias)), 23)); |
| const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve5, vmagic_bias)), 23)); |
| const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve6, vmagic_bias)), 23)); |
| const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve7, vmagic_bias)), 23)); |
| |
| // Multiply "mantissa" by the scale factor. |
| vf0 = _mm256_mul_ps(vf0, vs0); |
| vf1 = _mm256_mul_ps(vf1, vs1); |
| vf2 = _mm256_mul_ps(vf2, vs2); |
| vf3 = _mm256_mul_ps(vf3, vs3); |
| vf4 = _mm256_mul_ps(vf4, vs4); |
| vf5 = _mm256_mul_ps(vf5, vs5); |
| vf6 = _mm256_mul_ps(vf6, vs6); |
| vf7 = _mm256_mul_ps(vf7, vs7); |
| |
| // Store 64 (8x8) results at a time. |
| _mm256_storeu_ps(y, vf0); |
| _mm256_storeu_ps(y + 8, vf1); |
| _mm256_storeu_ps(y + 16, vf2); |
| _mm256_storeu_ps(y + 24, vf3); |
| _mm256_storeu_ps(y + 32, vf4); |
| _mm256_storeu_ps(y + 40, vf5); |
| _mm256_storeu_ps(y + 48, vf6); |
| _mm256_storeu_ps(y + 56, vf7); |
| y += 64; |
| } |
| |
| for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) { |
| // Load 8 inputs at a time. |
| const __m256 vx = _mm256_loadu_ps(x); |
| x += 8; |
| |
| // Compute reduced argument n := round(x / log(2)). |
| const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| |
| // Compute reduced argument t := x - n * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); |
| vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); |
| |
| // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2]. |
| __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); |
| vp = _mm256_fmadd_ps(vp, vt, vc3); |
| vp = _mm256_fmadd_ps(vp, vt, vc2); |
| vp = _mm256_fmadd_ps(vp, vt, vc1); |
| vp = _mm256_fmadd_ps(vp, vt, vc0); |
| |
| // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. |
| __m256 vf = _mm256_mul_ps(vp, vscalev); |
| __m256 ve = _mm256_add_ps(vn, vscalee); |
| |
| // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. |
| ve = _mm256_max_ps(ve, vmin_exponent); |
| |
| // Convert exponents into scale factors. |
| const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); |
| |
| // Multiply "mantissa" by the scale factor. |
| vf = _mm256_mul_ps(vf, vs); |
| |
| // Store 8 results at a time. |
| _mm256_storeu_ps(y, vf); |
| y += 8; |
| } |
| if XNN_UNLIKELY(n != 0) { |
| // Load & sign-extend mask for valid 32-bit elements (depends on n). |
| const __m256i vmask = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) ((uintptr_t) mask_table + n * 2 - 8))); |
| |
| // Load up to 7 inputs at a time. |
| const __m256 vx = _mm256_maskload_ps(x, vmask); |
| |
| // Compute reduced argument n := round(x / log(2)). |
| const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| |
| // Compute reduced argument t := x - n * log(2). |
| // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. |
| __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); |
| vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); |
| |
| // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2]. |
| __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); |
| vp = _mm256_fmadd_ps(vp, vt, vc3); |
| vp = _mm256_fmadd_ps(vp, vt, vc2); |
| vp = _mm256_fmadd_ps(vp, vt, vc1); |
| vp = _mm256_fmadd_ps(vp, vt, vc0); |
| |
| // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation. |
| __m256 vf = _mm256_mul_ps(vp, vscalev); |
| __m256 ve = _mm256_add_ps(vn, vscalee); |
| |
| // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0. |
| ve = _mm256_max_ps(ve, vmin_exponent); |
| |
| // Convert exponents into scale factors. |
| const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23)); |
| |
| // Multiply "mantissa" by the scale factor. |
| vf = _mm256_mul_ps(vf, vs); |
| |
| // Store up to 7 inputs at a time. |
| _mm256_maskstore_ps(y, vmask, vf); |
| } |
| _mm256_zeroupper(); |
| } |