blob: c864457793855abd7a6c101d87d5812b743fa2a1 [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/common.h>
#include <xnnpack/vscaleextexp.h>
static const uint64_t mask_table[7] = {
UINT64_C(0x00000000000000FF),
UINT64_C(0x000000000000FFFF),
UINT64_C(0x0000000000FFFFFF),
UINT64_C(0x00000000FFFFFFFF),
UINT64_C(0x000000FFFFFFFFFF),
UINT64_C(0x0000FFFFFFFFFFFF),
UINT64_C(0x00FFFFFFFFFFFFFF),
};
void xnn_f32_vscaleextexp_ukernel__avx2_p5_unroll64(
size_t n,
const float* x,
float* y,
float scale_value,
float scale_exp)
{
assert(n % sizeof(float) == 0);
const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
// The smallest n such that 2**n is considered non-negligible.
// For smaller n, 2**n is replaced with zero.
const __m256 vmin_exponent = _mm256_set1_ps(-127.0f);
const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
const __m256 vc0 = _mm256_set1_ps(1.0f);
const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
const __m256 vscalev = _mm256_set1_ps(scale_value);
const __m256 vscalee = _mm256_set1_ps(scale_exp);
for (; n >= 64 * sizeof(float); n -= 64 * sizeof(float)) {
// Load 64 (8x8) inputs at a time.
const __m256 vx0 = _mm256_loadu_ps(x);
const __m256 vx1 = _mm256_loadu_ps(x + 8);
const __m256 vx2 = _mm256_loadu_ps(x + 16);
const __m256 vx3 = _mm256_loadu_ps(x + 24);
const __m256 vx4 = _mm256_loadu_ps(x + 32);
const __m256 vx5 = _mm256_loadu_ps(x + 40);
const __m256 vx6 = _mm256_loadu_ps(x + 48);
const __m256 vx7 = _mm256_loadu_ps(x + 56);
x += 64;
// Compute reduced argument n := round(x / log(2)).
const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
// Compute reduced argument t := x - n * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
__m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
__m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2);
__m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3);
__m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4);
__m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5);
__m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6);
__m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7);
vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2);
vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3);
vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4);
vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5);
vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6);
vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7);
// Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
__m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
__m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
__m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
__m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
__m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
__m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
__m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
__m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
vp0 = _mm256_fmadd_ps(vp0, vt0, vc0);
vp1 = _mm256_fmadd_ps(vp1, vt1, vc0);
vp2 = _mm256_fmadd_ps(vp2, vt2, vc0);
vp3 = _mm256_fmadd_ps(vp3, vt3, vc0);
vp4 = _mm256_fmadd_ps(vp4, vt4, vc0);
vp5 = _mm256_fmadd_ps(vp5, vt5, vc0);
vp6 = _mm256_fmadd_ps(vp6, vt6, vc0);
vp7 = _mm256_fmadd_ps(vp7, vt7, vc0);
// Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where
// - vnX is "exponent"
// - vpX is "mantissa"
//
// exp2(ae) * av * exp2(be) * bv =
// = exp2(ae + be) * (av * bv)
__m256 vf0 = _mm256_mul_ps(vp0, vscalev);
__m256 vf1 = _mm256_mul_ps(vp1, vscalev);
__m256 vf2 = _mm256_mul_ps(vp2, vscalev);
__m256 vf3 = _mm256_mul_ps(vp3, vscalev);
__m256 vf4 = _mm256_mul_ps(vp4, vscalev);
__m256 vf5 = _mm256_mul_ps(vp5, vscalev);
__m256 vf6 = _mm256_mul_ps(vp6, vscalev);
__m256 vf7 = _mm256_mul_ps(vp7, vscalev);
__m256 ve0 = _mm256_add_ps(vn0, vscalee);
__m256 ve1 = _mm256_add_ps(vn1, vscalee);
__m256 ve2 = _mm256_add_ps(vn2, vscalee);
__m256 ve3 = _mm256_add_ps(vn3, vscalee);
__m256 ve4 = _mm256_add_ps(vn4, vscalee);
__m256 ve5 = _mm256_add_ps(vn5, vscalee);
__m256 ve6 = _mm256_add_ps(vn6, vscalee);
__m256 ve7 = _mm256_add_ps(vn7, vscalee);
// For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0.
// This replacement is done in two steps:
// 1. Clamp minimum e at -127.0.
// 2. Map e to scale factor 0.0 when e == -127.0
ve0 = _mm256_max_ps(ve0, vmin_exponent);
ve1 = _mm256_max_ps(ve1, vmin_exponent);
ve2 = _mm256_max_ps(ve2, vmin_exponent);
ve3 = _mm256_max_ps(ve3, vmin_exponent);
ve4 = _mm256_max_ps(ve4, vmin_exponent);
ve5 = _mm256_max_ps(ve5, vmin_exponent);
ve6 = _mm256_max_ps(ve6, vmin_exponent);
ve7 = _mm256_max_ps(ve7, vmin_exponent);
// Convert exponents into scale factors:
// - s = exp2(e) when e > -127.0
// - s = 0.0 when e <= -127.0
const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve0, vmagic_bias)), 23));
const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve1, vmagic_bias)), 23));
const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve2, vmagic_bias)), 23));
const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve3, vmagic_bias)), 23));
const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve4, vmagic_bias)), 23));
const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve5, vmagic_bias)), 23));
const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve6, vmagic_bias)), 23));
const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve7, vmagic_bias)), 23));
// Multiply "mantissa" by the scale factor.
vf0 = _mm256_mul_ps(vf0, vs0);
vf1 = _mm256_mul_ps(vf1, vs1);
vf2 = _mm256_mul_ps(vf2, vs2);
vf3 = _mm256_mul_ps(vf3, vs3);
vf4 = _mm256_mul_ps(vf4, vs4);
vf5 = _mm256_mul_ps(vf5, vs5);
vf6 = _mm256_mul_ps(vf6, vs6);
vf7 = _mm256_mul_ps(vf7, vs7);
// Store 64 (8x8) results at a time.
_mm256_storeu_ps(y, vf0);
_mm256_storeu_ps(y + 8, vf1);
_mm256_storeu_ps(y + 16, vf2);
_mm256_storeu_ps(y + 24, vf3);
_mm256_storeu_ps(y + 32, vf4);
_mm256_storeu_ps(y + 40, vf5);
_mm256_storeu_ps(y + 48, vf6);
_mm256_storeu_ps(y + 56, vf7);
y += 64;
}
for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
// Load 8 inputs at a time.
const __m256 vx = _mm256_loadu_ps(x);
x += 8;
// Compute reduced argument n := round(x / log(2)).
const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
// Compute reduced argument t := x - n * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
// Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
__m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
vp = _mm256_fmadd_ps(vp, vt, vc3);
vp = _mm256_fmadd_ps(vp, vt, vc2);
vp = _mm256_fmadd_ps(vp, vt, vc1);
vp = _mm256_fmadd_ps(vp, vt, vc0);
// Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation.
__m256 vf = _mm256_mul_ps(vp, vscalev);
__m256 ve = _mm256_add_ps(vn, vscalee);
// For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0.
ve = _mm256_max_ps(ve, vmin_exponent);
// Convert exponents into scale factors.
const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23));
// Multiply "mantissa" by the scale factor.
vf = _mm256_mul_ps(vf, vs);
// Store 8 results at a time.
_mm256_storeu_ps(y, vf);
y += 8;
}
if XNN_UNLIKELY(n != 0) {
// Load & sign-extend mask for valid 32-bit elements (depends on n).
const __m256i vmask = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) ((uintptr_t) mask_table + n * 2 - 8)));
// Load up to 7 inputs at a time.
const __m256 vx = _mm256_maskload_ps(x, vmask);
// Compute reduced argument n := round(x / log(2)).
const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
// Compute reduced argument t := x - n * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
// Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
__m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
vp = _mm256_fmadd_ps(vp, vt, vc3);
vp = _mm256_fmadd_ps(vp, vt, vc2);
vp = _mm256_fmadd_ps(vp, vt, vc1);
vp = _mm256_fmadd_ps(vp, vt, vc0);
// Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation.
__m256 vf = _mm256_mul_ps(vp, vscalev);
__m256 ve = _mm256_add_ps(vn, vscalee);
// For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0.
ve = _mm256_max_ps(ve, vmin_exponent);
// Convert exponents into scale factors.
const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23));
// Multiply "mantissa" by the scale factor.
vf = _mm256_mul_ps(vf, vs);
// Store up to 7 inputs at a time.
_mm256_maskstore_ps(y, vmask, vf);
}
_mm256_zeroupper();
}