| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <math.h> |
| #include <stddef.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/allocator.h> |
| #include <xnnpack/log.h> |
| #include <xnnpack/operator.h> |
| #include <xnnpack/params-init.h> |
| #include <xnnpack/params.h> |
| |
| |
| enum xnn_status xnn_create_prelu_nc_f32( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| const float* negative_slope, |
| float output_min, |
| float output_max, |
| uint32_t flags, |
| xnn_operator_t* prelu_op_out) |
| { |
| xnn_operator_t prelu_op = NULL; |
| enum xnn_status status = xnn_status_uninitialized; |
| |
| if (!xnn_params.initialized) { |
| xnn_log_error("failed to create PReLU operator: XNNPACK is not initialized"); |
| goto error; |
| } |
| |
| status = xnn_status_invalid_parameter; |
| |
| if (channels == 0) { |
| xnn_log_error( |
| "failed to create PReLU operator with %zu channels: number of channels must be non-zero", channels); |
| goto error; |
| } |
| |
| if (input_stride < channels) { |
| xnn_log_error( |
| "failed to create PReLU operator with input element stride of %zu: " |
| "stride must be at least as large as the number of channels (%zu)", |
| input_stride, channels); |
| goto error; |
| } |
| |
| if (output_stride < channels) { |
| xnn_log_error( |
| "failed to create PReLU operator with output element stride of %zu: " |
| "stride must be at least as large as the number of channels (%zu)", |
| output_stride, channels); |
| goto error; |
| } |
| |
| if (output_min >= output_max) { |
| xnn_log_error( |
| "failed to create PReLU operator with [%.7g, %.7g] output range: lower bound must be below upper bound", |
| output_min, output_max); |
| goto error; |
| } |
| |
| status = xnn_status_out_of_memory; |
| |
| prelu_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator)); |
| if (prelu_op == NULL) { |
| xnn_log_error("failed to allocate %zu bytes for PReLU operator descriptor", sizeof(struct xnn_operator)); |
| goto error; |
| } |
| |
| const size_t packed_channels = round_up_po2(channels, XNN_EXTRA_BYTES / sizeof(float)); |
| prelu_op->packed_weights = xnn_allocate_simd_memory(packed_channels * sizeof(float)); |
| if (prelu_op->packed_weights == NULL) { |
| xnn_log_error("failed to allocate %zu bytes for packed slope data", |
| packed_channels * sizeof(float)); |
| goto error; |
| } |
| memcpy(prelu_op->packed_weights, negative_slope, channels * sizeof(float)); |
| |
| prelu_op->channels = channels; |
| prelu_op->input_pixel_stride = input_stride; |
| prelu_op->output_pixel_stride = output_stride; |
| prelu_op->f32_output_params = xnn_init_f32_output_params(output_min, output_max); |
| |
| prelu_op->type = xnn_operator_type_prelu_nc_f32; |
| prelu_op->ukernel.type = xnn_ukernel_type_prelu; |
| |
| prelu_op->state = xnn_run_state_invalid; |
| |
| *prelu_op_out = prelu_op; |
| return xnn_status_success; |
| |
| error: |
| xnn_delete_operator(prelu_op); |
| return status; |
| } |
| |
| enum xnn_status xnn_setup_prelu_nc_f32( |
| xnn_operator_t prelu_op, |
| size_t batch_size, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool) |
| { |
| if (prelu_op->type != xnn_operator_type_prelu_nc_f32) { |
| xnn_log_error("failed to setup PReLU (NC, F32) operator: operator type mismatch"); |
| return xnn_status_invalid_parameter; |
| } |
| prelu_op->state = xnn_run_state_invalid; |
| |
| if (!xnn_params.initialized) { |
| xnn_log_error("failed to setup PReLU operator: XNNPACK is not initialized"); |
| return xnn_status_uninitialized; |
| } |
| |
| if (batch_size == 0) { |
| prelu_op->state = xnn_run_state_skip; |
| return xnn_status_success; |
| } |
| |
| const size_t channels = prelu_op->channels; |
| prelu_op->context.prelu = (struct prelu_context) { |
| .n = channels * sizeof(float), |
| .x = input, |
| .x_stride = prelu_op->input_pixel_stride * sizeof(float), |
| .w = prelu_op->packed_weights, |
| .y = output, |
| .y_stride = prelu_op->output_pixel_stride * sizeof(float), |
| .ukernel = xnn_params.f32.prelu.ukernel, |
| .params = prelu_op->f32_output_params, |
| }; |
| |
| size_t batch_tile = batch_size; |
| const size_t num_threads = pthreadpool_get_threads_count(threadpool); |
| if (num_threads > 1) { |
| const size_t target_tiles_per_thread = 5; |
| const size_t max_batch_tile = divide_round_up(batch_size, num_threads * target_tiles_per_thread); |
| if (max_batch_tile < batch_tile) { |
| const uint32_t row_tile = xnn_params.f32.prelu.row_tile; |
| batch_tile = min(batch_tile, divide_round_up(batch_tile, max_batch_tile * row_tile) * row_tile); |
| } |
| } |
| prelu_op->compute.type = xnn_parallelization_type_1d_tile_1d; |
| prelu_op->compute.task_1d_tile_1d = (pthreadpool_task_1d_tile_1d_t) xnn_compute_prelu; |
| prelu_op->compute.range[0] = batch_size; |
| prelu_op->compute.tile[0] = batch_tile; |
| prelu_op->state = xnn_run_state_ready; |
| |
| return xnn_status_success; |
| } |