blob: 49a122a19623eeac2cc6f06b01a570fb3fc54722 [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <math.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <xnnpack.h>
#include <xnnpack/allocator.h>
#include <xnnpack/log.h>
#include <xnnpack/operator.h>
#include <xnnpack/params-init.h>
#include <xnnpack/params.h>
enum xnn_status xnn_create_prelu_nc_f32(
size_t channels,
size_t input_stride,
size_t output_stride,
const float* negative_slope,
float output_min,
float output_max,
uint32_t flags,
xnn_operator_t* prelu_op_out)
{
xnn_operator_t prelu_op = NULL;
enum xnn_status status = xnn_status_uninitialized;
if (!xnn_params.initialized) {
xnn_log_error("failed to create PReLU operator: XNNPACK is not initialized");
goto error;
}
status = xnn_status_invalid_parameter;
if (channels == 0) {
xnn_log_error(
"failed to create PReLU operator with %zu channels: number of channels must be non-zero", channels);
goto error;
}
if (input_stride < channels) {
xnn_log_error(
"failed to create PReLU operator with input element stride of %zu: "
"stride must be at least as large as the number of channels (%zu)",
input_stride, channels);
goto error;
}
if (output_stride < channels) {
xnn_log_error(
"failed to create PReLU operator with output element stride of %zu: "
"stride must be at least as large as the number of channels (%zu)",
output_stride, channels);
goto error;
}
if (output_min >= output_max) {
xnn_log_error(
"failed to create PReLU operator with [%.7g, %.7g] output range: lower bound must be below upper bound",
output_min, output_max);
goto error;
}
status = xnn_status_out_of_memory;
prelu_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
if (prelu_op == NULL) {
xnn_log_error("failed to allocate %zu bytes for PReLU operator descriptor", sizeof(struct xnn_operator));
goto error;
}
const size_t packed_channels = round_up_po2(channels, XNN_EXTRA_BYTES / sizeof(float));
prelu_op->packed_weights = xnn_allocate_simd_memory(packed_channels * sizeof(float));
if (prelu_op->packed_weights == NULL) {
xnn_log_error("failed to allocate %zu bytes for packed slope data",
packed_channels * sizeof(float));
goto error;
}
memcpy(prelu_op->packed_weights, negative_slope, channels * sizeof(float));
prelu_op->channels = channels;
prelu_op->input_pixel_stride = input_stride;
prelu_op->output_pixel_stride = output_stride;
prelu_op->f32_output_params = xnn_init_f32_output_params(output_min, output_max);
prelu_op->type = xnn_operator_type_prelu_nc_f32;
prelu_op->ukernel.type = xnn_ukernel_type_prelu;
prelu_op->state = xnn_run_state_invalid;
*prelu_op_out = prelu_op;
return xnn_status_success;
error:
xnn_delete_operator(prelu_op);
return status;
}
enum xnn_status xnn_setup_prelu_nc_f32(
xnn_operator_t prelu_op,
size_t batch_size,
const float* input,
float* output,
pthreadpool_t threadpool)
{
if (prelu_op->type != xnn_operator_type_prelu_nc_f32) {
xnn_log_error("failed to setup PReLU (NC, F32) operator: operator type mismatch");
return xnn_status_invalid_parameter;
}
prelu_op->state = xnn_run_state_invalid;
if (!xnn_params.initialized) {
xnn_log_error("failed to setup PReLU operator: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (batch_size == 0) {
prelu_op->state = xnn_run_state_skip;
return xnn_status_success;
}
const size_t channels = prelu_op->channels;
prelu_op->context.prelu = (struct prelu_context) {
.n = channels * sizeof(float),
.x = input,
.x_stride = prelu_op->input_pixel_stride * sizeof(float),
.w = prelu_op->packed_weights,
.y = output,
.y_stride = prelu_op->output_pixel_stride * sizeof(float),
.ukernel = xnn_params.f32.prelu.ukernel,
.params = prelu_op->f32_output_params,
};
size_t batch_tile = batch_size;
const size_t num_threads = pthreadpool_get_threads_count(threadpool);
if (num_threads > 1) {
const size_t target_tiles_per_thread = 5;
const size_t max_batch_tile = divide_round_up(batch_size, num_threads * target_tiles_per_thread);
if (max_batch_tile < batch_tile) {
const uint32_t row_tile = xnn_params.f32.prelu.row_tile;
batch_tile = min(batch_tile, divide_round_up(batch_tile, max_batch_tile * row_tile) * row_tile);
}
}
prelu_op->compute.type = xnn_parallelization_type_1d_tile_1d;
prelu_op->compute.task_1d_tile_1d = (pthreadpool_task_1d_tile_1d_t) xnn_compute_prelu;
prelu_op->compute.range[0] = batch_size;
prelu_op->compute.tile[0] = batch_tile;
prelu_op->state = xnn_run_state_ready;
return xnn_status_success;
}