| #!/usr/bin/env python |
| # Copyright 2020 Google LLC |
| # |
| # This source code is licensed under the BSD-style license found in the |
| # LICENSE file in the root directory of this source tree. |
| |
| import argparse |
| import codecs |
| import os |
| import re |
| import sys |
| import yaml |
| |
| sys.path.insert(0, os.path.dirname(os.path.abspath(__file__))) |
| from primes import next_prime |
| import xngen |
| import xnncommon |
| |
| |
| parser = argparse.ArgumentParser( |
| description='Test generator for DWCONV2D CHW micro-kernels') |
| parser.add_argument("-s", "--spec", metavar="FILE", required=True, |
| help="Spec (YAML) file") |
| parser.add_argument("-o", "--output", metavar="FILE", required=True, |
| help='Output (C++ source) file') |
| parser.set_defaults(defines=list()) |
| |
| |
| TEST_TEMPLATE = """\ |
| $if SUBSAMPLING == 1: |
| TEST(${TEST_NAME}, output_width_eq_${WIDTH_TILE}) { |
| $if ISA_CHECK: |
| ${ISA_CHECK}; |
| DWConv2DMicrokernelTester() |
| .input_width(${(WIDTH_TILE - 1) * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}) |
| .input_height(${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1}) |
| .kernel_height(${KERNEL_HEIGHT}) |
| .kernel_width(${KERNEL_WIDTH}) |
| .subsampling(${SUBSAMPLING}) |
| .padding_left(${PADDING}) |
| .padding_right(${PADDING}) |
| .padding_top(${PADDING}) |
| .padding_bottom(${PADDING}) |
| .Test(${", ".join(TEST_ARGS)}); |
| } |
| $else: |
| TEST(${TEST_NAME}, output_width_eq_${WIDTH_TILE}) { |
| $if ISA_CHECK: |
| ${ISA_CHECK}; |
| for (size_t input_width = ${(WIDTH_TILE - 1) * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width < ${WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width++) { |
| DWConv2DMicrokernelTester() |
| .input_width(input_width) |
| .input_height(${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1}) |
| .kernel_height(${KERNEL_HEIGHT}) |
| .kernel_width(${KERNEL_WIDTH}) |
| .subsampling(${SUBSAMPLING}) |
| .padding_left(${PADDING}) |
| .padding_right(${PADDING}) |
| .padding_top(${PADDING}) |
| .padding_bottom(${PADDING}) |
| .Test(${", ".join(TEST_ARGS)}); |
| } |
| } |
| |
| $if WIDTH_TILE > 1: |
| TEST(${TEST_NAME}, output_width_div_${WIDTH_TILE}) { |
| $if ISA_CHECK: |
| ${ISA_CHECK}; |
| for (size_t input_width = ${2 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING - 1}; input_width < ${8 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING - 1}; input_width += ${WIDTH_TILE * SUBSAMPLING}) { |
| DWConv2DMicrokernelTester() |
| .input_width(input_width) |
| .input_height(${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1}) |
| .kernel_height(${KERNEL_HEIGHT}) |
| .kernel_width(${KERNEL_WIDTH}) |
| .subsampling(${SUBSAMPLING}) |
| .padding_left(${PADDING}) |
| .padding_right(${PADDING}) |
| .padding_top(${PADDING}) |
| .padding_bottom(${PADDING}) |
| .Test(${", ".join(TEST_ARGS)}); |
| } |
| } |
| |
| TEST(${TEST_NAME}, output_width_lt_${WIDTH_TILE}) { |
| $if ISA_CHECK: |
| ${ISA_CHECK}; |
| for (size_t input_width = ${max(1, KERNEL_WIDTH - 2 * PADDING)}; input_width < ${(WIDTH_TILE - 1) * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width++) { |
| DWConv2DMicrokernelTester() |
| .input_width(${WIDTH_TILE * SUBSAMPLING}) |
| .input_height(${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1}) |
| .kernel_height(${KERNEL_HEIGHT}) |
| .kernel_width(${KERNEL_WIDTH}) |
| .subsampling(${SUBSAMPLING}) |
| .padding_left(${PADDING}) |
| .padding_right(${PADDING}) |
| .padding_top(${PADDING}) |
| .padding_bottom(${PADDING}) |
| .Test(${", ".join(TEST_ARGS)}); |
| } |
| } |
| |
| TEST(${TEST_NAME}, output_width_gt_${WIDTH_TILE}) { |
| $if ISA_CHECK: |
| ${ISA_CHECK}; |
| for (size_t input_width = ${WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width < ${(5 if WIDTH_TILE == 1 else 2) * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width++) { |
| DWConv2DMicrokernelTester() |
| .input_width(input_width) |
| .input_height(${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1}) |
| .kernel_height(${KERNEL_HEIGHT}) |
| .kernel_width(${KERNEL_WIDTH}) |
| .subsampling(${SUBSAMPLING}) |
| .padding_left(${PADDING}) |
| .padding_right(${PADDING}) |
| .padding_top(${PADDING}) |
| .padding_bottom(${PADDING}) |
| .Test(${", ".join(TEST_ARGS)}); |
| } |
| } |
| |
| $if SUBSAMPLING > 1: |
| TEST(${TEST_NAME}, output_height_eq_${HEIGHT_TILE}) { |
| $if ISA_CHECK: |
| ${ISA_CHECK}; |
| for (size_t input_height = ${(HEIGHT_TILE - 1) * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING}; input_height < ${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING}; input_height++) { |
| for (size_t input_width = 1; input_width < ${5 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width += ${max(1, WIDTH_TILE * SUBSAMPLING - 1)}) { |
| DWConv2DMicrokernelTester() |
| .input_width(input_width) |
| .input_height(input_height) |
| .kernel_height(${KERNEL_HEIGHT}) |
| .kernel_width(${KERNEL_WIDTH}) |
| .subsampling(${SUBSAMPLING}) |
| .padding_left(${PADDING}) |
| .padding_right(${PADDING}) |
| .padding_top(${PADDING}) |
| .padding_bottom(${PADDING}) |
| .Test(${", ".join(TEST_ARGS)}); |
| } |
| } |
| } |
| |
| $if HEIGHT_TILE > 1: |
| TEST(${TEST_NAME}, output_height_div_${HEIGHT_TILE}) { |
| $if ISA_CHECK: |
| ${ISA_CHECK}; |
| for (size_t input_height = ${2 * HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1}; input_height < ${8 * HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING - 1}; input_height += ${HEIGHT_TILE * SUBSAMPLING}) { |
| for (size_t input_width = 1; input_width < ${5 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width += ${max(1, WIDTH_TILE * SUBSAMPLING - 1)}) { |
| DWConv2DMicrokernelTester() |
| .input_width(input_width) |
| .input_height(input_height) |
| .kernel_height(${KERNEL_HEIGHT}) |
| .kernel_width(${KERNEL_WIDTH}) |
| .subsampling(${SUBSAMPLING}) |
| .padding_left(${PADDING}) |
| .padding_right(${PADDING}) |
| .padding_top(${PADDING}) |
| .padding_bottom(${PADDING}) |
| .Test(${", ".join(TEST_ARGS)}); |
| } |
| } |
| } |
| |
| TEST(${TEST_NAME}, output_height_lt_${HEIGHT_TILE}) { |
| $if ISA_CHECK: |
| ${ISA_CHECK}; |
| for (size_t input_height = ${max(1, KERNEL_HEIGHT - 2 * PADDING)}; input_height < ${(HEIGHT_TILE - 1) * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING}; input_height++) { |
| for (size_t input_width = 1; input_width < ${5 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width += ${max(1, WIDTH_TILE * SUBSAMPLING - 1)}) { |
| DWConv2DMicrokernelTester() |
| .input_width(input_width) |
| .input_height(input_height) |
| .kernel_height(${KERNEL_HEIGHT}) |
| .kernel_width(${KERNEL_WIDTH}) |
| .subsampling(${SUBSAMPLING}) |
| .padding_left(${PADDING}) |
| .padding_right(${PADDING}) |
| .padding_top(${PADDING}) |
| .padding_bottom(${PADDING}) |
| .Test(${", ".join(TEST_ARGS)}); |
| } |
| } |
| } |
| |
| TEST(${TEST_NAME}, output_height_gt_${HEIGHT_TILE}) { |
| $if ISA_CHECK: |
| ${ISA_CHECK}; |
| for (size_t input_height = ${HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING}; input_height < ${(5 if WIDTH_TILE == 1 else 2) * HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING}; input_height++) { |
| for (size_t input_width = 1; input_width < ${5 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width += ${max(1, WIDTH_TILE * SUBSAMPLING - 1)}) { |
| DWConv2DMicrokernelTester() |
| .input_width(input_width) |
| .input_height(input_height) |
| .kernel_height(${KERNEL_HEIGHT}) |
| .kernel_width(${KERNEL_WIDTH}) |
| .subsampling(${SUBSAMPLING}) |
| .padding_left(${PADDING}) |
| .padding_right(${PADDING}) |
| .padding_top(${PADDING}) |
| .padding_bottom(${PADDING}) |
| .Test(${", ".join(TEST_ARGS)}); |
| } |
| } |
| } |
| |
| $if SUBSAMPLING > 1: |
| TEST(${TEST_NAME}, padding_top_eq_${SUBSAMPLING - 1}) { |
| $if ISA_CHECK: |
| ${ISA_CHECK}; |
| for (size_t input_height = ${max(1, KERNEL_HEIGHT - 2 * PADDING + 1)}; input_height < ${3 * HEIGHT_TILE * SUBSAMPLING + KERNEL_HEIGHT - 2 * PADDING + 1}; input_height++) { |
| for (size_t input_width = 1; input_width < ${5 * WIDTH_TILE * SUBSAMPLING + KERNEL_WIDTH - 2 * PADDING}; input_width += ${max(1, WIDTH_TILE * SUBSAMPLING - 1)}) { |
| DWConv2DMicrokernelTester() |
| .input_width(input_width) |
| .input_height(input_height) |
| .kernel_height(${KERNEL_HEIGHT}) |
| .kernel_width(${KERNEL_WIDTH}) |
| .subsampling(${SUBSAMPLING}) |
| .padding_left(${PADDING}) |
| .padding_right(${PADDING}) |
| .padding_top(${PADDING - 1}) |
| .padding_bottom(${PADDING}) |
| .Test(${", ".join(TEST_ARGS)}); |
| } |
| } |
| } |
| """ |
| |
| def split_ukernel_name(name): |
| match = re.match(r"^xnn_(f16|f32)_dwconv2d_chw_ukernel_(\d+)x(\d+)(s2)?p(\d+)__(.+)_(\d+)x(\d+)(_acc\d+)?$", name) |
| assert match is not None |
| kernel_height, kernel_width = int(match.group(2)), int(match.group(3)) |
| if match.group(4): |
| assert match.group(4).startswith("s") |
| stride = int(match.group(4)[1:]) |
| else: |
| stride = 1 |
| padding = int(match.group(5)) |
| |
| height_tile = int(match.group(7)) |
| width_tile = int(match.group(8)) |
| |
| arch, isa = xnncommon.parse_target_name(target_name=match.group(6)) |
| return kernel_height, kernel_width, stride, padding, arch, isa, \ |
| height_tile, width_tile |
| |
| |
| def generate_test_cases(ukernel, kernel_height, kernel_width, subsampling, \ |
| padding, isa, height_tile, width_tile): |
| """Generates all tests cases for a DWCONV2D CHW micro-kernel. |
| |
| Args: |
| ukernel: C name of the micro-kernel function. |
| kernel_height: convolution kernel height assumed by the micro-kernel. |
| kernel_width: convolution kernel width assumed by the micro-kernel. |
| subsampling: convolution subsampling (stride) assumed by the micro-kernel. |
| The same subsampling factor is assumed for both horizontal and |
| vertical directions. |
| padding: convolution padding value assumed by the micro-kernel for right, |
| bottom, and left padding. If convolution stride is 1, the same |
| padding value is assumed for the top padding. If convolution stride |
| is different than 1, top padding is specified via micro-kernel |
| parameter, and can be either padding or (padding - 1). |
| isa: instruction set required to run the micro-kernel. Generated unit test |
| will skip execution if the host processor doesn't support this ISA. |
| height_tile: number of output rows processed in one iteration of the main |
| loop of the micro-kernel. |
| width_tile: number of output columns processed in one iteration of the main |
| loop of the micro-kernel. |
| |
| Returns: |
| Code for the test case. |
| """ |
| _, test_name = ukernel.split("_", 1) |
| _, datatype, ukernel_type, _ = ukernel.split("_", 3) |
| test_args = [ukernel] |
| if not isa or isa == "psimd": |
| test_args.append("DWConv2DMicrokernelTester::Variant::Scalar") |
| return xngen.preprocess(TEST_TEMPLATE, { |
| "TEST_NAME": test_name.upper().replace("UKERNEL_", ""), |
| "TEST_ARGS": test_args, |
| "UKERNEL_TYPE": ukernel_type.upper(), |
| "DATATYPE": datatype, |
| "KERNEL_HEIGHT": kernel_height, |
| "KERNEL_WIDTH": kernel_width, |
| "SUBSAMPLING": subsampling, |
| "PADDING": padding, |
| "HEIGHT_TILE": height_tile, |
| "WIDTH_TILE": width_tile, |
| "ISA_CHECK": xnncommon.generate_isa_check_macro(isa), |
| "next_prime": next_prime, |
| }) |
| |
| |
| def main(args): |
| options = parser.parse_args(args) |
| |
| with codecs.open(options.spec, "r", encoding="utf-8") as spec_file: |
| spec_yaml = yaml.safe_load(spec_file) |
| if not isinstance(spec_yaml, list): |
| raise ValueError("expected a list of micro-kernels in the spec") |
| |
| tests = """\ |
| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| // |
| // Auto-generated file. Do not edit! |
| // Specification: {specification} |
| // Generator: {generator} |
| |
| |
| #include <gtest/gtest.h> |
| |
| #include <xnnpack/common.h> |
| #include <xnnpack/isa-checks.h> |
| |
| #include <xnnpack/dwconv.h> |
| #include "dwconv2d-microkernel-tester.h" |
| """.format(specification=options.spec, generator=sys.argv[0]) |
| |
| for ukernel_spec in spec_yaml: |
| name = ukernel_spec["name"] |
| pipelined = bool(ukernel_spec.get("pipelined", False)) |
| assembly = bool(ukernel_spec.get("assembly", False)) |
| kernel_height, kernel_width, subsampling, padding, arch, isa, \ |
| height_tile, width_tile = split_ukernel_name(name) |
| |
| # specification can override architecture |
| arch = ukernel_spec.get("arch", arch) |
| |
| test_case = generate_test_cases(name, kernel_height, kernel_width, \ |
| subsampling, padding, isa, \ |
| height_tile, width_tile) |
| tests += "\n\n" + xnncommon.postprocess_test_case(test_case, arch, isa, assembly) |
| |
| with codecs.open(options.output, "w", encoding="utf-8") as output_file: |
| output_file.write(tests) |
| |
| |
| if __name__ == "__main__": |
| main(sys.argv[1:]) |