| #include <algorithm> |
| #include <cfloat> |
| #include <chrono> |
| #include <cmath> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include "bench/utils.h" |
| #include <xnnpack/common.h> |
| #include <xnnpack/params.h> |
| #include <xnnpack/raddexpminusmax.h> |
| #include <xnnpack/raddextexp.h> |
| #include <xnnpack/raddstoreexpminusmax.h> |
| #include <xnnpack/rmax.h> |
| #include <xnnpack/vscale.h> |
| #include <xnnpack/vscaleexpminusmax.h> |
| #include <xnnpack/vscaleextexp.h> |
| |
| #include <benchmark/benchmark.h> |
| #ifdef BENCHMARK_INTEL_DNNL |
| #include <dnnl.h> |
| #endif // BENCHMARK_INTEL_DNNL |
| |
| |
| #ifdef BENCHMARK_INTEL_DNNL |
| static void DNNLSoftArgMax( |
| benchmark::State& state) |
| { |
| const size_t elements = state.range(0); |
| const size_t cache_line_size_max = 128; |
| const size_t packed_elements = benchmark::utils::RoundUp(elements, cache_line_size_max / sizeof(float)); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-1000.0f, 1000.0f), std::ref(rng)); |
| |
| const size_t num_buffers = 1 + |
| benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), packed_elements * sizeof(float)); |
| std::vector<float> x(elements); |
| std::vector<float> y(packed_elements * num_buffers); |
| |
| std::generate(x.begin(), x.end(), std::ref(f32rng)); |
| |
| dnnl_engine_t engine; |
| if (dnnl_engine_create(&engine, dnnl_cpu, 0) != dnnl_success) { |
| state.SkipWithError("failed to create CPU engine"); |
| return; |
| } |
| |
| dnnl_dim_t input_output_shape[1] = { static_cast<int>(elements) }; |
| |
| dnnl_memory_desc_t memory_descriptor = { 0 }; |
| if (dnnl_memory_desc_init_by_tag( |
| &memory_descriptor, 1, input_output_shape, dnnl_f32, dnnl_x) != dnnl_success) |
| { |
| state.SkipWithError("failed to create input memory descriptor"); |
| return; |
| } |
| |
| dnnl_memory_t input_memory = nullptr; |
| if (dnnl_memory_create( |
| &input_memory, &memory_descriptor, engine, x.data()) != dnnl_success) |
| { |
| state.SkipWithError("failed to create input memory"); |
| return; |
| } |
| |
| dnnl_memory_t output_memory = nullptr; |
| if (dnnl_memory_create( |
| &output_memory, &memory_descriptor, engine, y.data()) != dnnl_success) |
| { |
| state.SkipWithError("failed to create output memory"); |
| return; |
| } |
| |
| dnnl_softmax_desc_t softmax_forward_descriptor = {}; |
| if (dnnl_softmax_forward_desc_init( |
| &softmax_forward_descriptor, dnnl_forward_inference, |
| &memory_descriptor, 0) != dnnl_success) |
| { |
| state.SkipWithError("failed to create SoftMax forward descriptor"); |
| return; |
| } |
| |
| dnnl_primitive_desc_t softmax_primitive_descriptor = nullptr; |
| if (dnnl_primitive_desc_create( |
| &softmax_primitive_descriptor, &softmax_forward_descriptor, |
| nullptr /* primitive attributes */, engine, nullptr /* hint */) != dnnl_success) |
| { |
| state.SkipWithError("failed to create SoftMax primitive descriptor"); |
| return; |
| } |
| |
| dnnl_primitive_t softmax_primitive = nullptr; |
| if (dnnl_primitive_create( |
| &softmax_primitive, softmax_primitive_descriptor) != dnnl_success) |
| { |
| state.SkipWithError("failed to create SoftMax primitive"); |
| return; |
| } |
| |
| dnnl_exec_arg_t softmax_args[2] = { |
| {DNNL_ARG_SRC, input_memory}, |
| {DNNL_ARG_DST, output_memory}, |
| }; |
| |
| dnnl_stream_t stream = nullptr; |
| if (dnnl_stream_create(&stream, engine, dnnl_stream_default_flags) != dnnl_success) { |
| state.SkipWithError("failed to create stream"); |
| return; |
| } |
| |
| size_t buffer_index = 0; |
| for (auto _ : state) { |
| benchmark::utils::PrefetchToL1(x.data(), x.size() * sizeof(float)); |
| if (++buffer_index == num_buffers) { |
| buffer_index = 0; |
| } |
| |
| const auto start = std::chrono::high_resolution_clock::now(); |
| if (dnnl_primitive_execute( |
| softmax_primitive, stream, 2, softmax_args) != dnnl_success) |
| { |
| state.SkipWithError("failed to execute SoftMax"); |
| return; |
| } |
| const auto end = std::chrono::high_resolution_clock::now(); |
| |
| const auto elapsed_seconds = |
| std::chrono::duration_cast<std::chrono::duration<double>>(end - start); |
| state.SetIterationTime(elapsed_seconds.count()); |
| } |
| |
| if (dnnl_stream_destroy(stream) != dnnl_success) { |
| state.SkipWithError("failed to destroy stream"); |
| return; |
| } |
| |
| if (dnnl_primitive_desc_destroy(softmax_primitive_descriptor) != dnnl_success) { |
| state.SkipWithError("failed to destroy SoftMax primitive descriptor"); |
| return; |
| } |
| |
| if (dnnl_primitive_destroy(softmax_primitive) != dnnl_success) { |
| state.SkipWithError("failed to destroy SoftMax primitive"); |
| return; |
| } |
| |
| if (dnnl_memory_destroy(input_memory) != dnnl_success) { |
| state.SkipWithError("failed to destroy input memory"); |
| return; |
| } |
| |
| if (dnnl_memory_destroy(output_memory) != dnnl_success) { |
| state.SkipWithError("failed to destroy output memory"); |
| return; |
| } |
| |
| if (dnnl_engine_destroy(engine) != dnnl_success) { |
| state.SkipWithError("failed to destroy engine"); |
| return; |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| const size_t elements_per_iteration = elements; |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = 2 * elements * sizeof(float); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| #endif // BENCHMARK_INTEL_DNNL |
| |
| static void ThreePassSoftMaxWithRecomputing( |
| benchmark::State& state, |
| xnn_f32_rmax_ukernel_function rmax, |
| xnn_f32_raddexpminusmax_ukernel_function raddexpminusmax, |
| xnn_f32_vscaleexpminusmax_ukernel_function vscaleexpminusmax, |
| benchmark::utils::IsaCheckFunction isa_check = nullptr) |
| { |
| if (isa_check && !isa_check(state)) { |
| return; |
| } |
| |
| const size_t elements = state.range(0); |
| const size_t cache_line_size_max = 128; |
| const size_t packed_elements = benchmark::utils::RoundUp(elements, cache_line_size_max / sizeof(float)); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-1000.0f, 1000.0f), std::ref(rng)); |
| |
| const size_t num_buffers = 1 + |
| benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), packed_elements * sizeof(float)); |
| std::vector<float> x(elements); |
| std::vector<float> y(packed_elements * num_buffers); |
| |
| std::generate(x.begin(), x.end(), std::ref(f32rng)); |
| |
| benchmark::utils::DisableDenormals(); |
| |
| size_t buffer_index = 0; |
| for (auto _ : state) { |
| benchmark::utils::PrefetchToL1(x.data(), x.size() * sizeof(float)); |
| if (++buffer_index == num_buffers) { |
| buffer_index = 0; |
| } |
| |
| const auto start = std::chrono::high_resolution_clock::now(); |
| float x_max = nanf(""); |
| rmax(elements * sizeof(float), x.data(), &x_max); |
| float y_sum = nanf(""); |
| raddexpminusmax(elements * sizeof(float), x.data(), &y_sum, x_max); |
| vscaleexpminusmax(elements * sizeof(float), x.data(), y.data() + packed_elements * buffer_index, x_max, 1.0f / y_sum); |
| const auto end = std::chrono::high_resolution_clock::now(); |
| |
| const auto elapsed_seconds = |
| std::chrono::duration_cast<std::chrono::duration<double>>(end - start); |
| state.SetIterationTime(elapsed_seconds.count()); |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| const size_t elements_per_iteration = elements; |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = 2 * elements * sizeof(float); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| |
| static void ThreePassSoftMaxWithReloading( |
| benchmark::State& state, |
| xnn_f32_rmax_ukernel_function rmax, |
| xnn_f32_raddstoreexpminusmax_ukernel_function raddstoreexpminusmax, |
| xnn_f32_vscale_ukernel_function vscale, |
| benchmark::utils::IsaCheckFunction isa_check = nullptr) |
| { |
| if (isa_check && !isa_check(state)) { |
| return; |
| } |
| |
| const size_t elements = state.range(0); |
| const size_t cache_line_size_max = 128; |
| const size_t packed_elements = benchmark::utils::RoundUp(elements, cache_line_size_max / sizeof(float)); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-1000.0f, 1000.0f), std::ref(rng)); |
| |
| const size_t num_buffers = 1 + |
| benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), packed_elements * sizeof(float)); |
| std::vector<float> x(elements); |
| std::vector<float> y(packed_elements * num_buffers); |
| |
| std::generate(x.begin(), x.end(), std::ref(f32rng)); |
| |
| benchmark::utils::DisableDenormals(); |
| |
| size_t buffer_index = 0; |
| for (auto _ : state) { |
| benchmark::utils::PrefetchToL1(x.data(), x.size() * sizeof(float)); |
| if (++buffer_index == num_buffers) { |
| buffer_index = 0; |
| } |
| |
| const auto start = std::chrono::high_resolution_clock::now(); |
| float x_max = nanf(""); |
| rmax(elements * sizeof(float), x.data(), &x_max); |
| float y_sum = nanf(""); |
| raddstoreexpminusmax(elements * sizeof(float), x.data(), y.data() + packed_elements * buffer_index, &y_sum, x_max); |
| vscale(elements * sizeof(float), y.data() + packed_elements * buffer_index, y.data() + packed_elements * buffer_index, 1.0f / y_sum); |
| const auto end = std::chrono::high_resolution_clock::now(); |
| |
| const auto elapsed_seconds = |
| std::chrono::duration_cast<std::chrono::duration<double>>(end - start); |
| state.SetIterationTime(elapsed_seconds.count()); |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| const size_t elements_per_iteration = elements; |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = 2 * elements * sizeof(float); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| |
| static void TwoPassSoftMax( |
| benchmark::State& state, |
| xnn_f32_raddextexp_ukernel_function raddextexp, |
| xnn_f32_vscaleextexp_ukernel_function vscaleextexp, |
| benchmark::utils::IsaCheckFunction isa_check = nullptr) |
| { |
| if (isa_check && !isa_check(state)) { |
| return; |
| } |
| |
| const size_t elements = state.range(0); |
| const size_t cache_line_size_max = 128; |
| const size_t packed_elements = benchmark::utils::RoundUp(elements, cache_line_size_max / sizeof(float)); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-1000.0f, 1000.0f), std::ref(rng)); |
| |
| const size_t num_buffers = 1 + |
| benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), packed_elements * sizeof(float)); |
| std::vector<float> x(elements); |
| std::vector<float> y(packed_elements * num_buffers); |
| |
| std::generate(x.begin(), x.end(), std::ref(f32rng)); |
| |
| benchmark::utils::DisableDenormals(); |
| |
| size_t buffer_index = 0; |
| for (auto _ : state) { |
| benchmark::utils::PrefetchToL1(x.data(), x.size() * sizeof(float)); |
| if (++buffer_index == num_buffers) { |
| buffer_index = 0; |
| } |
| |
| const auto start = std::chrono::high_resolution_clock::now(); |
| float scale[2]; |
| raddextexp(elements * sizeof(float), x.data(), scale); |
| vscaleextexp(elements * sizeof(float), x.data(), y.data() + packed_elements * buffer_index, 1.0f / scale[0], -scale[1]); |
| const auto end = std::chrono::high_resolution_clock::now(); |
| |
| const auto elapsed_seconds = |
| std::chrono::duration_cast<std::chrono::duration<double>>(end - start); |
| state.SetIterationTime(elapsed_seconds.count()); |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| const size_t elements_per_iteration = elements; |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = 2 * elements * sizeof(float); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| |
| static void CharacteristicArguments(benchmark::internal::Benchmark* b) { |
| for (int32_t n = 1000; n <= 100000000; n *= 10) { |
| b->Arg(n); |
| b->Arg(3 * n); |
| } |
| } |
| |
| #ifdef BENCHMARK_INTEL_DNNL |
| BENCHMARK(DNNLSoftArgMax)->Apply(CharacteristicArguments)->UseManualTime(); |
| #endif |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| BENCHMARK_CAPTURE(TwoPassSoftMax, avx2_p5, |
| xnn_f32_raddextexp_ukernel__avx2_p5_x96, |
| xnn_f32_vscaleextexp_ukernel__avx2_p5_x40, |
| benchmark::utils::CheckAVX2)->Apply(CharacteristicArguments)->UseManualTime(); |
| BENCHMARK_CAPTURE(ThreePassSoftMaxWithRecomputing, avx2_p5, |
| xnn_f32_rmax_ukernel__avx, |
| xnn_f32_raddexpminusmax_ukernel__avx2_p5_x96, |
| xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x24, |
| benchmark::utils::CheckAVX2)->Apply(CharacteristicArguments)->UseManualTime(); |
| BENCHMARK_CAPTURE(ThreePassSoftMaxWithReloading, avx2_p5, |
| xnn_f32_rmax_ukernel__avx, |
| xnn_f32_raddstoreexpminusmax_ukernel__avx2_p5_x64_acc2, |
| xnn_f32_vscale_ukernel__avx_x32, |
| benchmark::utils::CheckAVX2)->Apply(CharacteristicArguments)->UseManualTime(); |
| |
| BENCHMARK_CAPTURE(TwoPassSoftMax, avx512f_p5_scalef, |
| xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x144_acc3, |
| xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_x16, |
| benchmark::utils::CheckAVX512F)->Apply(CharacteristicArguments)->UseManualTime(); |
| BENCHMARK_CAPTURE(ThreePassSoftMaxWithRecomputing, avx512f_p5_scalef, |
| xnn_f32_rmax_ukernel__avx512f, |
| xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x128_acc4, |
| xnn_f32_vscaleexpminusmax_ukernel__avx512f_p5_scalef_x16, |
| benchmark::utils::CheckAVX512F)->Apply(CharacteristicArguments)->UseManualTime(); |
| BENCHMARK_CAPTURE(ThreePassSoftMaxWithReloading, avx512f_p5_scalef, |
| xnn_f32_rmax_ukernel__avx512f, |
| xnn_f32_raddstoreexpminusmax_ukernel__avx512f_p5_scalef_x128_acc2, |
| xnn_f32_vscale_ukernel__avx512f_x64, |
| benchmark::utils::CheckAVX512F)->Apply(CharacteristicArguments)->UseManualTime(); |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| |
| #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| BENCHMARK_MAIN(); |
| #endif |