blob: a5f442cfaa3cadea9915e9d1272e71f7b3cd8ba5 [file] [log] [blame]
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <gtest/gtest.h>
#include <xnnpack/common.h>
#include <xnnpack/requantization-stubs.h>
#include "requantization-tester.h"
/*
* Round-to-nearest, ties away from zero, scalar implementation using unsigned 32-bit arithmetics.
*/
TEST(QU8_RNDNA__SCALAR_UNSIGNED32, exact_divide_by_po2) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_rndna__scalar_unsigned32);
}
}
TEST(QU8_RNDNA__SCALAR_UNSIGNED32, exact_divide_by_po2_with_zero_point) {
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_rndna__scalar_unsigned32);
}
}
}
TEST(QU8_RNDNA__SCALAR_UNSIGNED32, divide_by_po2_with_rounding_up) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_rndna__scalar_unsigned32);
}
}
}
TEST(QU8_RNDNA__SCALAR_UNSIGNED32, divide_by_po2_with_rounding_down) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingDown(xnn_qu8_requantize_rndna__scalar_unsigned32);
}
}
}
TEST(QU8_RNDNA__SCALAR_UNSIGNED32, divide_by_po2_with_rounding_away) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingTiesAway(xnn_qu8_requantize_rndna__scalar_unsigned32);
}
}
}
TEST(QU8_RNDNA__SCALAR_UNSIGNED32, special_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.TestSpecialCases(xnn_qu8_requantize_rndna__scalar_unsigned32);
}
TEST(QU8_RNDNA__SCALAR_UNSIGNED32, random_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.zero_point(128)
.iterations(100)
.TestRandomCasesRoundToNearestTiesAway(xnn_qu8_requantize_rndna__scalar_unsigned32);
}
/*
* Round-to-nearest, ties away from zero, scalar implementation using unsigned 64-bit arithmetics.
*/
TEST(QU8_RNDNA__SCALAR_UNSIGNED64, exact_divide_by_po2) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_rndna__scalar_unsigned64);
}
}
TEST(QU8_RNDNA__SCALAR_UNSIGNED64, exact_divide_by_po2_with_zero_point) {
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_rndna__scalar_unsigned64);
}
}
}
TEST(QU8_RNDNA__SCALAR_UNSIGNED64, divide_by_po2_with_rounding_up) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_rndna__scalar_unsigned64);
}
}
}
TEST(QU8_RNDNA__SCALAR_UNSIGNED64, divide_by_po2_with_rounding_down) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingDown(xnn_qu8_requantize_rndna__scalar_unsigned64);
}
}
}
TEST(QU8_RNDNA__SCALAR_UNSIGNED64, divide_by_po2_with_rounding_away) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingTiesAway(xnn_qu8_requantize_rndna__scalar_unsigned64);
}
}
}
TEST(QU8_RNDNA__SCALAR_UNSIGNED64, special_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.TestSpecialCases(xnn_qu8_requantize_rndna__scalar_unsigned64);
}
TEST(QU8_RNDNA__SCALAR_UNSIGNED64, random_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.zero_point(128)
.iterations(100)
.TestRandomCasesRoundToNearestTiesAway(xnn_qu8_requantize_rndna__scalar_unsigned64);
}
/*
* Round-to-nearest, ties away from zero, scalar implementation using signed 64-bit arithmetics.
*/
TEST(QU8_RNDNA__SCALAR_SIGNED64, exact_divide_by_po2) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_rndna__scalar_signed64);
}
}
TEST(QU8_RNDNA__SCALAR_SIGNED64, exact_divide_by_po2_with_zero_point) {
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_rndna__scalar_signed64);
}
}
}
TEST(QU8_RNDNA__SCALAR_SIGNED64, divide_by_po2_with_rounding_up) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_rndna__scalar_signed64);
}
}
}
TEST(QU8_RNDNA__SCALAR_SIGNED64, divide_by_po2_with_rounding_down) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingDown(xnn_qu8_requantize_rndna__scalar_signed64);
}
}
}
TEST(QU8_RNDNA__SCALAR_SIGNED64, divide_by_po2_with_rounding_away) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingTiesAway(xnn_qu8_requantize_rndna__scalar_signed64);
}
}
}
TEST(QU8_RNDNA__SCALAR_SIGNED64, special_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.TestSpecialCases(xnn_qu8_requantize_rndna__scalar_signed64);
}
TEST(QU8_RNDNA__SCALAR_SIGNED64, random_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.zero_point(128)
.iterations(100)
.TestRandomCasesRoundToNearestTiesAway(xnn_qu8_requantize_rndna__scalar_signed64);
}
/*
* FP32-based scalar implementation using lrintf function.
*/
TEST(QU8_FP32__SCALAR_LRINTF, random_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.iterations(1000)
.TestRandomCasesApproximate(xnn_qu8_requantize_fp32__scalar_lrintf);
}
/*
* FP32-based scalar implementation using magic trick for FP32->INT32 conversion.
*/
TEST(QU8_FP32__SCALAR_MAGIC, random_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.iterations(1000)
.TestRandomCasesApproximate(xnn_qu8_requantize_fp32__scalar_magic);
}
/*
* GEMMLOWP-equivalent scalar implementation.
*/
TEST(QU8_GEMMLOWP__SCALAR, exact_divide_by_po2) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_gemmlowp__scalar);
}
}
TEST(QU8_GEMMLOWP__SCALAR, exact_divide_by_po2_with_zero_point) {
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_gemmlowp__scalar);
}
}
}
TEST(QU8_GEMMLOWP__SCALAR, divide_by_po2_with_rounding_up) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_gemmlowp__scalar);
}
}
}
/* No rounding down test - it fails because of upward bias in multiplication */
/* No rounding away test - it fails because of upward bias in multiplication */
TEST(QU8_GEMMLOWP__SCALAR, special_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.TestSpecialCases(xnn_qu8_requantize_gemmlowp__scalar);
}
TEST(QU8_GEMMLOWP__SCALAR, random_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.iterations(100)
.TestRandomCasesApproximate(xnn_qu8_requantize_gemmlowp__scalar);
}
#if XNN_ARCH_X86 || XNN_ARCH_X86_64
/*
* Round-to-nearest, ties away from zero, SSE2 implementation using floating-point shuffle.
*/
TEST(QU8_RNDNA__SSE2, exact_divide_by_po2) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_rndna__sse2);
}
}
TEST(QU8_RNDNA__SSE2, exact_divide_by_po2_with_zero_point) {
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_rndna__sse2);
}
}
}
TEST(QU8_RNDNA__SSE2, divide_by_po2_with_rounding_up) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_rndna__sse2);
}
}
}
TEST(QU8_RNDNA__SSE2, divide_by_po2_with_rounding_down) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingDown(xnn_qu8_requantize_rndna__sse2);
}
}
}
TEST(QU8_RNDNA__SSE2, divide_by_po2_with_rounding_away) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingTiesAway(xnn_qu8_requantize_rndna__sse2);
}
}
}
TEST(QU8_RNDNA__SSE2, special_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.TestSpecialCases(xnn_qu8_requantize_rndna__sse2);
}
TEST(QU8_RNDNA__SSE2, random_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.zero_point(128)
.iterations(100)
.TestRandomCasesRoundToNearestTiesAway(xnn_qu8_requantize_rndna__sse2);
}
/*
* Round-to-nearest, ties away from zero, SSSE3 implementation using floating-point shuffle.
*/
TEST(QU8_RNDNA__SSSE3, exact_divide_by_po2) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_rndna__ssse3);
}
}
TEST(QU8_RNDNA__SSSE3, exact_divide_by_po2_with_zero_point) {
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_rndna__ssse3);
}
}
}
TEST(QU8_RNDNA__SSSE3, divide_by_po2_with_rounding_up) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_rndna__ssse3);
}
}
}
TEST(QU8_RNDNA__SSSE3, divide_by_po2_with_rounding_down) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingDown(xnn_qu8_requantize_rndna__ssse3);
}
}
}
TEST(QU8_RNDNA__SSSE3, divide_by_po2_with_rounding_away) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingTiesAway(xnn_qu8_requantize_rndna__ssse3);
}
}
}
TEST(QU8_RNDNA__SSSE3, special_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.TestSpecialCases(xnn_qu8_requantize_rndna__ssse3);
}
TEST(QU8_RNDNA__SSSE3, random_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.zero_point(128)
.iterations(100)
.TestRandomCasesRoundToNearestTiesAway(xnn_qu8_requantize_rndna__ssse3);
}
/*
* Round-to-nearest, ties away from zero, SSE4.1 implementation using static blend instruction.
*/
TEST(QU8_RNDNA__SSE4, exact_divide_by_po2) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_rndna__sse4);
}
}
TEST(QU8_RNDNA__SSE4, exact_divide_by_po2_with_zero_point) {
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_rndna__sse4);
}
}
}
TEST(QU8_RNDNA__SSE4, divide_by_po2_with_rounding_up) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_rndna__sse4);
}
}
}
TEST(QU8_RNDNA__SSE4, divide_by_po2_with_rounding_down) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingDown(xnn_qu8_requantize_rndna__sse4);
}
}
}
TEST(QU8_RNDNA__SSE4, divide_by_po2_with_rounding_away) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingTiesAway(xnn_qu8_requantize_rndna__sse4);
}
}
}
TEST(QU8_RNDNA__SSE4, special_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.TestSpecialCases(xnn_qu8_requantize_rndna__sse4);
}
TEST(QU8_RNDNA__SSE4, random_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.zero_point(128)
.iterations(100)
.TestRandomCasesRoundToNearestTiesAway(xnn_qu8_requantize_rndna__sse4);
}
/*
* FP32-based x86 SSE2 implementation.
*/
TEST(QU8_FP32__SSE2, random_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.iterations(1000)
.TestRandomCasesApproximate(xnn_qu8_requantize_fp32__sse2);
}
/*
* GEMMLOWP-equivalent x86 SSE2 implementation.
*/
TEST(QU8_GEMMLOWP__SSE2, exact_divide_by_po2) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_gemmlowp__sse2);
}
}
TEST(QU8_GEMMLOWP__SSE2, exact_divide_by_po2_with_zero_point) {
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_gemmlowp__sse2);
}
}
}
TEST(QU8_GEMMLOWP__SSE2, divide_by_po2_with_rounding_up) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_gemmlowp__sse2);
}
}
}
/* No rounding down test - it fails because of upward bias in multiplication */
/* No rounding away test - it fails because of upward bias in multiplication */
TEST(QU8_GEMMLOWP__SSE2, special_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.TestSpecialCases(xnn_qu8_requantize_gemmlowp__sse2);
}
TEST(QU8_GEMMLOWP__SSE2, random_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.iterations(100)
.TestRandomCasesApproximate(xnn_qu8_requantize_gemmlowp__sse2);
}
/*
* GEMMLOWP-equivalent x86 SSSE3 implementation.
*/
TEST(QU8_GEMMLOWP__SSSE3, exact_divide_by_po2) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_gemmlowp__ssse3);
}
}
TEST(QU8_GEMMLOWP__SSSE3, exact_divide_by_po2_with_zero_point) {
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_gemmlowp__ssse3);
}
}
}
TEST(QU8_GEMMLOWP__SSSE3, divide_by_po2_with_rounding_up) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_gemmlowp__ssse3);
}
}
}
/* No rounding down test - it fails because of upward bias in multiplication */
/* No rounding away test - it fails because of upward bias in multiplication */
TEST(QU8_GEMMLOWP__SSSE3, special_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.TestSpecialCases(xnn_qu8_requantize_gemmlowp__ssse3);
}
TEST(QU8_GEMMLOWP__SSSE3, random_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.iterations(100)
.TestRandomCasesApproximate(xnn_qu8_requantize_gemmlowp__ssse3);
}
/*
* GEMMLOWP-equivalent x86 SSE4 implementation.
*/
TEST(QU8_GEMMLOWP__SSE4, exact_divide_by_po2) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_gemmlowp__sse4);
}
}
TEST(QU8_GEMMLOWP__SSE4, exact_divide_by_po2_with_zero_point) {
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_gemmlowp__sse4);
}
}
}
TEST(QU8_GEMMLOWP__SSE4, divide_by_po2_with_rounding_up) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_gemmlowp__sse4);
}
}
}
/* No rounding down test - it fails because of upward bias in multiplication */
/* No rounding away test - it fails because of upward bias in multiplication */
TEST(QU8_GEMMLOWP__SSE4, special_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.TestSpecialCases(xnn_qu8_requantize_gemmlowp__sse4);
}
TEST(QU8_GEMMLOWP__SSE4, random_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.iterations(100)
.TestRandomCasesApproximate(xnn_qu8_requantize_gemmlowp__sse4);
}
#endif // XNN_ARCH_X86 || XNN_ARCH_X86_64
#if XNN_ARCH_ARM || XNN_ARCH_ARM64
/*
* Round-to-nearest, ties away from zero, ARM NEON implementation.
*/
TEST(QU8_RNDNA__NEON, exact_divide_by_po2) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_rndna__neon);
}
}
TEST(QU8_RNDNA__NEON, exact_divide_by_po2_with_zero_point) {
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_rndna__neon);
}
}
}
TEST(QU8_RNDNA__NEON, divide_by_po2_with_rounding_up) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_rndna__neon);
}
}
}
TEST(QU8_RNDNA__NEON, divide_by_po2_with_rounding_down) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingDown(xnn_qu8_requantize_rndna__neon);
}
}
}
TEST(QU8_RNDNA__NEON, divide_by_po2_with_rounding_away) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingTiesAway(xnn_qu8_requantize_rndna__neon);
}
}
}
TEST(QU8_RNDNA__NEON, special_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.TestSpecialCases(xnn_qu8_requantize_rndna__neon);
}
TEST(QU8_RNDNA__NEON, random_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.zero_point(128)
.iterations(100)
.TestRandomCasesRoundToNearestTiesAway(xnn_qu8_requantize_rndna__neon);
}
/*
* FP32-based ARM NEON implementation.
*/
TEST(QU8_FP32__NEON, random_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.iterations(1000)
.TestRandomCasesApproximate(xnn_qu8_requantize_fp32__neon);
}
/*
* GEMMLOWP-equivalent ARM NEON implementation.
*/
TEST(QU8_GEMMLOWP__NEON, exact_divide_by_po2) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_gemmlowp__neon);
}
}
TEST(QU8_GEMMLOWP__NEON, exact_divide_by_po2_with_zero_point) {
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_gemmlowp__neon);
}
}
}
TEST(QU8_GEMMLOWP__NEON, divide_by_po2_with_rounding_up) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_gemmlowp__neon);
}
}
}
/* No rounding down test - it fails because of upward bias in multiplication */
/* No rounding away test - it fails because of upward bias in multiplication */
TEST(QU8_GEMMLOWP__NEON, special_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.TestSpecialCases(xnn_qu8_requantize_gemmlowp__neon);
}
TEST(QU8_GEMMLOWP__NEON, random_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.iterations(100)
.TestRandomCasesApproximate(xnn_qu8_requantize_gemmlowp__neon);
}
#endif // XNN_ARCH_ARM || XNN_ARCH_ARM64
#if XNN_ARCH_WASMSIMD
/*
* FP32-based ARM NEON implementation.
*/
TEST(QU8_FP32__WASMSIMD, random_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.iterations(1000)
.TestRandomCasesApproximate(xnn_qu8_requantize_fp32__wasmsimd);
}
/*
* GEMMLOWP-equivalent WAsmd SIMD implementation.
*/
TEST(QU8_GEMMLOWP__WASMSIMD, exact_divide_by_po2) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_gemmlowp__wasmsimd);
}
}
TEST(QU8_GEMMLOWP__WASMSIMD, exact_divide_by_po2_with_zero_point) {
for (int32_t zero_point = 1; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestExactDivideByPO2(xnn_qu8_requantize_gemmlowp__wasmsimd);
}
}
}
TEST(QU8_GEMMLOWP__WASMSIMD, divide_by_po2_with_rounding_up) {
for (int32_t zero_point = 0; zero_point < 256; zero_point++) {
for (uint32_t s = 1; s < 32; s++) {
RequantizationTester()
.zero_point(zero_point)
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.s(s)
.TestDivideByPO2WithRoundingUp(xnn_qu8_requantize_gemmlowp__wasmsimd);
}
}
}
/* No rounding down test - it fails because of upward bias in multiplication */
/* No rounding away test - it fails because of upward bias in multiplication */
TEST(QU8_GEMMLOWP__WASMSIMD, special_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.TestSpecialCases(xnn_qu8_requantize_gemmlowp__wasmsimd);
}
TEST(QU8_GEMMLOWP__WASMSIMD, random_cases) {
RequantizationTester()
.qmin(std::numeric_limits<uint8_t>::min())
.qmax(std::numeric_limits<uint8_t>::max())
.iterations(100)
.TestRandomCasesApproximate(xnn_qu8_requantize_gemmlowp__wasmsimd);
}
#endif // XNN_ARCH_WASMSIMD