blob: 7e56a4b2e5f61a2714b28e74967402b5d3b2e1eb [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$assert NR % 8 == 0
$assert 8 <= NR <= 16
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/gemm.h>
// This kernel uses ARMv8.2 dot-product instructions.
//
// Scalar model: xnn_qs8_gemm_minmax_ukernel_${MR}x${NR}c4__scalar. Refer to
// that kernel for more comments.
void xnn_qs8_gemm_minmax_ukernel_${MR}x${NR}c4__neondot(
size_t mr,
size_t nc,
size_t kc,
const int8_t* restrict a,
size_t a_stride,
const void* restrict w,
int8_t* restrict c,
size_t cm_stride,
size_t cn_stride,
const union xnn_qs8_gemm_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN {
assert(mr != 0);
assert(mr <= ${MR});
assert(nc != 0);
assert(kc != 0);
const int8_t* a0 = a;
int8_t* c0 = c;
$for M in range(1, MR):
const int8_t* a${M} = (const int8_t*) ((uintptr_t) a${M-1} + a_stride);
int8_t* c${M} = (int8_t*) ((uintptr_t) c${M-1} + cm_stride);
$if M % 2 == 0:
if XNN_UNPREDICTABLE(mr <= ${M}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
$elif M + 1 == MR:
if XNN_UNPREDICTABLE(mr != ${M+1}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
$else:
if XNN_UNPREDICTABLE(mr < ${M+1}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
// Loop over groups of ${NR} columns.
do {
// Initialize accumulators with bias. ${NR} bias values are loaded from the
// weight matrix, at the start of the group of ${NR} columns.
$for N in range(0, NR, 4):
int32x4_t vacc0x${ABC[N:N+4]} = vld1q_s32(w); w = (const void*) ((uintptr_t) w + 4 * sizeof(int32_t));
$for M in range(1, MR):
$for N in range(0, NR, 4):
int32x4_t vacc${M}x${ABC[N:N+4]} = vacc0x${ABC[N:N+4]};
// Inner accumulation loop along the ${NR} columns.
size_t k = kc;
// 2x partial unrolled loop to load 8 bytes at a time.
while (k >= 8 * sizeof(int8_t)) {
// Load a ${MR}x8 block of activations.
$for M in range(MR):
const int8x8_t va${M}x01234567 = vld1_s8(a${M}); a${M} += 8;
// Load a 8x${NR} block of weights.
$for K in range(0, 8, 4):
$for N in range(0, NR, 4):
const int8x16_t vb${ABC[K:K+4]}x${ABC[N:N+4]} = vld1q_s8(w); w = (const void*)((const int8_t*)w + 16);
// Multiply-accumulate: ${MR}x8 * 8x${NR} --> ${MR}x${NR}.
$for K in range(0, 8, 4):
$for M in range(MR):
$for N in range(0, NR, 4):
vacc${M}x${ABC[N:N+4]} = vdotq_lane_s32(vacc${M}x${ABC[N:N+4]}, vb${ABC[K:K+4]}x${ABC[N:N+4]}, va${M}x01234567, ${K/4});
k -= 8 * sizeof(int8_t);
}
// Handle up to 7 final positions of `k`
if XNN_UNLIKELY(k != 0) {
// Load a ${MR}x4 block of activations.
$for M in range(MR):
const int8x8_t va${M}x01234567 = vld1_s8(a${M}); a${M} += k;
// Load a 4x${NR} block of weights.
$for N in range(0, NR, 4):
const int8x16_t vb0123x${ABC[N:N+4]} = vld1q_s8(w); w = (const void*)((const int8_t*)w + 16);
// Multiply-accumulate: ${MR}x4 * 4x${NR} --> ${MR}x${NR}.
$for M in range(MR):
$for N in range(0, NR, 4):
vacc${M}x${ABC[N:N+4]} = vdotq_lane_s32(vacc${M}x${ABC[N:N+4]}, vb0123x${ABC[N:N+4]}, va${M}x01234567, 0);
if (k > 4) {
// Load a 4x${NR} block of weights.
$for N in range(0, NR, 4):
const int8x16_t vb4567x${ABC[N:N+4]} = vld1q_s8(w); w = (const void*)((const int8_t*)w + 16);
// Multiply-accumulate: ${MR}x4 * 4x${NR} --> ${MR}x${NR}.
$for M in range(MR):
$for N in range(0, NR, 4):
vacc${M}x${ABC[N:N+4]} = vdotq_lane_s32(vacc${M}x${ABC[N:N+4]}, vb4567x${ABC[N:N+4]}, va${M}x01234567, 1);
}
}
// End of accumulation loop. The variable `kc` contains the amount by which
// we advanced the `va` pointers, so we rewind by this amount now.
$for M in range(MR):
a${M} = (const int8_t*)((uintptr_t)a${M} - kc);
// Post-accumulation work
const int32x4_t vright_shift = vld1q_dup_s32(&params->neon.right_shift);
const int32x4_t vzero_shift_mask = vreinterpretq_s32_u32(vceqq_s32(vright_shift, vmovq_n_s32(0)));
$for M in range(MR):
$for N in range(0, NR, 4):
const int32x4_t vproduct${M}x${ABC[N:N+4]} = vqrdmulhq_n_s32(vacc${M}x${ABC[N:N+4]}, params->neon.multiplier);
$for M in range(MR):
$for N in range(0, NR, 4):
vacc${M}x${ABC[N:N+4]} = vsraq_n_s32(vproduct${M}x${ABC[N:N+4]}, vbicq_s32(vacc${M}x${ABC[N:N+4]}, vzero_shift_mask), 31);
$for M in range(MR):
$for N in range(0, NR, 4):
vacc${M}x${ABC[N:N+4]} = vrshlq_s32(vacc${M}x${ABC[N:N+4]}, vright_shift);
const int16x8_t voutput_zero_point = vld1q_dup_s16(&params->neon.output_zero_point);
#if XNN_ARCH_ARM64
$for M in range(MR):
$for N in range(0, NR, 8):
const int16x8_t vacc${M}x${ABC[N:N+8]} = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(vacc${M}x${ABC[N:N+4]}), vacc${M}x${ABC[N+4:N+8]}), voutput_zero_point);
$for M in range(MR):
$for N in range(0, NR, 16):
$if N + 8 < NR:
int8x16_t vout${M}x${ABC[N:N+16]} = vqmovn_high_s16(vqmovn_s16(vacc${M}x${ABC[N:N+8]}), vacc${M}x${ABC[N+8:N+16]});
$elif M % 2 == 1:
int8x16_t vout${M-1}x${ABC[N:N+8]}_${M}x${ABC[N:N+8]} = vqmovn_high_s16(vqmovn_s16(vacc${M-1}x${ABC[N:N+8]}), vacc${M}x${ABC[N:N+8]});
$elif M + 1 == MR:
int8x8_t vout${M}x${ABC[N:N+8]} = vqmovn_s16(vacc${M}x${ABC[N:N+8]});
#else
$for M in range(MR):
$for N in range(0, NR, 8):
const int16x8_t vacc${M}x${ABC[N:N+8]} = vqaddq_s16(vcombine_s16(vqmovn_s32(vacc${M}x${ABC[N:N+4]}), vqmovn_s32(vacc${M}x${ABC[N+4:N+8]})), voutput_zero_point);
$for M in range(MR):
$for N in range(0, NR, 16):
$if N + 8 < NR:
int8x16_t vout${M}x${ABC[N:N+16]} = vcombine_s8(vqmovn_s16(vacc${M}x${ABC[N:N+8]}), vqmovn_s16(vacc${M}x${ABC[N+8:N+16]}));
$elif M % 2 == 1:
int8x16_t vout${M-1}x${ABC[N:N+8]}_${M}x${ABC[N:N+8]} = vcombine_s8(vqmovn_s16(vacc${M-1}x${ABC[N:N+8]}), vqmovn_s16(vacc${M}x${ABC[N:N+8]}));
$elif M + 1 == MR:
int8x8_t vout${M}x${ABC[N:N+8]} = vqmovn_s16(vacc${M}x${ABC[N:N+8]});
#endif
$if NR == 8 and MR == 1:
const int8x8_t voutput_min = vld1_dup_s8(&params->neon.output_min);
const int8x8_t voutput_max = vld1_dup_s8(&params->neon.output_max);
$else:
const int8x16_t voutput_min = vld1q_dup_s8(&params->neon.output_min);
const int8x16_t voutput_max = vld1q_dup_s8(&params->neon.output_max);
$for M in range(MR):
$for N in range(0, NR, 16):
$if N + 8 < NR:
vout${M}x${ABC[N:N+16]} = vmaxq_s8(vout${M}x${ABC[N:N+16]}, voutput_min);
$elif M % 2 == 1:
vout${M-1}x${ABC[N:N+8]}_${M}x${ABC[N:N+8]} = vmaxq_s8(vout${M-1}x${ABC[N:N+8]}_${M}x${ABC[N:N+8]}, voutput_min);
$elif M + 1 == MR:
$if NR == 8 and MR == 1:
vout${M}x${ABC[N:N+8]} = vmax_s8(vout${M}x${ABC[N:N+8]}, voutput_min);
$else:
vout${M}x${ABC[N:N+8]} = vmax_s8(vout${M}x${ABC[N:N+8]}, vget_low_s8(voutput_min));
$for M in range(MR):
$for N in range(0, NR, 16):
$if N + 8 < NR:
vout${M}x${ABC[N:N+16]} = vminq_s8(vout${M}x${ABC[N:N+16]}, voutput_max);
$elif M % 2 == 1:
vout${M-1}x${ABC[N:N+8]}_${M}x${ABC[N:N+8]} = vminq_s8(vout${M-1}x${ABC[N:N+8]}_${M}x${ABC[N:N+8]}, voutput_max);
$elif M + 1 == MR:
$if NR == 8 and MR == 1:
vout${M}x${ABC[N:N+8]} = vmin_s8(vout${M}x${ABC[N:N+8]}, voutput_max);
$else:
vout${M}x${ABC[N:N+8]} = vmin_s8(vout${M}x${ABC[N:N+8]}, vget_low_s8(voutput_max));
if (nc >= ${NR}) {
// Main case where there the ${NR} columns fit in the destination.
$for M in range(MR):
$for N in range(0, NR, 16):
$if N + 8 < NR:
vst1q_s8(c${M} + ${N}, vout${M}x${ABC[N:N+16]});
$elif M % 2 == 1:
vst1_s8(c${M-1} + ${N}, vget_low_s8(vout${M-1}x${ABC[N:N+8]}_${M}x${ABC[N:N+8]}));
vst1_s8(c${M} + ${N}, vget_high_s8(vout${M-1}x${ABC[N:N+8]}_${M}x${ABC[N:N+8]}));
$elif M + 1 == MR:
vst1_s8(c${M} + ${N}, vout${M}x${ABC[N:N+8]});
// Advance to the next ${NR} columns.
$for M in range(MR):
c${M} = (int8_t*) ((uintptr_t) c${M} + cn_stride);
nc -= ${NR};
} else {
// Final case where not all of the ${NR} columns fit in the destination.
$if NR == 16:
$for M in range(MR):
$if M % 2 == 1:
int8x16_t vout${M-1}x01234567_${M}x01234567 = vcombine_s8(vget_low_s8(vout${M-1}x0123456789ABCDEF), vget_low_s8(vout${M}x0123456789ABCDEF));
$elif M + 1 == MR:
int8x8_t vout${M}x01234567 = vget_low_s8(vout${M}x0123456789ABCDEF);
if (nc & 8) {
$for M in range(MR):
$if M % 2 == 1:
vst1_s8(c${M-1}, vget_low_s8(vout${M-1}x${ABC[N:N+8]}_${M}x${ABC[N:N+8]})); c${M-1} += 8;
vst1_s8(c${M}, vget_high_s8(vout${M-1}x${ABC[N:N+8]}_${M}x${ABC[N:N+8]})); c${M} += 8;
$elif M + 1 == MR:
vst1_s8(c${M}, vout${M}x${ABC[N:N+8]}); c${M} += 8;
$for M in range(MR):
$if M % 2 == 1:
vout${M-1}x01234567_${M}x01234567 = vcombine_s8(vget_high_s8(vout${M-1}x0123456789ABCDEF), vget_high_s8(vout${M}x0123456789ABCDEF));
$elif M + 1 == MR:
vout${M}x01234567 = vget_high_s8(vout${M}x0123456789ABCDEF);
}
if (nc & 4) {
$for M in range(MR):
$if M % 2 == 1:
vst1q_lane_u32(__builtin_assume_aligned(c${M-1}, 1), vreinterpretq_u32_s8(vout${M-1}x01234567_${M}x01234567), 0); c${M-1} += 4;
vst1q_lane_u32(__builtin_assume_aligned(c${M}, 1), vreinterpretq_u32_s8(vout${M-1}x01234567_${M}x01234567), 2); c${M} += 4;
$elif M + 1 == MR:
vst1_lane_u32(__builtin_assume_aligned(c${M}, 1), vreinterpret_u32_s8(vout${M}x01234567), 0); c${M} += 4;
$for M in range(MR):
$if M % 2 == 1:
vout${M-1}x01234567_${M}x01234567 = vextq_s8(vout${M-1}x01234567_${M}x01234567, vout${M-1}x01234567_${M}x01234567, 4);
$elif M + 1 == MR:
vout${M}x01234567 = vext_s8(vout${M}x01234567, vout${M}x01234567, 4);
}
if (nc & 2) {
$for M in range(MR):
$if M % 2 == 1:
vst1q_lane_u16(__builtin_assume_aligned(c${M-1}, 1), vreinterpretq_u16_s8(vout${M-1}x01234567_${M}x01234567), 0); c${M-1} += 2;
vst1q_lane_u16(__builtin_assume_aligned(c${M}, 1), vreinterpretq_u16_s8(vout${M-1}x01234567_${M}x01234567), 4); c${M} += 2;
$elif M + 1 == MR:
vst1_lane_u16(__builtin_assume_aligned(c${M}, 1), vreinterpret_u16_s8(vout${M}x01234567), 0); c${M} += 2;
$for M in range(MR):
$if M % 2 == 1:
vout${M-1}x01234567_${M}x01234567 = vextq_s8(vout${M-1}x01234567_${M}x01234567, vout${M-1}x01234567_${M}x01234567, 2);
$elif M + 1 == MR:
vout${M}x01234567 = vext_s8(vout${M}x01234567, vout${M}x01234567, 2);
}
if (nc & 1) {
$for M in range(MR):
$if M % 2 == 1:
vst1q_lane_s8(c${M-1}, vout${M-1}x01234567_${M}x01234567, 0);
vst1q_lane_s8(c${M}, vout${M-1}x01234567_${M}x01234567, 8);
$elif M + 1 == MR:
vst1_lane_s8(c${M}, vout${M}x01234567, 0);
}
nc = 0;
}
} while (nc != 0);
}