| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <array> |
| #include <cmath> |
| #include <functional> |
| #include <limits> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| |
| #include <benchmark/benchmark.h> |
| #include "bench/utils.h" |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| #include "flatbuffers/include/flatbuffers/flatbuffers.h" |
| #include "tensorflow/lite/interpreter.h" |
| #include "tensorflow/lite/kernels/register.h" |
| #include "tensorflow/lite/model.h" |
| #include "tensorflow/lite/schema/schema_generated.h" |
| #include "tensorflow/lite/version.h" |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| |
| |
| static void xnnpack_square_root_f32(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| const size_t channels = state.range(1); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 5.0f), std::ref(rng)); |
| |
| std::vector<float> input(batch_size * channels); |
| std::vector<float> output(batch_size * channels); |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t sqrt_op = nullptr; |
| status = xnn_create_square_root_nc_f32( |
| channels, channels /* input stride */, channels /* output stride */, |
| 0 /* flags */, &sqrt_op); |
| if (status != xnn_status_success || sqrt_op == nullptr) { |
| state.SkipWithError("failed to create Square Root operator"); |
| return; |
| } |
| |
| status = xnn_setup_square_root_nc_f32( |
| sqrt_op, |
| batch_size, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup Square Root operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(sqrt_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run Square Root operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(sqrt_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete Square Root operator"); |
| return; |
| } |
| |
| state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency(); |
| |
| const size_t elements_per_iteration = batch_size * channels; |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| static void tflite_square_root_f32(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| const size_t channels = state.range(1); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 5.0f), std::ref(rng)); |
| |
| flatbuffers::FlatBufferBuilder builder; |
| const flatbuffers::Offset<tflite::OperatorCode> operator_code = |
| CreateOperatorCode(builder, tflite::BuiltinOperator_SQRT); |
| |
| const std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{ |
| tflite::CreateBuffer(builder, builder.CreateVector({})), |
| }}; |
| |
| const std::array<int32_t, 4> input_shape{{ |
| static_cast<int32_t>(batch_size), |
| static_cast<int32_t>(1 /* height */), |
| static_cast<int32_t>(1 /* width */), |
| static_cast<int32_t>(channels) |
| }}; |
| const std::array<int32_t, 4> output_shape{{ |
| static_cast<int32_t>(batch_size), |
| static_cast<int32_t>(1 /* height */), |
| static_cast<int32_t>(1 /* width */), |
| static_cast<int32_t>(channels) |
| }}; |
| |
| const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{ |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(input_shape.data(), input_shape.size()), |
| tflite::TensorType_FLOAT32), |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(output_shape.data(), output_shape.size()), |
| tflite::TensorType_FLOAT32), |
| }}; |
| |
| const std::array<int32_t, 1> op_inputs{{ 0 }}; |
| const std::array<int32_t, 1> op_outputs{{ 1 }}; |
| flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator( |
| builder, |
| 0 /* opcode_index */, |
| builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()), |
| builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size())); |
| |
| const std::array<int32_t, 1> graph_inputs{{ 0 }}; |
| const std::array<int32_t, 1> graph_outputs{{ 1 }}; |
| const flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph( |
| builder, |
| builder.CreateVector(tensors.data(), tensors.size()), |
| builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()), |
| builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()), |
| builder.CreateVector(&op, 1)); |
| |
| const flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
| TFLITE_SCHEMA_VERSION, |
| builder.CreateVector(&operator_code, 1), |
| builder.CreateVector(&subgraph, 1), |
| builder.CreateString("Square Root model"), |
| builder.CreateVector(buffers.data(), buffers.size())); |
| |
| builder.Finish(model_buffer); |
| |
| const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
| tflite::ops::builtin::BuiltinOpResolver resolver; |
| tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
| std::unique_ptr<tflite::Interpreter> interpreter; |
| if (interpreterBuilder(&interpreter) != kTfLiteOk) { |
| state.SkipWithError("failed to create TFLite interpreter"); |
| return; |
| } |
| if (interpreter == nullptr) { |
| state.SkipWithError("TFLite interpreter is null"); |
| return; |
| } |
| interpreter->SetNumThreads(1); |
| |
| if (interpreter->AllocateTensors() != kTfLiteOk) { |
| state.SkipWithError("failed to allocate tensors"); |
| return; |
| } |
| |
| std::generate( |
| interpreter->typed_tensor<float>(0), |
| interpreter->typed_tensor<float>(0) + batch_size * channels, |
| std::ref(f32rng)); |
| |
| for (auto _ : state) { |
| if (interpreter->Invoke() != kTfLiteOk) { |
| state.SkipWithError("failed to invoke TFLite interpreter"); |
| return; |
| } |
| } |
| |
| state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency(); |
| |
| const size_t elements_per_iteration = batch_size * channels; |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| |
| interpreter.reset(); |
| } |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| |
| static void CharacteristicArguments(benchmark::internal::Benchmark* b) |
| { |
| b->ArgNames({"N", "C"}); |
| |
| int32_t c = 16; |
| for (int32_t n = 224; n >= 7; n /= 2) { |
| b->Args({n * n, c}); |
| c *= 2; |
| } |
| } |
| |
| BENCHMARK(xnnpack_square_root_f32)->Apply(CharacteristicArguments)->UseRealTime(); |
| |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| BENCHMARK(tflite_square_root_f32)->Apply(CharacteristicArguments)->UseRealTime(); |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| |
| #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| BENCHMARK_MAIN(); |
| #endif |