| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| |
| #include <benchmark/benchmark.h> |
| #include "bench/utils.h" |
| |
| |
| static void add_nc_q8(benchmark::State& state) { |
| const size_t batch_size = static_cast<size_t>(state.range(0)); |
| const size_t channels = static_cast<size_t>(state.range(1)); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto u8rng = std::bind(std::uniform_int_distribution<uint8_t>(), rng); |
| |
| std::vector<uint8_t> a(batch_size * channels); |
| std::vector<uint8_t> b(batch_size * channels); |
| std::vector<uint8_t> y(batch_size * channels); |
| std::generate(a.begin(), a.end(), std::ref(u8rng)); |
| std::generate(b.begin(), b.end(), std::ref(u8rng)); |
| |
| xnn_status status = xnn_initialize(); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t add_op = nullptr; |
| status = xnn_create_add_nc_q8( |
| channels, channels /* a_stride */, channels /* b_stride */, channels /* sum_stride */, |
| 127 /* a:zero point */, 1.0f /* a:scale */, |
| 127 /* b:zero point */, 1.0f /* b:scale */, |
| 127 /* y:zero point */, 1.0f /* y:scale */, |
| 1 /* y:min */, 254 /* y:max */, |
| 0 /* flags */, &add_op); |
| if (status != xnn_status_success || add_op == nullptr) { |
| state.SkipWithError("failed to create Q8 Add operator"); |
| return; |
| } |
| |
| status = xnn_setup_add_nc_q8( |
| add_op, |
| batch_size, |
| a.data(), b.data(), y.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup Q8 Add operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(add_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run Q8 Add operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(add_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete Q8 Add operator"); |
| return; |
| } |
| |
| state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency(); |
| |
| const size_t elements_per_iteration = batch_size * channels; |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = 3 * elements_per_iteration * sizeof(uint8_t); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| |
| static void add_nc_q8_inplace(benchmark::State& state) { |
| const size_t batch_size = static_cast<size_t>(state.range(0)); |
| const size_t channels = static_cast<size_t>(state.range(1)); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto u8rng = std::bind(std::uniform_int_distribution<uint8_t>(), rng); |
| |
| std::vector<uint8_t> a(batch_size * channels); |
| std::vector<uint8_t> y(batch_size * channels); |
| std::generate(a.begin(), a.end(), std::ref(u8rng)); |
| |
| xnn_status status = xnn_initialize(); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t add_op = nullptr; |
| status = xnn_create_add_nc_q8( |
| channels, channels /* a_stride */, channels /* b_stride */, channels /* sum_stride */, |
| 127 /* a:zero point */, 1.0f /* a:scale */, |
| 127 /* b:zero point */, 1.0f /* b:scale */, |
| 127 /* y:zero point */, 1.0f /* y:scale */, |
| 1 /* y:min */, 254 /* y:max */, |
| 0 /* flags */, &add_op); |
| if (status != xnn_status_success || add_op == nullptr) { |
| state.SkipWithError("failed to create Q8 Add operator"); |
| return; |
| } |
| |
| status = xnn_setup_add_nc_q8( |
| add_op, |
| batch_size, |
| a.data(), y.data(), y.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup Q8 Add operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(add_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run Q8 Add operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(add_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete Q8 Add operator"); |
| return; |
| } |
| |
| state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency(); |
| |
| const size_t elements_per_iteration = batch_size * channels; |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = 3 * elements_per_iteration * sizeof(uint8_t); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| |
| static void CharacteristicArguments(benchmark::internal::Benchmark* b) |
| { |
| b->ArgNames({"N", "C"}); |
| |
| int32_t c = 16; |
| for (int32_t n = 224; n >= 7; n /= 2) { |
| b->Args({n * n, c}); |
| c *= 2; |
| } |
| } |
| |
| BENCHMARK(add_nc_q8)->Apply(CharacteristicArguments)->UseRealTime(); |
| BENCHMARK(add_nc_q8_inplace)->Apply(CharacteristicArguments)->UseRealTime(); |
| |
| #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| BENCHMARK_MAIN(); |
| #endif |