| // Auto-generated file. Do not edit! |
| // Template: src/qs8-gemm/c4-neondot.c.in |
| // Generator: tools/xngen |
| // |
| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <assert.h> |
| |
| #include <arm_neon.h> |
| |
| #include <xnnpack/gemm.h> |
| #include <xnnpack/intrinsics-polyfill.h> |
| #include <xnnpack/math.h> |
| |
| |
| void xnn_qc8_gemm_minmax_fp32_ukernel_1x8c4__neondot( |
| size_t mr, |
| size_t nc, |
| size_t kc, |
| const int8_t* restrict a, |
| size_t a_stride, |
| const void* restrict w, |
| int8_t* restrict c, |
| size_t cm_stride, |
| size_t cn_stride, |
| const union xnn_qs8_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN XNN_DISABLE_MSAN |
| { |
| assert(mr != 0); |
| assert(mr <= 1); |
| assert(nc != 0); |
| assert(kc != 0); |
| assert(kc % sizeof(int8_t) == 0); |
| assert(a != NULL); |
| assert(w != NULL); |
| assert(c != NULL); |
| |
| kc = round_up_po2(kc, 4 * sizeof(int8_t)); |
| const int8_t* a0 = a; |
| int8_t* c0 = c; |
| |
| // Loop over groups of 8 columns. |
| do { |
| // Initialize accumulators with bias. 8 bias values are loaded from the |
| // weight matrix, at the start of the group of 8 columns. |
| int32x4_t vacc0x0123 = vld1q_s32(w); w = (const void*) ((const int32_t*) w + 4); |
| int32x4_t vacc0x4567 = vld1q_s32(w); w = (const void*) ((const int32_t*) w + 4); |
| |
| // Inner accumulation loop along the 8 columns. |
| size_t k = kc; |
| // 2x partial unrolled loop to load 8 bytes at a time. |
| while (k >= 8 * sizeof(int8_t)) { |
| // Load a 1x8 block of activations. |
| const int8x8_t va0x01234567 = vld1_s8(a0); a0 += 8; |
| |
| // Load a 8x8 block of weights. |
| const int8x16_t vb0123x0123 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16); |
| const int8x16_t vb0123x4567 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16); |
| const int8x16_t vb4567x0123 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16); |
| const int8x16_t vb4567x4567 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16); |
| |
| // Multiply-accumulate: 1x8 * 8x8 --> 1x8. |
| vacc0x0123 = vdotq_lane_s32(vacc0x0123, vb0123x0123, va0x01234567, 0); |
| vacc0x4567 = vdotq_lane_s32(vacc0x4567, vb0123x4567, va0x01234567, 0); |
| vacc0x0123 = vdotq_lane_s32(vacc0x0123, vb4567x0123, va0x01234567, 1); |
| vacc0x4567 = vdotq_lane_s32(vacc0x4567, vb4567x4567, va0x01234567, 1); |
| |
| k -= 8 * sizeof(int8_t); |
| } |
| // Handle up to 4 final positions of `k` |
| if XNN_UNLIKELY(k != 0) { |
| // Load a 1x4 block of activations. |
| const int8x8_t va0x01234567 = vld1_s8(a0); a0 += 4; |
| |
| // Load a 4x8 block of weights. |
| const int8x16_t vb0123x0123 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16); |
| const int8x16_t vb0123x4567 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16); |
| |
| // Multiply-accumulate: 1x4 * 4x8 --> 1x8. |
| vacc0x0123 = vdotq_lane_s32(vacc0x0123, vb0123x0123, va0x01234567, 0); |
| vacc0x4567 = vdotq_lane_s32(vacc0x4567, vb0123x4567, va0x01234567, 0); |
| } |
| |
| float32x4_t vfpacc0x0123 = vcvtq_f32_s32(vacc0x0123); |
| float32x4_t vfpacc0x4567 = vcvtq_f32_s32(vacc0x4567); |
| |
| const float32x4_t vscale0123 = vld1q_f32((const float*) w); w = (const void*) ((const float*) w + 4); |
| vfpacc0x0123 = vmulq_f32(vfpacc0x0123, vscale0123); |
| const float32x4_t vscale4567 = vld1q_f32((const float*) w); w = (const void*) ((const float*) w + 4); |
| vfpacc0x4567 = vmulq_f32(vfpacc0x4567, vscale4567); |
| |
| vacc0x0123 = vcvtnq_s32_f32(vfpacc0x0123); |
| vacc0x4567 = vcvtnq_s32_f32(vfpacc0x4567); |
| |
| const int16x8_t voutput_zero_point = vld1q_dup_s16(¶ms->neon.output_zero_point); |
| #if XNN_ARCH_ARM64 |
| const int16x8_t vacc0x01234567 = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(vacc0x0123), vacc0x4567), voutput_zero_point); |
| |
| int8x8_t vout0x01234567 = vqmovn_s16(vacc0x01234567); |
| #else |
| const int16x8_t vacc0x01234567 = vqaddq_s16(vcombine_s16(vqmovn_s32(vacc0x0123), vqmovn_s32(vacc0x4567)), voutput_zero_point); |
| |
| int8x8_t vout0x01234567 = vqmovn_s16(vacc0x01234567); |
| #endif |
| const int8x8_t voutput_min = vld1_dup_s8(¶ms->neon.output_min); |
| const int8x8_t voutput_max = vld1_dup_s8(¶ms->neon.output_max); |
| |
| vout0x01234567 = vmax_s8(vout0x01234567, voutput_min); |
| |
| vout0x01234567 = vmin_s8(vout0x01234567, voutput_max); |
| |
| if (nc >= 8) { |
| // Main case where there the 8 columns fit in the destination. |
| vst1_s8(c0 + 0, vout0x01234567); |
| |
| // Advance to the next 8 columns. |
| c0 = (int8_t*) ((uintptr_t) c0 + cn_stride); |
| |
| a0 = (const int8_t*) ((uintptr_t) a0 - kc); |
| |
| nc -= 8; |
| } else { |
| // Final case where not all of the 8 columns fit in the destination. |
| if (nc & 4) { |
| vst1_lane_u32(__builtin_assume_aligned(c0, 1), vreinterpret_u32_s8(vout0x01234567), 0); c0 += 4; |
| vout0x01234567 = vext_s8(vout0x01234567, vout0x01234567, 4); |
| } |
| if (nc & 2) { |
| vst1_lane_u16(__builtin_assume_aligned(c0, 1), vreinterpret_u16_s8(vout0x01234567), 0); c0 += 2; |
| vout0x01234567 = vext_s8(vout0x01234567, vout0x01234567, 2); |
| } |
| if (nc & 1) { |
| vst1_lane_s8(c0, vout0x01234567, 0); |
| } |
| |
| nc = 0; |
| } |
| } while (nc != 0); |
| } |