blob: a42e0c2f311c85c87de633eabebafea88557b498 [file] [log] [blame]
// Auto-generated file. Do not edit!
// Template: src/qs8-gemm/c4-neondot.c.in
// Generator: tools/xngen
//
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/gemm.h>
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/math.h>
void xnn_qc8_gemm_minmax_fp32_ukernel_1x8c4__neondot(
size_t mr,
size_t nc,
size_t kc,
const int8_t* restrict a,
size_t a_stride,
const void* restrict w,
int8_t* restrict c,
size_t cm_stride,
size_t cn_stride,
const union xnn_qs8_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN XNN_DISABLE_MSAN
{
assert(mr != 0);
assert(mr <= 1);
assert(nc != 0);
assert(kc != 0);
assert(kc % sizeof(int8_t) == 0);
assert(a != NULL);
assert(w != NULL);
assert(c != NULL);
kc = round_up_po2(kc, 4 * sizeof(int8_t));
const int8_t* a0 = a;
int8_t* c0 = c;
// Loop over groups of 8 columns.
do {
// Initialize accumulators with bias. 8 bias values are loaded from the
// weight matrix, at the start of the group of 8 columns.
int32x4_t vacc0x0123 = vld1q_s32(w); w = (const void*) ((const int32_t*) w + 4);
int32x4_t vacc0x4567 = vld1q_s32(w); w = (const void*) ((const int32_t*) w + 4);
// Inner accumulation loop along the 8 columns.
size_t k = kc;
// 2x partial unrolled loop to load 8 bytes at a time.
while (k >= 8 * sizeof(int8_t)) {
// Load a 1x8 block of activations.
const int8x8_t va0x01234567 = vld1_s8(a0); a0 += 8;
// Load a 8x8 block of weights.
const int8x16_t vb0123x0123 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
const int8x16_t vb0123x4567 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
const int8x16_t vb4567x0123 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
const int8x16_t vb4567x4567 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
// Multiply-accumulate: 1x8 * 8x8 --> 1x8.
vacc0x0123 = vdotq_lane_s32(vacc0x0123, vb0123x0123, va0x01234567, 0);
vacc0x4567 = vdotq_lane_s32(vacc0x4567, vb0123x4567, va0x01234567, 0);
vacc0x0123 = vdotq_lane_s32(vacc0x0123, vb4567x0123, va0x01234567, 1);
vacc0x4567 = vdotq_lane_s32(vacc0x4567, vb4567x4567, va0x01234567, 1);
k -= 8 * sizeof(int8_t);
}
// Handle up to 4 final positions of `k`
if XNN_UNLIKELY(k != 0) {
// Load a 1x4 block of activations.
const int8x8_t va0x01234567 = vld1_s8(a0); a0 += 4;
// Load a 4x8 block of weights.
const int8x16_t vb0123x0123 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
const int8x16_t vb0123x4567 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
// Multiply-accumulate: 1x4 * 4x8 --> 1x8.
vacc0x0123 = vdotq_lane_s32(vacc0x0123, vb0123x0123, va0x01234567, 0);
vacc0x4567 = vdotq_lane_s32(vacc0x4567, vb0123x4567, va0x01234567, 0);
}
float32x4_t vfpacc0x0123 = vcvtq_f32_s32(vacc0x0123);
float32x4_t vfpacc0x4567 = vcvtq_f32_s32(vacc0x4567);
const float32x4_t vscale0123 = vld1q_f32((const float*) w); w = (const void*) ((const float*) w + 4);
vfpacc0x0123 = vmulq_f32(vfpacc0x0123, vscale0123);
const float32x4_t vscale4567 = vld1q_f32((const float*) w); w = (const void*) ((const float*) w + 4);
vfpacc0x4567 = vmulq_f32(vfpacc0x4567, vscale4567);
vacc0x0123 = vcvtnq_s32_f32(vfpacc0x0123);
vacc0x4567 = vcvtnq_s32_f32(vfpacc0x4567);
const int16x8_t voutput_zero_point = vld1q_dup_s16(&params->neon.output_zero_point);
#if XNN_ARCH_ARM64
const int16x8_t vacc0x01234567 = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(vacc0x0123), vacc0x4567), voutput_zero_point);
int8x8_t vout0x01234567 = vqmovn_s16(vacc0x01234567);
#else
const int16x8_t vacc0x01234567 = vqaddq_s16(vcombine_s16(vqmovn_s32(vacc0x0123), vqmovn_s32(vacc0x4567)), voutput_zero_point);
int8x8_t vout0x01234567 = vqmovn_s16(vacc0x01234567);
#endif
const int8x8_t voutput_min = vld1_dup_s8(&params->neon.output_min);
const int8x8_t voutput_max = vld1_dup_s8(&params->neon.output_max);
vout0x01234567 = vmax_s8(vout0x01234567, voutput_min);
vout0x01234567 = vmin_s8(vout0x01234567, voutput_max);
if (nc >= 8) {
// Main case where there the 8 columns fit in the destination.
vst1_s8(c0 + 0, vout0x01234567);
// Advance to the next 8 columns.
c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
a0 = (const int8_t*) ((uintptr_t) a0 - kc);
nc -= 8;
} else {
// Final case where not all of the 8 columns fit in the destination.
if (nc & 4) {
vst1_lane_u32(__builtin_assume_aligned(c0, 1), vreinterpret_u32_s8(vout0x01234567), 0); c0 += 4;
vout0x01234567 = vext_s8(vout0x01234567, vout0x01234567, 4);
}
if (nc & 2) {
vst1_lane_u16(__builtin_assume_aligned(c0, 1), vreinterpret_u16_s8(vout0x01234567), 0); c0 += 2;
vout0x01234567 = vext_s8(vout0x01234567, vout0x01234567, 2);
}
if (nc & 1) {
vst1_lane_s8(c0, vout0x01234567, 0);
}
nc = 0;
}
} while (nc != 0);
}