| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $assert SSE == 4 |
| $assert not XOP or AVX |
| $assert BATCH_TILE % 8 == 0 |
| $assert BATCH_TILE >= 8 |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| #include <assert.h> |
| |
| $if XOP: |
| #if defined(__GNUC__) || defined(__clang__) |
| #include <x86intrin.h> |
| #else |
| #include <immintrin.h> |
| #include <ammintrin.h> |
| #endif |
| $else: |
| #include <immintrin.h> |
| |
| #include <xnnpack/intrinsics-polyfill.h> |
| #include <xnnpack/vadd.h> |
| |
| |
| $ISA = "xop" if XOP else "avx" if AVX else {4: "sse41"}[SSE] |
| void xnn_qs8_vaddc_minmax_ukernel__${ISA}_mul32_ld32_x${BATCH_TILE}( |
| size_t n, |
| const int8_t* input_x, |
| const int8_t* input_y, |
| int8_t* output, |
| const union xnn_qs8_add_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN |
| { |
| const __m128i vx_multiplier = _mm_load_si128((const __m128i*) params->sse2.x_multiplier); |
| const __m128i vremainder_mask = _mm_load_si128((const __m128i*) params->sse2.remainder_mask); |
| const __m128i vremainder_threshold = _mm_load_si128((const __m128i*) params->sse2.remainder_threshold); |
| const __m128i vshift = _mm_cvtsi32_si128((int) params->sse2.shift); |
| const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point); |
| const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min); |
| const __m128i voutput_max = _mm_load_si128((const __m128i*) params->sse2.output_max); |
| |
| __m128i vzero_point_product = _mm_cvtsi32_si128(params->sse2.y_multiplier[0] * (int32_t) *input_y); |
| vzero_point_product = _mm_shuffle_epi32(vzero_point_product, _MM_SHUFFLE(0, 0, 0, 0)); |
| vzero_point_product = _mm_add_epi32(vzero_point_product, _mm_load_si128((const __m128i*) params->sse2.zero_point_product)); |
| for (; n >= ${BATCH_TILE} * sizeof(int8_t); n -= ${BATCH_TILE} * sizeof(int8_t)) { |
| const __m128i vx${ABC[0:4]} = _mm_cvtepi8_epi32(_mm_loadu_si32(input_x)); |
| $for N in range(4, BATCH_TILE, 4): |
| const __m128i vx${ABC[N:N+4]} = _mm_cvtepi8_epi32(_mm_loadu_si32(input_x + ${N})); |
| input_x += ${BATCH_TILE}; |
| input_y += ${BATCH_TILE}; |
| |
| $if XOP: |
| $for N in range(0, BATCH_TILE, 4): |
| __m128i vacc${ABC[N:N+4]} = _mm_macc_epi32(vx${ABC[N:N+4]}, vx_multiplier, vzero_point_product); |
| $else: |
| $for N in range(0, BATCH_TILE, 4): |
| __m128i vacc${ABC[N:N+4]} = _mm_add_epi32(vzero_point_product, _mm_mullo_epi32(vx${ABC[N:N+4]}, vx_multiplier)); |
| |
| $for N in range(0, BATCH_TILE, 4): |
| const __m128i vrem${ABC[N:N+4]} = _mm_add_epi32(_mm_and_si128(vacc${ABC[N:N+4]}, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[N:N+4]})); |
| |
| $for N in range(0, BATCH_TILE, 4): |
| vacc${ABC[N:N+4]} = _mm_sub_epi32(_mm_sra_epi32(vacc${ABC[N:N+4]}, vshift), _mm_cmpgt_epi32(vrem${ABC[N:N+4]}, vremainder_threshold)); |
| |
| $for N in range(0, BATCH_TILE, 8): |
| __m128i vout${ABC[N:N+8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[N:N+4]}, vacc${ABC[N+4:N+8]}), voutput_zero_point); |
| |
| $for N in range(0, BATCH_TILE, 8): |
| vout${ABC[N:N+8]} = _mm_max_epi16(vout${ABC[N:N+8]}, voutput_min); |
| |
| $for N in range(0, BATCH_TILE, 8): |
| vout${ABC[N:N+8]} = _mm_min_epi16(vout${ABC[N:N+8]}, voutput_max); |
| |
| $for N in range(0, BATCH_TILE, 16): |
| $if N + 8 < BATCH_TILE: |
| const __m128i vout${ABC[N:N+16]} = _mm_packs_epi16(vout${ABC[N:N+8]}, vout${ABC[N+8:N+16]}); |
| $else: |
| const __m128i vout${ABC[N:N+8]}${ABC[N:N+8]} = _mm_packs_epi16(vout${ABC[N:N+8]}, vout${ABC[N:N+8]}); |
| |
| $if BATCH_TILE >= 16: |
| _mm_storeu_si128((__m128i*) output, vout${ABC[0:16]}); |
| $else: |
| _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); |
| $for N in range(16, BATCH_TILE, 16): |
| $if N + 8 < BATCH_TILE: |
| _mm_storeu_si128((__m128i*) (output + ${N}), vout${ABC[N:N+16]}); |
| $else: |
| _mm_storel_epi64((__m128i*) (output + ${N}), vout${ABC[N:N+8]}${ABC[N:N+8]}); |
| output += ${BATCH_TILE}; |
| } |
| if XNN_UNLIKELY(n != 0) { |
| ${"do " if BATCH_TILE > 8 else ""}{ |
| const __m128i vx${ABC[0:4]} = _mm_cvtepi8_epi32(_mm_loadu_si32(input_x)); |
| const __m128i vx${ABC[4:8]} = _mm_cvtepi8_epi32(_mm_loadu_si32(input_x + 4)); |
| $if BATCH_TILE > 8: |
| input_x += 8; |
| |
| $if XOP: |
| __m128i vacc${ABC[0:4]} = _mm_macc_epi32(vx${ABC[0:4]}, vx_multiplier, vzero_point_product); |
| __m128i vacc${ABC[4:8]} = _mm_macc_epi32(vx${ABC[4:8]}, vx_multiplier, vzero_point_product); |
| $else: |
| __m128i vacc${ABC[0:4]} = _mm_add_epi32(vzero_point_product, _mm_mullo_epi32(vx${ABC[0:4]}, vx_multiplier)); |
| __m128i vacc${ABC[4:8]} = _mm_add_epi32(vzero_point_product, _mm_mullo_epi32(vx${ABC[4:8]}, vx_multiplier)); |
| |
| const __m128i vrem${ABC[0:4]} = _mm_add_epi32(_mm_and_si128(vacc${ABC[0:4]}, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[0:4]})); |
| const __m128i vrem${ABC[4:8]} = _mm_add_epi32(_mm_and_si128(vacc${ABC[4:8]}, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[4:8]})); |
| |
| vacc${ABC[0:4]} = _mm_sub_epi32(_mm_sra_epi32(vacc${ABC[0:4]}, vshift), _mm_cmpgt_epi32(vrem${ABC[0:4]}, vremainder_threshold)); |
| vacc${ABC[4:8]} = _mm_sub_epi32(_mm_sra_epi32(vacc${ABC[4:8]}, vshift), _mm_cmpgt_epi32(vrem${ABC[4:8]}, vremainder_threshold)); |
| |
| __m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[0:4]}, vacc${ABC[4:8]}), voutput_zero_point); |
| vout${ABC[0:8]} = _mm_max_epi16(vout${ABC[0:8]}, voutput_min); |
| vout${ABC[0:8]} = _mm_min_epi16(vout${ABC[0:8]}, voutput_max); |
| |
| __m128i vout${ABC[0:8]}${ABC[0:8]} = _mm_packs_epi16(vout${ABC[0:8]}, vout${ABC[0:8]}); |
| |
| $if BATCH_TILE > 8: |
| if XNN_LIKELY(n >= (8 * sizeof(int8_t))) { |
| _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); |
| output += 8; |
| n -= 8 * sizeof(int8_t); |
| } else { |
| if (n & (4 * sizeof(int8_t))) { |
| *((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); |
| output += 4; |
| } |
| if (n & (2 * sizeof(int8_t))) { |
| *((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); |
| output += 2; |
| } |
| if (n & (1 * sizeof(int8_t))) { |
| $if SSE == 4: |
| *output = (int8_t) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); |
| $else: |
| *output = (int32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); |
| } |
| n = 0; |
| } |
| $else: |
| if (n & (4 * sizeof(int8_t))) { |
| *((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); |
| output += 4; |
| } |
| if (n & (2 * sizeof(int8_t))) { |
| *((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); |
| output += 2; |
| } |
| if (n & (1 * sizeof(int8_t))) { |
| $if SSE == 4: |
| *output = (int8_t) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); |
| $else: |
| *output = (int32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); |
| } |
| }${" while (n != 0);" if BATCH_TILE > 8 else ""} |
| } |
| } |