blob: 1daf8719186e49864cd6e207278e0b242942f074 [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert BATCH_TILE % 8 == 0
$assert BATCH_TILE >= 8
$assert RR_STEPS in [1, 2]
$assert DIV_ALGO in ["div", "nr2"]
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$SIMD_TILE = BATCH_TILE // 8
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/common.h>
#include <xnnpack/vunary.h>
static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
void xnn_f32_vsigmoid_ukernel__avx_rr${RR_STEPS}_p5_${DIV_ALGO}_x${BATCH_TILE}(
size_t n,
const float* x,
float* y,
const void* params)
{
assert(n % sizeof(float) == 0);
const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
const __m256 vlog2e = _mm256_set1_ps(0x1.715476p0f);
$if RR_STEPS == 1:
const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
$else:
const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
const __m256 vone = _mm256_set1_ps(1.0f);
$if DIV_ALGO == "nr2":
const __m256 vtwo = _mm256_set1_ps(2.0f);
const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
$if BATCH_TILE > 8:
for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) {
const __m256 vx${ABC[0]} = _mm256_loadu_ps(x);
$for N in range(1, SIMD_TILE):
const __m256 vx${ABC[N]} = _mm256_loadu_ps(x + ${N * 8});
x += ${BATCH_TILE};
$for N in range(SIMD_TILE):
const __m256 vz${ABC[N]} = _mm256_or_ps(vx${ABC[N]}, vsign_mask);
$for N in range(SIMD_TILE):
__m256 vn${ABC[N]} = _mm256_add_ps(_mm256_mul_ps(vz${ABC[N]}, vlog2e), vmagic_bias);
$for N in range(SIMD_TILE):
const __m128 vs_lo${ABC[N]} = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn${ABC[N]})), 23));
const __m128 vs_hi${ABC[N]} = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn${ABC[N]}, 1)), 23));
const __m256 vs${ABC[N]} = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo${ABC[N]}), vs_hi${ABC[N]}, 1);
$for N in range(SIMD_TILE):
vn${ABC[N]} = _mm256_sub_ps(vn${ABC[N]}, vmagic_bias);
$if RR_STEPS == 1:
$for N in range(SIMD_TILE):
__m256 vt${ABC[N]} = _mm256_add_ps(_mm256_mul_ps(vn${ABC[N]}, vminus_ln2), vz${ABC[N]});
$else:
$for N in range(SIMD_TILE):
__m256 vt${ABC[N]} = _mm256_add_ps(_mm256_mul_ps(vn${ABC[N]}, vminus_ln2_hi), vz${ABC[N]});
$for N in range(SIMD_TILE):
vt${ABC[N]} = _mm256_add_ps(_mm256_mul_ps(vn${ABC[N]}, vminus_ln2_lo), vt${ABC[N]});
$for N in range(SIMD_TILE):
__m256 vp${ABC[N]} = _mm256_add_ps(_mm256_mul_ps(vc5, vt${ABC[N]}), vc4);
$for N in range(SIMD_TILE):
vp${ABC[N]} = _mm256_add_ps(_mm256_mul_ps(vp${ABC[N]}, vt${ABC[N]}), vc3);
$for N in range(SIMD_TILE):
vp${ABC[N]} = _mm256_add_ps(_mm256_mul_ps(vp${ABC[N]}, vt${ABC[N]}), vc2);
$for N in range(SIMD_TILE):
vp${ABC[N]} = _mm256_add_ps(_mm256_mul_ps(vp${ABC[N]}, vt${ABC[N]}), vc1);
$for N in range(SIMD_TILE):
vt${ABC[N]} = _mm256_mul_ps(vt${ABC[N]}, vs${ABC[N]});
$for N in range(SIMD_TILE):
const __m256 ve${ABC[N]} = _mm256_add_ps(_mm256_mul_ps(vt${ABC[N]}, vp${ABC[N]}), vs${ABC[N]});
$for N in range(SIMD_TILE):
const __m256 vd${ABC[N]} = _mm256_add_ps(ve${ABC[N]}, vone);
$if DIV_ALGO == "div":
$for N in range(SIMD_TILE):
__m256 vf${ABC[N]} = _mm256_div_ps(ve${ABC[N]}, vd${ABC[N]});
$else:
$for N in range(SIMD_TILE):
__m256 vr${ABC[N]} = _mm256_rcp_ps(vd${ABC[N]});
$for N in range(SIMD_TILE):
vr${ABC[N]} = _mm256_mul_ps(vr${ABC[N]}, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr${ABC[N]}, vd${ABC[N]})));
vr${ABC[N]} = _mm256_mul_ps(vr${ABC[N]}, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr${ABC[N]}, vd${ABC[N]})));
$for N in range(SIMD_TILE):
__m256 vf${ABC[N]} = _mm256_mul_ps(ve${ABC[N]}, vr${ABC[N]});
$for N in range(SIMD_TILE):
vf${ABC[N]} = _mm256_andnot_ps(_mm256_cmp_ps(vz${ABC[N]}, vdenorm_cutoff, _CMP_LT_OS), vf${ABC[N]});
$for N in range(SIMD_TILE):
vf${ABC[N]} = _mm256_blendv_ps(_mm256_sub_ps(vone, vf${ABC[N]}), vf${ABC[N]}, vx${ABC[N]});
_mm256_storeu_ps(y, vf${ABC[0]});
$for N in range(1, SIMD_TILE):
_mm256_storeu_ps(y + ${N * 8}, vf${ABC[N]});
y += ${BATCH_TILE};
}
for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
const __m256 vx = _mm256_loadu_ps(x);
x += 8;
const __m256 vz = _mm256_or_ps(vx, vsign_mask);
__m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias);
const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23));
const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23));
const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1);
vn = _mm256_sub_ps(vn, vmagic_bias);
$if RR_STEPS == 1:
__m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2), vz);
$else:
__m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz);
vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt);
__m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4);
vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3);
vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2);
vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1);
vt = _mm256_mul_ps(vt, vs);
const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs);
const __m256 vd = _mm256_add_ps(ve, vone);
$if DIV_ALGO == "div":
__m256 vf = _mm256_div_ps(ve, vd);
$else:
__m256 vr = _mm256_rcp_ps(vd);
vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd)));
vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd)));
__m256 vf = _mm256_mul_ps(ve, vr);
vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
_mm256_storeu_ps(y, vf);
y += 8;
}
if XNN_UNLIKELY(n != 0) {
assert(n >= 1 * sizeof(float));
assert(n <= 7 * sizeof(float));
__m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
const __m256 vx = _mm256_maskload_ps(x, vmask);
const __m256 vz = _mm256_or_ps(vx, vsign_mask);
__m256 vn = _mm256_add_ps(_mm256_mul_ps(vz, vlog2e), vmagic_bias);
const __m128 vs_lo = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_castps256_ps128(vn)), 23));
const __m128 vs_hi = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(_mm256_extractf128_ps(vn, 1)), 23));
const __m256 vs = _mm256_insertf128_ps(_mm256_castps128_ps256(vs_lo), vs_hi, 1);
vn = _mm256_sub_ps(vn, vmagic_bias);
$if RR_STEPS == 1:
__m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2), vz);
$else:
__m256 vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_hi), vz);
vt = _mm256_add_ps(_mm256_mul_ps(vn, vminus_ln2_lo), vt);
__m256 vp = _mm256_add_ps(_mm256_mul_ps(vc5, vt), vc4);
vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc3);
vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc2);
vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc1);
vt = _mm256_mul_ps(vt, vs);
const __m256 ve = _mm256_add_ps(_mm256_mul_ps(vt, vp), vs);
const __m256 vd = _mm256_add_ps(ve, vone);
$if DIV_ALGO == "div":
__m256 vf = _mm256_div_ps(ve, vd);
$else:
__m256 vr = _mm256_rcp_ps(vd);
vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd)));
vr = _mm256_mul_ps(vr, _mm256_sub_ps(vtwo, _mm256_mul_ps(vr, vd)));
__m256 vf = _mm256_mul_ps(ve, vr);
vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
// _mm256_maskstore_ps(y, vmask, vf) could be used here, but triggers msan failures (probably an msan bug).
__m128 vf_lo = _mm256_castps256_ps128(vf);
if (n & (4 * sizeof(float))) {
_mm_storeu_ps(y, vf_lo);
vf_lo = _mm256_extractf128_ps(vf, 1);
y += 4;
}
if (n & (2 * sizeof(float))) {
_mm_storel_pi((__m64*) y, vf_lo);
vf_lo = _mm_movehl_ps(vf_lo, vf_lo);
y += 2;
}
if (n & (1 * sizeof(float))) {
_mm_store_ss(y, vf_lo);
}
}
}