blob: 7d393cb25f8bbef30e691a72cbf1294bb2630915 [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$assert REQUANTIZATION in ["GEMMLOWP", "FP32"]
$assert DATATYPE in ["QC8", "QS8", "QU8"]
$assert DATATYPE != "QC8" or REQUANTIZATION == "FP32"
$assert CHANNEL_TILE % 8 == 0
$assert CHANNEL_TILE >= 8
$assert KERNEL_TILE >= 2
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/dwconv.h>
$PARAMS_STRUCT = "avx2" if DATATYPE == "QC8" else REQUANTIZATION.lower() + "_avx2"
$PARAMS_UNION = "xnn_qs8_minmax_params" if DATATYPE == "QC8" else "xnn_%s_conv_minmax_params" % DATATYPE.lower()
$XINT8_T = "uint8_t" if DATATYPE == "QU8" else "int8_t"
$_MM256_CVTEPX8_EPI32 = "_mm256_cvtepu8_epi32" if DATATYPE == "QU8" else "_mm256_cvtepi8_epi32"
$_MM_PACKXS_EPI16 = "_mm_packus_epi16" if DATATYPE == "QU8" else "_mm_packs_epi16"
$_MM_MIN_EPX8 = "_mm_min_epu8" if DATATYPE == "QU8" else "_mm_min_epi8"
$_MM_MAX_EPX8 = "_mm_max_epu8" if DATATYPE == "QU8" else "_mm_max_epi8"
void xnn_${DATATYPE.lower()}_dwconv_minmax_${REQUANTIZATION.lower()}_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__avx2_mul32(
size_t channels,
size_t output_width,
const ${XINT8_T}** input,
const void* weights,
${XINT8_T}* output,
size_t input_stride,
size_t output_increment,
size_t input_offset,
const ${XINT8_T}* zero,
const union ${PARAMS_UNION} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN XNN_DISABLE_MSAN
{
assert(channels != 0);
assert(output_width != 0);
$if DATATYPE == "QU8":
const __m256i vk_zero_point = _mm256_cvtepu16_epi32(_mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.kernel_zero_point));
do {
$for K in range(KERNEL_TILE):
const ${XINT8_T}* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const ${XINT8_T}*) ((uintptr_t) i${K} + input_offset);
}
input = (const ${XINT8_T}**) ((uintptr_t) input + input_stride);
size_t c = channels;
const void* w = weights;
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
__m256i vacc${ABC[0:8]} = _mm256_loadu_si256((const __m256i*) w);
$for C in range(8, CHANNEL_TILE, 8):
__m256i vacc${ABC[C:C+8]} = _mm256_loadu_si256((const __m256i*) ((const int32_t*) w + ${C}));
$for K in range(KERNEL_TILE):
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
const __m256i vi${K}x${ABC[0:8]} = ${_MM256_CVTEPX8_EPI32}(_mm_loadl_epi64((const __m128i*) i${K}));
$else:
const __m256i vi${K}x${ABC[C:C+8]} = ${_MM256_CVTEPX8_EPI32}(_mm_loadl_epi64((const __m128i*) (i${K} + ${C})));
$if DATATYPE == "QU8":
const __m256i vk${K}x${ABC[C:C+8]} = _mm256_sub_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE + C} * sizeof(${XINT8_T})))), vk_zero_point);
$else:
const __m256i vk${K}x${ABC[C:C+8]} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE + C} * sizeof(${XINT8_T}))));
i${K} += ${CHANNEL_TILE};
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]} = _mm256_add_epi32(vacc${ABC[C:C+8]}, _mm256_mullo_epi32(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}));
w = (const void*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${KERNEL_TILE * CHANNEL_TILE} * sizeof(${XINT8_T}));
$if REQUANTIZATION == "GEMMLOWP":
const __m256i vmultiplier = _mm256_load_si256((const __m256i*) params->gemmlowp_avx2.multiplier);
const __m256i vrounding = _mm256_load_si256((const __m256i*) params->gemmlowp_avx2.rounding);
$for C in range(0, CHANNEL_TILE, 8):
const __m256i vacc${ABC[C+1:C+8:2]} = _mm256_shuffle_epi32(vacc${ABC[C:C+8]}, _MM_SHUFFLE(3, 3, 1, 1));
$for C in range(0, CHANNEL_TILE, 8):
const __m256i vprod${ABC[C:C+8:2]} = _mm256_add_epi64(_mm256_mul_epi32(vacc${ABC[C:C+8]}, vmultiplier), vrounding);
const __m256i vprod${ABC[C+1:C+8:2]} = _mm256_add_epi64(_mm256_mul_epi32(vacc${ABC[C+1:C+8:2]}, vmultiplier), vrounding);
$for C in range(0, CHANNEL_TILE, 8):
const __m256i vq31prod${ABC[C:C+8:2]} = _mm256_srli_epi64(vprod${ABC[C:C+8:2]}, 31);
const __m256i vq31prod${ABC[C+1:C+8:2]} = _mm256_add_epi64(vprod${ABC[C+1:C+8:2]}, vprod${ABC[C+1:C+8:2]});
$for C in range(0, CHANNEL_TILE, 8):
const __m256i vq31prod${ABC[C:C+8]} = _mm256_blend_epi16(vq31prod${ABC[C:C+8:2]}, vq31prod${ABC[C+1:C+8:2]}, 0xCC);
const __m256i vremainder_mask = _mm256_load_si256((const __m256i*) params->gemmlowp_avx2.remainder_mask);
$for C in range(0, CHANNEL_TILE, 8):
const __m256i vrem${ABC[C:C+8]} =
_mm256_add_epi32(_mm256_and_si256(vq31prod${ABC[C:C+8]}, vremainder_mask), _mm256_cmpgt_epi32(_mm256_setzero_si256(), vq31prod${ABC[C:C+8]}));
const __m256i vremainder_threshold = _mm256_load_si256((const __m256i*) params->gemmlowp_avx2.remainder_threshold);
$if CHANNEL_TILE > 8:
const __m128i vshift = _mm_loadl_epi64((const __m128i*) params->gemmlowp_avx2.shift);
$else:
const __m128i vshift = _mm_load_si128((const __m128i*) params->gemmlowp_avx2.shift);
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]} =
_mm256_sub_epi32(_mm256_sra_epi32(vq31prod${ABC[C:C+8]}, vshift), _mm256_cmpgt_epi32(vrem${ABC[C:C+8]}, vremainder_threshold));
$elif REQUANTIZATION == "FP32":
$for C in range(0, CHANNEL_TILE, 8):
__m256 vscaled${ABC[C:C+8]} = _mm256_cvtepi32_ps(vacc${ABC[C:C+8]});
$if DATATYPE == "QC8":
const __m256 vscale${ABC[0:8]} = _mm256_loadu_ps((const float*) w);
$for C in range(8, CHANNEL_TILE, 8):
const __m256 vscale${ABC[C:C+8]} = _mm256_loadu_ps((const float*) w + ${C});
w = (const void*) ((const float*) w + ${CHANNEL_TILE});
$for C in range(0, CHANNEL_TILE, 8):
vscaled${ABC[C:C+8]} = _mm256_mul_ps(vscaled${ABC[C:C+8]}, vscale${ABC[C:C+8]});
$else:
const __m256 vscale = _mm256_load_ps(params->fp32_avx2.scale);
$for C in range(0, CHANNEL_TILE, 8):
vscaled${ABC[C:C+8]} = _mm256_mul_ps(vscaled${ABC[C:C+8]}, vscale);
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]} = _mm256_cvtps_epi32(vscaled${ABC[C:C+8]});
$if CHANNEL_TILE > 8:
const __m256i voutput_zero_point = _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_zero_point);
$else:
const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_zero_point);
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
__m256i vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]} = _mm256_adds_epi16(_mm256_packs_epi32(vacc${ABC[C:C+8]}, vacc${ABC[C+8:C+16]}), voutput_zero_point);
$elif CHANNEL_TILE > 8:
__m128i vout${ABC[C:C+8]} = _mm_adds_epi16(_mm_packs_epi32(_mm256_castsi256_si128(vacc${ABC[C:C+8]}), _mm256_extracti128_si256(vacc${ABC[C:C+8]}, 1)), _mm256_castsi256_si128(voutput_zero_point));
$else:
__m128i vout${ABC[C:C+8]} = _mm_adds_epi16(_mm_packs_epi32(_mm256_castsi256_si128(vacc${ABC[C:C+8]}), _mm256_extracti128_si256(vacc${ABC[C:C+8]}, 1)), voutput_zero_point);
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
__m128i vout${ABC[C:C+16]} = _mm_shuffle_epi32(${_MM_PACKXS_EPI16}(_mm256_castsi256_si128(vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]}), _mm256_extracti128_si256(vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]}, 1)), _MM_SHUFFLE(3, 1, 2, 0));
$else:
__m128i vout${ABC[C:C+8]}${ABC[C:C+8]} = ${_MM_PACKXS_EPI16}(vout${ABC[C:C+8]}, vout${ABC[C:C+8]});
const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min);
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
vout${ABC[C:C+16]} = ${_MM_MAX_EPX8}(vout${ABC[C:C+16]}, voutput_min);
$else:
vout${ABC[C:C+8]}${ABC[C:C+8]} = ${_MM_MAX_EPX8}(vout${ABC[C:C+8]}${ABC[C:C+8]}, voutput_min);
const __m128i voutput_max = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_max);
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
vout${ABC[C:C+16]} = ${_MM_MIN_EPX8}(vout${ABC[C:C+16]}, voutput_max);
$else:
vout${ABC[C:C+8]}${ABC[C:C+8]} = ${_MM_MIN_EPX8}(vout${ABC[C:C+8]}${ABC[C:C+8]}, voutput_max);
$if CHANNEL_TILE > 8:
_mm_storeu_si128((__m128i*) output, vout${ABC[0:16]});
$else:
_mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[C:C+8]});
$for C in range(16, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
_mm_storeu_si128((__m128i*) (output + ${C}), vout${ABC[C:C+16]});
$else:
_mm_storel_epi64((__m128i*) (output + ${C}), vout${ABC[C:C+8]}${ABC[C:C+8]});
output += ${CHANNEL_TILE};
}
if XNN_UNLIKELY(c != 0) {
$if CHANNEL_TILE > 8:
const ${XINT8_T}* k = (const ${XINT8_T}*) ((const int32_t*) w + ${CHANNEL_TILE});
${"do " if CHANNEL_TILE > 8 else ""}{
__m256i vacc${ABC[0:8]} = _mm256_loadu_si256((const __m256i*) w);
$for K in range(KERNEL_TILE):
const __m256i vi${K}x${ABC[0:8]} = ${_MM256_CVTEPX8_EPI32}(_mm_loadl_epi64((const __m128i*) i${K}));
$if DATATYPE == "QU8":
$if CHANNEL_TILE > 8:
$if K == 0:
const __m256i vk${K}x${ABC[0:8]} = _mm256_sub_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*) k)), vk_zero_point);
$else:
const __m256i vk${K}x${ABC[0:8]} = _mm256_sub_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*) (k + ${K * CHANNEL_TILE}))), vk_zero_point);
$else:
const __m256i vk${K}x${ABC[0:8]} = _mm256_sub_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE} * sizeof(${XINT8_T})))), vk_zero_point);
$else:
$if CHANNEL_TILE > 8:
$if K == 0:
const __m256i vk${K}x${ABC[0:8]} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) k));
$else:
const __m256i vk${K}x${ABC[0:8]} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) (k + ${K * CHANNEL_TILE})));
$else:
const __m256i vk${K}x${ABC[0:8]} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE} * sizeof(${XINT8_T}))));
$if CHANNEL_TILE > 8:
i${K} += 8;
vacc${ABC[0:8]} = _mm256_add_epi32(vacc${ABC[0:8]}, _mm256_mullo_epi32(vi${K}x${ABC[0:8]}, vk${K}x${ABC[0:8]}));
$if CHANNEL_TILE > 8:
k += 8;
$if REQUANTIZATION == "GEMMLOWP":
const __m256i vmultiplier = _mm256_load_si256((const __m256i*) params->gemmlowp_avx2.multiplier);
const __m256i vrounding = _mm256_load_si256((const __m256i*) params->gemmlowp_avx2.rounding);
const __m256i vacc${ABC[1:8:2]} = _mm256_shuffle_epi32(vacc${ABC[0:8]}, _MM_SHUFFLE(3, 3, 1, 1));
const __m256i vprod${ABC[0:8:2]} = _mm256_add_epi64(_mm256_mul_epi32(vacc${ABC[0:8]}, vmultiplier), vrounding);
const __m256i vprod${ABC[1:8:2]} = _mm256_add_epi64(_mm256_mul_epi32(vacc${ABC[1:8:2]}, vmultiplier), vrounding);
const __m256i vq31prod${ABC[0:8:2]} = _mm256_srli_epi64(vprod${ABC[0:8:2]}, 31);
const __m256i vq31prod${ABC[1:8:2]} = _mm256_add_epi64(vprod${ABC[1:8:2]}, vprod${ABC[1:8:2]});
const __m256i vq31prod${ABC[0:8]} = _mm256_blend_epi16(vq31prod${ABC[0:8:2]}, vq31prod${ABC[1:8:2]}, 0xCC);
const __m256i vremainder_mask = _mm256_load_si256((const __m256i*) params->gemmlowp_avx2.remainder_mask);
const __m256i vrem${ABC[0:8]} =
_mm256_add_epi32(_mm256_and_si256(vq31prod${ABC[0:8]}, vremainder_mask), _mm256_cmpgt_epi32(_mm256_setzero_si256(), vq31prod${ABC[0:8]}));
const __m256i vremainder_threshold = _mm256_load_si256((const __m256i*) params->gemmlowp_avx2.remainder_threshold);
const __m128i vshift = _mm_load_si128((const __m128i*) params->gemmlowp_avx2.shift);
vacc${ABC[0:8]} =
_mm256_sub_epi32(_mm256_sra_epi32(vq31prod${ABC[0:8]}, vshift), _mm256_cmpgt_epi32(vrem${ABC[0:8]}, vremainder_threshold));
$elif REQUANTIZATION == "FP32":
__m256 vscaled${ABC[0:8]} = _mm256_cvtepi32_ps(vacc${ABC[0:8]});
$if DATATYPE == "QC8":
const __m256 vscale${ABC[0:8]} = _mm256_loadu_ps((const float*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${CHANNEL_TILE * KERNEL_TILE} * sizeof(${XINT8_T})));
vscaled${ABC[0:8]} = _mm256_mul_ps(vscaled${ABC[0:8]}, vscale${ABC[0:8]});
$else:
vscaled${ABC[0:8]} = _mm256_mul_ps(vscaled${ABC[0:8]}, _mm256_load_ps(params->fp32_avx2.scale));
vacc${ABC[0:8]} = _mm256_cvtps_epi32(vscaled${ABC[0:8]});
$if CHANNEL_TILE > 8:
w = (const void*) ((const int32_t*) w + 8);
const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_zero_point);
__m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(_mm256_castsi256_si128(vacc${ABC[0:8]}), _mm256_extracti128_si256(vacc${ABC[0:8]}, 1)), voutput_zero_point);
__m128i vout${ABC[0:8]}${ABC[0:8]} = ${_MM_PACKXS_EPI16}(vout${ABC[0:8]}, vout${ABC[0:8]});
const __m128i voutput_max = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_max);
vout${ABC[0:8]}${ABC[0:8]} = ${_MM_MIN_EPX8}(vout${ABC[0:8]}${ABC[0:8]}, voutput_max);
const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min);
vout${ABC[0:8]}${ABC[0:8]} = ${_MM_MAX_EPX8}(vout${ABC[0:8]}${ABC[0:8]}, voutput_min);
$if CHANNEL_TILE > 8:
if XNN_LIKELY(c >= 8) {
_mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]});
output += 8;
c -= 8;
} else {
if (c & 4) {
*((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]});
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32);
output += 4;
}
if (c & 2) {
*((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0);
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16);
output += 2;
}
if (c & 1) {
*output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0);
output += 1;
}
c = 0;
}
$else:
if (c & 4) {
*((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]});
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32);
output += 4;
}
if (c & 2) {
*((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0);
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16);
output += 2;
}
if (c & 1) {
*output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0);
output += 1;
}
}${" while (c != 0);" if CHANNEL_TILE > 8 else ""}
}
output = (${XINT8_T}*) ((uintptr_t) output + output_increment);
} while (--output_width != 0);
}