blob: 05a348d7f39ff122847c70474fdda2a7b5cacf91 [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <math.h>
#include <stddef.h>
#include <stdint.h>
#include <xnnpack.h>
#include <xnnpack/log.h>
#include <xnnpack/params.h>
#include <xnnpack/subgraph.h>
static enum xnn_status create_leaky_relu_operator(
const struct xnn_node* node,
const struct xnn_value* values,
size_t num_values,
struct xnn_operator_data* opdata)
{
assert(node->num_inputs == 1);
const uint32_t input_id = node->inputs[0];
assert(input_id != XNN_INVALID_VALUE_ID);
assert(input_id < num_values);
assert(node->num_outputs == 1);
const uint32_t output_id = node->outputs[0];
assert(output_id != XNN_INVALID_VALUE_ID);
assert(output_id < num_values);
const size_t num_input_dims = values[input_id].shape.num_dims;
const size_t channel_dim = num_input_dims == 0 ? 1 : values[input_id].shape.dim[num_input_dims - 1];
enum xnn_status status = xnn_create_leaky_relu_nc_f32(
channel_dim /* channels */, channel_dim /* input stride */, channel_dim /* output stride */,
node->params.leaky_relu.negative_slope,
node->flags,
&opdata->operator_object);
if (status == xnn_status_success) {
opdata->batch_size = xnn_shape_multiply_non_channel_dims(&values[input_id].shape);
opdata->inputs[0] = input_id;
opdata->outputs[0] = output_id;
}
return status;
}
static enum xnn_status setup_leaky_relu_operator(
const struct xnn_operator_data* opdata,
const struct xnn_blob* blobs,
size_t num_blobs,
pthreadpool_t threadpool)
{
const uint32_t input_id = opdata->inputs[0];
assert(input_id != XNN_INVALID_VALUE_ID);
assert(input_id < num_blobs);
const uint32_t output_id = opdata->outputs[0];
assert(output_id != XNN_INVALID_VALUE_ID);
assert(output_id < num_blobs);
const struct xnn_blob* input_blob = blobs + input_id;
const void* input_data = input_blob->data;
assert(input_data != NULL);
const struct xnn_blob* output_blob = blobs + output_id;
void* output_data = output_blob->data;
assert(output_data != NULL);
return xnn_setup_leaky_relu_nc_f32(
opdata->operator_object,
opdata->batch_size,
input_data,
output_data,
threadpool);
}
enum xnn_status xnn_define_leaky_relu(
xnn_subgraph_t subgraph,
float negative_slope,
uint32_t input_id,
uint32_t output_id,
uint32_t flags)
{
if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
xnn_log_error("failed to define %s operator: XNNPACK is not initialized",
xnn_node_type_to_string(xnn_node_type_leaky_relu));
return xnn_status_uninitialized;
}
if (!isfinite(negative_slope)) {
xnn_log_error(
"failed to create %s operator with %f negative slope: finite number expected",
xnn_node_type_to_string(xnn_node_type_leaky_relu),
negative_slope);
return xnn_status_invalid_parameter;
}
if (input_id >= subgraph->num_values) {
xnn_log_error(
"failed to define %s operator with input ID #%" PRIu32 ": invalid Value ID",
xnn_node_type_to_string(xnn_node_type_leaky_relu), input_id);
return xnn_status_invalid_parameter;
}
const struct xnn_value* input_value = &subgraph->values[input_id];
if (input_value->type != xnn_value_type_dense_tensor) {
xnn_log_error(
"failed to define %s operator with input ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
xnn_node_type_to_string(xnn_node_type_leaky_relu), input_id, input_value->type);
return xnn_status_invalid_parameter;
}
switch (input_value->datatype) {
case xnn_datatype_fp32:
break;
default:
xnn_log_error(
"failed to define %s operator with input ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
xnn_node_type_to_string(xnn_node_type_leaky_relu), input_id,
xnn_datatype_to_string(input_value->datatype), input_value->datatype);
return xnn_status_invalid_parameter;
}
if (output_id >= subgraph->num_values) {
xnn_log_error(
"failed to define %s operator with output ID #%" PRIu32 ": invalid Value ID",
xnn_node_type_to_string(xnn_node_type_leaky_relu), output_id);
return xnn_status_invalid_parameter;
}
const struct xnn_value* output_value = &subgraph->values[output_id];
if (output_value->type != xnn_value_type_dense_tensor) {
xnn_log_error(
"failed to define %s operator with output ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
xnn_node_type_to_string(xnn_node_type_leaky_relu), output_id, output_value->type);
return xnn_status_invalid_parameter;
}
switch (output_value->datatype) {
case xnn_datatype_fp32:
break;
default:
xnn_log_error(
"failed to define %s operator with output ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
xnn_node_type_to_string(xnn_node_type_leaky_relu), output_id,
xnn_datatype_to_string(output_value->datatype), output_value->datatype);
return xnn_status_invalid_parameter;
}
struct xnn_node* node = xnn_subgraph_new_node(subgraph);
if (node == NULL) {
return xnn_status_out_of_memory;
}
node->type = xnn_node_type_leaky_relu;
node->params.leaky_relu.negative_slope = negative_slope;
node->num_inputs = 1;
node->inputs[0] = input_id;
node->num_outputs = 1;
node->outputs[0] = output_id;
node->flags = flags;
node->create = create_leaky_relu_operator;
node->setup = setup_leaky_relu_operator;
return xnn_status_success;
}